//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a utility pass used for testing the InstructionSimplify analysis. // The analysis is applied to every instruction, and if it simplifies then the // instruction is replaced by the simplification. If you are looking for a pass // that performs serious instruction folding, use the instcombine pass instead. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/SimplifyLibCalls.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace PatternMatch; static cl::opt EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float " "shrinking for math lib calls")); //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// static bool ignoreCallingConv(LibFunc Func) { return Func == LibFunc_abs || Func == LibFunc_labs || Func == LibFunc_llabs || Func == LibFunc_strlen; } static bool isCallingConvCCompatible(CallInst *CI) { switch(CI->getCallingConv()) { default: return false; case llvm::CallingConv::C: return true; case llvm::CallingConv::ARM_APCS: case llvm::CallingConv::ARM_AAPCS: case llvm::CallingConv::ARM_AAPCS_VFP: { // The iOS ABI diverges from the standard in some cases, so for now don't // try to simplify those calls. if (Triple(CI->getModule()->getTargetTriple()).isiOS()) return false; auto *FuncTy = CI->getFunctionType(); if (!FuncTy->getReturnType()->isPointerTy() && !FuncTy->getReturnType()->isIntegerTy() && !FuncTy->getReturnType()->isVoidTy()) return false; for (auto Param : FuncTy->params()) { if (!Param->isPointerTy() && !Param->isIntegerTy()) return false; } return true; } } return false; } /// Return true if it is only used in equality comparisons with With. static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { for (User *U : V->users()) { if (ICmpInst *IC = dyn_cast(U)) if (IC->isEquality() && IC->getOperand(1) == With) continue; // Unknown instruction. return false; } return true; } static bool callHasFloatingPointArgument(const CallInst *CI) { return any_of(CI->operands(), [](const Use &OI) { return OI->getType()->isFloatingPointTy(); }); } /// \brief Check whether the overloaded unary floating point function /// corresponding to \a Ty is available. static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn) { switch (Ty->getTypeID()) { case Type::FloatTyID: return TLI->has(FloatFn); case Type::DoubleTyID: return TLI->has(DoubleFn); default: return TLI->has(LongDoubleFn); } } //===----------------------------------------------------------------------===// // String and Memory Library Call Optimizations //===----------------------------------------------------------------------===// Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { // Extract some information from the instruction Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; --Len; // Unbias length. // Handle the simple, do-nothing case: strcat(x, "") -> x if (Len == 0) return Dst; return emitStrLenMemCpy(Src, Dst, Len, B); } Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) { // We need to find the end of the destination string. That's where the // memory is to be moved to. We just generate a call to strlen. Value *DstLen = emitStrLen(Dst, B, DL, TLI); if (!DstLen) return nullptr; // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(CpyDst, Src, ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 1); return Dst; } Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { // Extract some information from the instruction. Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); uint64_t Len; // We don't do anything if length is not constant. if (ConstantInt *LengthArg = dyn_cast(CI->getArgOperand(2))) Len = LengthArg->getZExtValue(); else return nullptr; // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return nullptr; --SrcLen; // Unbias length. // Handle the simple, do-nothing cases: // strncat(x, "", c) -> x // strncat(x, c, 0) -> x if (SrcLen == 0 || Len == 0) return Dst; // We don't optimize this case. if (Len < SrcLen) return nullptr; // strncat(x, s, c) -> strcat(x, s) // s is constant so the strcat can be optimized further. return emitStrLenMemCpy(Src, Dst, SrcLen, B); } Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); FunctionType *FT = Callee->getFunctionType(); Value *SrcStr = CI->getArgOperand(0); // If the second operand is non-constant, see if we can compute the length // of the input string and turn this into memchr. ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); if (!CharC) { uint64_t Len = GetStringLength(SrcStr); if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. return nullptr; return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, DL, TLI); } // Otherwise, the character is a constant, see if the first argument is // a string literal. If so, we can constant fold. StringRef Str; if (!getConstantStringInfo(SrcStr, Str)) { if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), "strchr"); return nullptr; } // Compute the offset, make sure to handle the case when we're searching for // zero (a weird way to spell strlen). size_t I = (0xFF & CharC->getSExtValue()) == 0 ? Str.size() : Str.find(CharC->getSExtValue()); if (I == StringRef::npos) // Didn't find the char. strchr returns null. return Constant::getNullValue(CI->getType()); // strchr(s+n,c) -> gep(s+n+i,c) return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); } Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { Value *SrcStr = CI->getArgOperand(0); ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); // Cannot fold anything if we're not looking for a constant. if (!CharC) return nullptr; StringRef Str; if (!getConstantStringInfo(SrcStr, Str)) { // strrchr(s, 0) -> strchr(s, 0) if (CharC->isZero()) return emitStrChr(SrcStr, '\0', B, TLI); return nullptr; } // Compute the offset. size_t I = (0xFF & CharC->getSExtValue()) == 0 ? Str.size() : Str.rfind(CharC->getSExtValue()); if (I == StringRef::npos) // Didn't find the char. Return null. return Constant::getNullValue(CI->getType()); // strrchr(s+n,c) -> gep(s+n+i,c) return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); } Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); if (Str1P == Str2P) // strcmp(x,x) -> 0 return ConstantInt::get(CI->getType(), 0); StringRef Str1, Str2; bool HasStr1 = getConstantStringInfo(Str1P, Str1); bool HasStr2 = getConstantStringInfo(Str2P, Str2); // strcmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) return ConstantInt::get(CI->getType(), Str1.compare(Str2)); if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x return B.CreateNeg( B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); // strcmp(P, "x") -> memcmp(P, "x", 2) uint64_t Len1 = GetStringLength(Str1P); uint64_t Len2 = GetStringLength(Str2P); if (Len1 && Len2) { return emitMemCmp(Str1P, Str2P, ConstantInt::get(DL.getIntPtrType(CI->getContext()), std::min(Len1, Len2)), B, DL, TLI); } return nullptr; } Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); if (Str1P == Str2P) // strncmp(x,x,n) -> 0 return ConstantInt::get(CI->getType(), 0); // Get the length argument if it is constant. uint64_t Length; if (ConstantInt *LengthArg = dyn_cast(CI->getArgOperand(2))) Length = LengthArg->getZExtValue(); else return nullptr; if (Length == 0) // strncmp(x,y,0) -> 0 return ConstantInt::get(CI->getType(), 0); if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); StringRef Str1, Str2; bool HasStr1 = getConstantStringInfo(Str1P, Str1); bool HasStr2 = getConstantStringInfo(Str2P, Str2); // strncmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) { StringRef SubStr1 = Str1.substr(0, Length); StringRef SubStr2 = Str2.substr(0, Length); return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); } if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x return B.CreateNeg( B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); return nullptr; } Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) // strcpy(x,x) -> x return Src; // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; // We have enough information to now generate the memcpy call to do the // copy for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); return Dst; } Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) Value *StrLen = emitStrLen(Src, B, DL, TLI); return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; } // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; Type *PT = Callee->getFunctionType()->getParamType(0); Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); // We have enough information to now generate the memcpy call to do the // copy for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(Dst, Src, LenV, 1); return DstEnd; } Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); Value *LenOp = CI->getArgOperand(2); // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return nullptr; --SrcLen; if (SrcLen == 0) { // strncpy(x, "", y) -> memset(x, '\0', y, 1) B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); return Dst; } uint64_t Len; if (ConstantInt *LengthArg = dyn_cast(LenOp)) Len = LengthArg->getZExtValue(); else return nullptr; if (Len == 0) return Dst; // strncpy(x, y, 0) -> x // Let strncpy handle the zero padding if (Len > SrcLen + 1) return nullptr; Type *PT = Callee->getFunctionType()->getParamType(0); // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); return Dst; } Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, unsigned CharSize) { Value *Src = CI->getArgOperand(0); // Constant folding: strlen("xyz") -> 3 if (uint64_t Len = GetStringLength(Src, CharSize)) return ConstantInt::get(CI->getType(), Len - 1); // If s is a constant pointer pointing to a string literal, we can fold // strlen(s + x) to strlen(s) - x, when x is known to be in the range // [0, strlen(s)] or the string has a single null terminator '\0' at the end. // We only try to simplify strlen when the pointer s points to an array // of i8. Otherwise, we would need to scale the offset x before doing the // subtraction. This will make the optimization more complex, and it's not // very useful because calling strlen for a pointer of other types is // very uncommon. if (GEPOperator *GEP = dyn_cast(Src)) { if (!isGEPBasedOnPointerToString(GEP, CharSize)) return nullptr; ConstantDataArraySlice Slice; if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { uint64_t NullTermIdx; if (Slice.Array == nullptr) { NullTermIdx = 0; } else { NullTermIdx = ~((uint64_t)0); for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { NullTermIdx = I; break; } } // If the string does not have '\0', leave it to strlen to compute // its length. if (NullTermIdx == ~((uint64_t)0)) return nullptr; } Value *Offset = GEP->getOperand(2); KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); Known.Zero.flipAllBits(); uint64_t ArrSize = cast(GEP->getSourceElementType())->getNumElements(); // KnownZero's bits are flipped, so zeros in KnownZero now represent // bits known to be zeros in Offset, and ones in KnowZero represent // bits unknown in Offset. Therefore, Offset is known to be in range // [0, NullTermIdx] when the flipped KnownZero is non-negative and // unsigned-less-than NullTermIdx. // // If Offset is not provably in the range [0, NullTermIdx], we can still // optimize if we can prove that the program has undefined behavior when // Offset is outside that range. That is the case when GEP->getOperand(0) // is a pointer to an object whose memory extent is NullTermIdx+1. if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || (GEP->isInBounds() && isa(GEP->getOperand(0)) && NullTermIdx == ArrSize - 1)) { Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), Offset); } } return nullptr; } // strlen(x?"foo":"bars") --> x ? 3 : 4 if (SelectInst *SI = dyn_cast(Src)) { uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); if (LenTrue && LenFalse) { ORE.emit([&]() { return OptimizationRemark("instcombine", "simplify-libcalls", CI) << "folded strlen(select) to select of constants"; }); return B.CreateSelect(SI->getCondition(), ConstantInt::get(CI->getType(), LenTrue - 1), ConstantInt::get(CI->getType(), LenFalse - 1)); } } // strlen(x) != 0 --> *x != 0 // strlen(x) == 0 --> *x == 0 if (isOnlyUsedInZeroEqualityComparison(CI)) return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); return nullptr; } Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { return optimizeStringLength(CI, B, 8); } Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { Module &M = *CI->getParent()->getParent()->getParent(); unsigned WCharSize = TLI->getWCharSize(M) * 8; // We cannot perform this optimization without wchar_size metadata. if (WCharSize == 0) return nullptr; return optimizeStringLength(CI, B, WCharSize); } Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strpbrk(s, "") -> nullptr // strpbrk("", s) -> nullptr if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t I = S1.find_first_of(S2); if (I == StringRef::npos) // No match. return Constant::getNullValue(CI->getType()); return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk"); } // strpbrk(s, "a") -> strchr(s, 'a') if (HasS2 && S2.size() == 1) return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); return nullptr; } Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { Value *EndPtr = CI->getArgOperand(1); if (isa(EndPtr)) { // With a null EndPtr, this function won't capture the main argument. // It would be readonly too, except that it still may write to errno. CI->addParamAttr(0, Attribute::NoCapture); } return nullptr; } Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strspn(s, "") -> 0 // strspn("", s) -> 0 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t Pos = S1.find_first_not_of(S2); if (Pos == StringRef::npos) Pos = S1.size(); return ConstantInt::get(CI->getType(), Pos); } return nullptr; } Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strcspn("", s) -> 0 if (HasS1 && S1.empty()) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t Pos = S1.find_first_of(S2); if (Pos == StringRef::npos) Pos = S1.size(); return ConstantInt::get(CI->getType(), Pos); } // strcspn(s, "") -> strlen(s) if (HasS2 && S2.empty()) return emitStrLen(CI->getArgOperand(0), B, DL, TLI); return nullptr; } Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { // fold strstr(x, x) -> x. if (CI->getArgOperand(0) == CI->getArgOperand(1)) return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); if (!StrLen) return nullptr; Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), StrLen, B, DL, TLI); if (!StrNCmp) return nullptr; for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { ICmpInst *Old = cast(*UI++); Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); replaceAllUsesWith(Old, Cmp); } return CI; } // See if either input string is a constant string. StringRef SearchStr, ToFindStr; bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); // fold strstr(x, "") -> x. if (HasStr2 && ToFindStr.empty()) return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); // If both strings are known, constant fold it. if (HasStr1 && HasStr2) { size_t Offset = SearchStr.find(ToFindStr); if (Offset == StringRef::npos) // strstr("foo", "bar") -> null return Constant::getNullValue(CI->getType()); // strstr("abcd", "bc") -> gep((char*)"abcd", 1) Value *Result = castToCStr(CI->getArgOperand(0), B); Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); return B.CreateBitCast(Result, CI->getType()); } // fold strstr(x, "y") -> strchr(x, 'y'). if (HasStr2 && ToFindStr.size() == 1) { Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; } return nullptr; } Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { Value *SrcStr = CI->getArgOperand(0); ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); ConstantInt *LenC = dyn_cast(CI->getArgOperand(2)); // memchr(x, y, 0) -> null if (LenC && LenC->isZero()) return Constant::getNullValue(CI->getType()); // From now on we need at least constant length and string. StringRef Str; if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) return nullptr; // Truncate the string to LenC. If Str is smaller than LenC we will still only // scan the string, as reading past the end of it is undefined and we can just // return null if we don't find the char. Str = Str.substr(0, LenC->getZExtValue()); // If the char is variable but the input str and length are not we can turn // this memchr call into a simple bit field test. Of course this only works // when the return value is only checked against null. // // It would be really nice to reuse switch lowering here but we can't change // the CFG at this point. // // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 // after bounds check. if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { unsigned char Max = *std::max_element(reinterpret_cast(Str.begin()), reinterpret_cast(Str.end())); // Make sure the bit field we're about to create fits in a register on the // target. // FIXME: On a 64 bit architecture this prevents us from using the // interesting range of alpha ascii chars. We could do better by emitting // two bitfields or shifting the range by 64 if no lower chars are used. if (!DL.fitsInLegalInteger(Max + 1)) return nullptr; // For the bit field use a power-of-2 type with at least 8 bits to avoid // creating unnecessary illegal types. unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); // Now build the bit field. APInt Bitfield(Width, 0); for (char C : Str) Bitfield.setBit((unsigned char)C); Value *BitfieldC = B.getInt(Bitfield); // First check that the bit field access is within bounds. Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), "memchr.bounds"); // Create code that checks if the given bit is set in the field. Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); // Finally merge both checks and cast to pointer type. The inttoptr // implicitly zexts the i1 to intptr type. return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); } // Check if all arguments are constants. If so, we can constant fold. if (!CharC) return nullptr; // Compute the offset. size_t I = Str.find(CharC->getSExtValue() & 0xFF); if (I == StringRef::npos) // Didn't find the char. memchr returns null. return Constant::getNullValue(CI->getType()); // memchr(s+n,c,l) -> gep(s+n+i,c) return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); } Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); if (LHS == RHS) // memcmp(s,s,x) -> 0 return Constant::getNullValue(CI->getType()); // Make sure we have a constant length. ConstantInt *LenC = dyn_cast(CI->getArgOperand(2)); if (!LenC) return nullptr; uint64_t Len = LenC->getZExtValue(); if (Len == 0) // memcmp(s1,s2,0) -> 0 return Constant::getNullValue(CI->getType()); // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS if (Len == 1) { Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), CI->getType(), "lhsv"); Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), CI->getType(), "rhsv"); return B.CreateSub(LHSV, RHSV, "chardiff"); } // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 // TODO: The case where both inputs are constants does not need to be limited // to legal integers or equality comparison. See block below this. if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); // First, see if we can fold either argument to a constant. Value *LHSV = nullptr; if (auto *LHSC = dyn_cast(LHS)) { LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); } Value *RHSV = nullptr; if (auto *RHSC = dyn_cast(RHS)) { RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); } // Don't generate unaligned loads. If either source is constant data, // alignment doesn't matter for that source because there is no load. if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { if (!LHSV) { Type *LHSPtrTy = IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); } if (!RHSV) { Type *RHSPtrTy = IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); } return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); } } // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). // TODO: This is limited to i8 arrays. StringRef LHSStr, RHSStr; if (getConstantStringInfo(LHS, LHSStr) && getConstantStringInfo(RHS, RHSStr)) { // Make sure we're not reading out-of-bounds memory. if (Len > LHSStr.size() || Len > RHSStr.size()) return nullptr; // Fold the memcmp and normalize the result. This way we get consistent // results across multiple platforms. uint64_t Ret = 0; int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); if (Cmp < 0) Ret = -1; else if (Cmp > 0) Ret = 1; return ConstantInt::get(CI->getType(), Ret); } return nullptr; } Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } // TODO: Does this belong in BuildLibCalls or should all of those similar // functions be moved here? static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, IRBuilder<> &B, const TargetLibraryInfo &TLI) { LibFunc Func; if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) return nullptr; Module *M = B.GetInsertBlock()->getModule(); const DataLayout &DL = M->getDataLayout(); IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), PtrType, PtrType); CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); if (const auto *F = dyn_cast(Calloc->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, const TargetLibraryInfo &TLI) { // This has to be a memset of zeros (bzero). auto *FillValue = dyn_cast(Memset->getArgOperand(1)); if (!FillValue || FillValue->getZExtValue() != 0) return nullptr; // TODO: We should handle the case where the malloc has more than one use. // This is necessary to optimize common patterns such as when the result of // the malloc is checked against null or when a memset intrinsic is used in // place of a memset library call. auto *Malloc = dyn_cast(Memset->getArgOperand(0)); if (!Malloc || !Malloc->hasOneUse()) return nullptr; // Is the inner call really malloc()? Function *InnerCallee = Malloc->getCalledFunction(); if (!InnerCallee) return nullptr; LibFunc Func; if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || Func != LibFunc_malloc) return nullptr; // The memset must cover the same number of bytes that are malloc'd. if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) return nullptr; // Replace the malloc with a calloc. We need the data layout to know what the // actual size of a 'size_t' parameter is. B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); const DataLayout &DL = Malloc->getModule()->getDataLayout(); IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), Malloc->getArgOperand(0), Malloc->getAttributes(), B, TLI); if (!Calloc) return nullptr; Malloc->replaceAllUsesWith(Calloc); Malloc->eraseFromParent(); return Calloc; } Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) return Calloc; // memset(p, v, n) -> llvm.memset(p, v, n, 1) Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); return CI->getArgOperand(0); } //===----------------------------------------------------------------------===// // Math Library Optimizations //===----------------------------------------------------------------------===// /// Return a variant of Val with float type. /// Currently this works in two cases: If Val is an FPExtension of a float /// value to something bigger, simply return the operand. /// If Val is a ConstantFP but can be converted to a float ConstantFP without /// loss of precision do so. static Value *valueHasFloatPrecision(Value *Val) { if (FPExtInst *Cast = dyn_cast(Val)) { Value *Op = Cast->getOperand(0); if (Op->getType()->isFloatTy()) return Op; } if (ConstantFP *Const = dyn_cast(Val)) { APFloat F = Const->getValueAPF(); bool losesInfo; (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); if (!losesInfo) return ConstantFP::get(Const->getContext(), F); } return nullptr; } /// Shrink double -> float for unary functions like 'floor'. static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType) { Function *Callee = CI->getCalledFunction(); // We know this libcall has a valid prototype, but we don't know which. if (!CI->getType()->isDoubleTy()) return nullptr; if (CheckRetType) { // Check if all the uses for function like 'sin' are converted to float. for (User *U : CI->users()) { FPTruncInst *Cast = dyn_cast(U); if (!Cast || !Cast->getType()->isFloatTy()) return nullptr; } } // If this is something like 'floor((double)floatval)', convert to floorf. Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); if (V == nullptr) return nullptr; // If call isn't an intrinsic, check that it isn't within a function with the // same name as the float version of this call. // // e.g. inline float expf(float val) { return (float) exp((double) val); } // // A similar such definition exists in the MinGW-w64 math.h header file which // when compiled with -O2 -ffast-math causes the generation of infinite loops // where expf is called. if (!Callee->isIntrinsic()) { const Function *F = CI->getFunction(); StringRef FName = F->getName(); StringRef CalleeName = Callee->getName(); if ((FName.size() == (CalleeName.size() + 1)) && (FName.back() == 'f') && FName.startswith(CalleeName)) return nullptr; } // Propagate fast-math flags from the existing call to the new call. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); // floor((double)floatval) -> (double)floorf(floatval) if (Callee->isIntrinsic()) { Module *M = CI->getModule(); Intrinsic::ID IID = Callee->getIntrinsicID(); Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); V = B.CreateCall(F, V); } else { // The call is a library call rather than an intrinsic. V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); } return B.CreateFPExt(V, B.getDoubleTy()); } // Replace a libcall \p CI with a call to intrinsic \p IID static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { // Propagate fast-math flags from the existing call to the new call. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); Module *M = CI->getModule(); Value *V = CI->getArgOperand(0); Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); CallInst *NewCall = B.CreateCall(F, V); NewCall->takeName(CI); return NewCall; } /// Shrink double -> float for binary functions like 'fmin/fmax'. static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); // We know this libcall has a valid prototype, but we don't know which. if (!CI->getType()->isDoubleTy()) return nullptr; // If this is something like 'fmin((double)floatval1, (double)floatval2)', // or fmin(1.0, (double)floatval), then we convert it to fminf. Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); if (V1 == nullptr) return nullptr; Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); if (V2 == nullptr) return nullptr; // Propagate fast-math flags from the existing call to the new call. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); // fmin((double)floatval1, (double)floatval2) // -> (double)fminf(floatval1, floatval2) // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, Callee->getAttributes()); return B.CreateFPExt(V, B.getDoubleTy()); } // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { if (!CI->isFast()) return nullptr; // Propagate fast-math flags from the existing call to new instructions. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); Value *Real, *Imag; if (CI->getNumArgOperands() == 1) { Value *Op = CI->getArgOperand(0); assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); Real = B.CreateExtractValue(Op, 0, "real"); Imag = B.CreateExtractValue(Op, 1, "imag"); } else { assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); Real = CI->getArgOperand(0); Imag = CI->getArgOperand(1); } Value *RealReal = B.CreateFMul(Real, Real); Value *ImagImag = B.CreateFMul(Imag, Imag); Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, CI->getType()); return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); } Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; StringRef Name = Callee->getName(); if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) Ret = optimizeUnaryDoubleFP(CI, B, true); // cos(-x) -> cos(x) Value *Op1 = CI->getArgOperand(0); if (BinaryOperator::isFNeg(Op1)) { BinaryOperator *BinExpr = cast(Op1); return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); } return Ret; } static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { // Multiplications calculated using Addition Chains. // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html assert(Exp != 0 && "Incorrect exponent 0 not handled"); if (InnerChain[Exp]) return InnerChain[Exp]; static const unsigned AddChain[33][2] = { {0, 0}, // Unused. {0, 0}, // Unused (base case = pow1). {1, 1}, // Unused (pre-computed). {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, }; InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), getPow(InnerChain, AddChain[Exp][1], B)); return InnerChain[Exp]; } /// Use square root in place of pow(x, +/-0.5). Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { // TODO: There is some subset of 'fast' under which these transforms should // be allowed. if (!Pow->isFast()) return nullptr; const APFloat *Arg1C; if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C))) return nullptr; if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5)) return nullptr; // Fast-math flags from the pow() are propagated to all replacement ops. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(Pow->getFastMathFlags()); Type *Ty = Pow->getType(); Value *Sqrt; if (Pow->hasFnAttr(Attribute::ReadNone)) { // We know that errno is never set, so replace with an intrinsic: // pow(x, 0.5) --> llvm.sqrt(x) // llvm.pow(x, 0.5) --> llvm.sqrt(x) auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty); Sqrt = B.CreateCall(F, Pow->getArgOperand(0)); } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) { // Errno could be set, so we must use a sqrt libcall. // TODO: We also should check that the target can in fact lower the sqrt // libcall. We currently have no way to ask this question, so we ask // whether the target has a sqrt libcall which is not exactly the same. Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0), TLI->getName(LibFunc_sqrt), B, Pow->getCalledFunction()->getAttributes()); } else { // We can't replace with an intrinsic or a libcall. return nullptr; } // If this is pow(x, -0.5), get the reciprocal. if (Arg1C->isExactlyValue(-0.5)) Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt); return Sqrt; } Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; StringRef Name = Callee->getName(); if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) Ret = optimizeUnaryDoubleFP(CI, B, true); Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); // pow(1.0, x) -> 1.0 if (match(Op1, m_SpecificFP(1.0))) return Op1; // pow(2.0, x) -> llvm.exp2(x) if (match(Op1, m_SpecificFP(2.0))) { Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, CI->getType()); return B.CreateCall(Exp2, Op2, "exp2"); } // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will // be one. if (ConstantFP *Op1C = dyn_cast(Op1)) { // pow(10.0, x) -> exp10(x) if (Op1C->isExactlyValue(10.0) && hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, Callee->getAttributes()); } // pow(exp(x), y) -> exp(x * y) // pow(exp2(x), y) -> exp2(x * y) // We enable these only with fast-math. Besides rounding differences, the // transformation changes overflow and underflow behavior quite dramatically. // Example: x = 1000, y = 0.001. // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). auto *OpC = dyn_cast(Op1); if (OpC && OpC->isFast() && CI->isFast()) { LibFunc Func; Function *OpCCallee = OpC->getCalledFunction(); if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, OpCCallee->getAttributes()); } } if (Value *Sqrt = replacePowWithSqrt(CI, B)) return Sqrt; ConstantFP *Op2C = dyn_cast(Op2); if (!Op2C) return Ret; if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 return ConstantFP::get(CI->getType(), 1.0); // FIXME: Correct the transforms and pull this into replacePowWithSqrt(). if (Op2C->isExactlyValue(0.5) && hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) { // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). // This is faster than calling pow, and still handles negative zero // and negative infinity correctly. // TODO: In finite-only mode, this could be just fabs(sqrt(x)). Value *Inf = ConstantFP::getInfinity(CI->getType()); Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); // TODO: As above, we should lower to the sqrt intrinsic if the pow is an // intrinsic, to match errno semantics. Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); Module *M = Callee->getParent(); Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, CI->getType()); Value *FAbs = B.CreateCall(FabsF, Sqrt); Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); return Sel; } // Propagate fast-math-flags from the call to any created instructions. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); // pow(x, 1.0) --> x if (Op2C->isExactlyValue(1.0)) return Op1; // pow(x, 2.0) --> x * x if (Op2C->isExactlyValue(2.0)) return B.CreateFMul(Op1, Op1, "pow2"); // pow(x, -1.0) --> 1.0 / x if (Op2C->isExactlyValue(-1.0)) return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); // In -ffast-math, generate repeated fmul instead of generating pow(x, n). if (CI->isFast()) { APFloat V = abs(Op2C->getValueAPF()); // We limit to a max of 7 fmul(s). Thus max exponent is 32. // This transformation applies to integer exponents only. if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || !V.isInteger()) return nullptr; // We will memoize intermediate products of the Addition Chain. Value *InnerChain[33] = {nullptr}; InnerChain[1] = Op1; InnerChain[2] = B.CreateFMul(Op1, Op1); // We cannot readily convert a non-double type (like float) to a double. // So we first convert V to something which could be converted to double. bool Ignored; V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); Value *FMul = getPow(InnerChain, V.convertToDouble(), B); // For negative exponents simply compute the reciprocal. if (Op2C->isNegative()) FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); return FMul; } return nullptr; } Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; StringRef Name = Callee->getName(); if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) Ret = optimizeUnaryDoubleFP(CI, B, true); Value *Op = CI->getArgOperand(0); // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 LibFunc LdExp = LibFunc_ldexpl; if (Op->getType()->isFloatTy()) LdExp = LibFunc_ldexpf; else if (Op->getType()->isDoubleTy()) LdExp = LibFunc_ldexp; if (TLI->has(LdExp)) { Value *LdExpArg = nullptr; if (SIToFPInst *OpC = dyn_cast(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); } else if (UIToFPInst *OpC = dyn_cast(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); } if (LdExpArg) { Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); if (!Op->getType()->isFloatTy()) One = ConstantExpr::getFPExtend(One, Op->getType()); Module *M = CI->getModule(); Value *NewCallee = M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); if (const Function *F = dyn_cast(Callee->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } } return Ret; } Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); // If we can shrink the call to a float function rather than a double // function, do that first. StringRef Name = Callee->getName(); if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) return Ret; IRBuilder<>::FastMathFlagGuard Guard(B); FastMathFlags FMF; if (CI->isFast()) { // If the call is 'fast', then anything we create here will also be 'fast'. FMF.setFast(); } else { // At a minimum, no-nans-fp-math must be true. if (!CI->hasNoNaNs()) return nullptr; // No-signed-zeros is implied by the definitions of fmax/fmin themselves: // "Ideally, fmax would be sensitive to the sign of zero, for example // fmax(-0. 0, +0. 0) would return +0; however, implementation in software // might be impractical." FMF.setNoSignedZeros(); FMF.setNoNaNs(); } B.setFastMathFlags(FMF); // We have a relaxed floating-point environment. We can ignore NaN-handling // and transform to a compare and select. We do not have to consider errno or // exceptions, because fmin/fmax do not have those. Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); Value *Cmp = Callee->getName().startswith("fmin") ? B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); return B.CreateSelect(Cmp, Op0, Op1); } Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; StringRef Name = Callee->getName(); if (UnsafeFPShrink && hasFloatVersion(Name)) Ret = optimizeUnaryDoubleFP(CI, B, true); if (!CI->isFast()) return Ret; Value *Op1 = CI->getArgOperand(0); auto *OpC = dyn_cast(Op1); // The earlier call must also be 'fast' in order to do these transforms. if (!OpC || !OpC->isFast()) return Ret; // log(pow(x,y)) -> y*log(x) // This is only applicable to log, log2, log10. if (Name != "log" && Name != "log2" && Name != "log10") return Ret; IRBuilder<>::FastMathFlagGuard Guard(B); FastMathFlags FMF; FMF.setFast(); B.setFastMathFlags(FMF); LibFunc Func; Function *F = OpC->getCalledFunction(); if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) return B.CreateFMul(OpC->getArgOperand(1), emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, Callee->getAttributes()), "mul"); // log(exp2(y)) -> y*log(2) if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && Func == LibFunc_exp2) return B.CreateFMul( OpC->getArgOperand(0), emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), Callee->getName(), B, Callee->getAttributes()), "logmul"); return Ret; } Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; // TODO: Once we have a way (other than checking for the existince of the // libcall) to tell whether our target can lower @llvm.sqrt, relax the // condition below. if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || Callee->getIntrinsicID() == Intrinsic::sqrt)) Ret = optimizeUnaryDoubleFP(CI, B, true); if (!CI->isFast()) return Ret; Instruction *I = dyn_cast(CI->getArgOperand(0)); if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) return Ret; // We're looking for a repeated factor in a multiplication tree, // so we can do this fold: sqrt(x * x) -> fabs(x); // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). Value *Op0 = I->getOperand(0); Value *Op1 = I->getOperand(1); Value *RepeatOp = nullptr; Value *OtherOp = nullptr; if (Op0 == Op1) { // Simple match: the operands of the multiply are identical. RepeatOp = Op0; } else { // Look for a more complicated pattern: one of the operands is itself // a multiply, so search for a common factor in that multiply. // Note: We don't bother looking any deeper than this first level or for // variations of this pattern because instcombine's visitFMUL and/or the // reassociation pass should give us this form. Value *OtherMul0, *OtherMul1; if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { // Pattern: sqrt((x * y) * z) if (OtherMul0 == OtherMul1 && cast(Op0)->isFast()) { // Matched: sqrt((x * x) * z) RepeatOp = OtherMul0; OtherOp = Op1; } } } if (!RepeatOp) return Ret; // Fast math flags for any created instructions should match the sqrt // and multiply. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(I->getFastMathFlags()); // If we found a repeated factor, hoist it out of the square root and // replace it with the fabs of that factor. Module *M = Callee->getParent(); Type *ArgType = I->getType(); Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); if (OtherOp) { // If we found a non-repeated factor, we still need to get its square // root. We then multiply that by the value that was simplified out // of the square root calculation. Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); return B.CreateFMul(FabsCall, SqrtCall); } return FabsCall; } // TODO: Generalize to handle any trig function and its inverse. Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; StringRef Name = Callee->getName(); if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) Ret = optimizeUnaryDoubleFP(CI, B, true); Value *Op1 = CI->getArgOperand(0); auto *OpC = dyn_cast(Op1); if (!OpC) return Ret; // Both calls must be 'fast' in order to remove them. if (!CI->isFast() || !OpC->isFast()) return Ret; // tan(atan(x)) -> x // tanf(atanf(x)) -> x // tanl(atanl(x)) -> x LibFunc Func; Function *F = OpC->getCalledFunction(); if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && ((Func == LibFunc_atan && Callee->getName() == "tan") || (Func == LibFunc_atanf && Callee->getName() == "tanf") || (Func == LibFunc_atanl && Callee->getName() == "tanl"))) Ret = OpC->getArgOperand(0); return Ret; } static bool isTrigLibCall(CallInst *CI) { // We can only hope to do anything useful if we can ignore things like errno // and floating-point exceptions. // We already checked the prototype. return CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); } static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { Type *ArgTy = Arg->getType(); Type *ResTy; StringRef Name; Triple T(OrigCallee->getParent()->getTargetTriple()); if (UseFloat) { Name = "__sincospif_stret"; assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); // x86_64 can't use {float, float} since that would be returned in both // xmm0 and xmm1, which isn't what a real struct would do. ResTy = T.getArch() == Triple::x86_64 ? static_cast(VectorType::get(ArgTy, 2)) : static_cast(StructType::get(ArgTy, ArgTy)); } else { Name = "__sincospi_stret"; ResTy = StructType::get(ArgTy, ArgTy); } Module *M = OrigCallee->getParent(); Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); if (Instruction *ArgInst = dyn_cast(Arg)) { // If the argument is an instruction, it must dominate all uses so put our // sincos call there. B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); } else { // Otherwise (e.g. for a constant) the beginning of the function is as // good a place as any. BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); B.SetInsertPoint(&EntryBB, EntryBB.begin()); } SinCos = B.CreateCall(Callee, Arg, "sincospi"); if (SinCos->getType()->isStructTy()) { Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); Cos = B.CreateExtractValue(SinCos, 1, "cospi"); } else { Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), "sinpi"); Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), "cospi"); } } Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { // Make sure the prototype is as expected, otherwise the rest of the // function is probably invalid and likely to abort. if (!isTrigLibCall(CI)) return nullptr; Value *Arg = CI->getArgOperand(0); SmallVector SinCalls; SmallVector CosCalls; SmallVector SinCosCalls; bool IsFloat = Arg->getType()->isFloatTy(); // Look for all compatible sinpi, cospi and sincospi calls with the same // argument. If there are enough (in some sense) we can make the // substitution. Function *F = CI->getFunction(); for (User *U : Arg->users()) classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); // It's only worthwhile if both sinpi and cospi are actually used. if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) return nullptr; Value *Sin, *Cos, *SinCos; insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); auto replaceTrigInsts = [this](SmallVectorImpl &Calls, Value *Res) { for (CallInst *C : Calls) replaceAllUsesWith(C, Res); }; replaceTrigInsts(SinCalls, Sin); replaceTrigInsts(CosCalls, Cos); replaceTrigInsts(SinCosCalls, SinCos); return nullptr; } void LibCallSimplifier::classifyArgUse( Value *Val, Function *F, bool IsFloat, SmallVectorImpl &SinCalls, SmallVectorImpl &CosCalls, SmallVectorImpl &SinCosCalls) { CallInst *CI = dyn_cast(Val); if (!CI) return; // Don't consider calls in other functions. if (CI->getFunction() != F) return; Function *Callee = CI->getCalledFunction(); LibFunc Func; if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) return; if (IsFloat) { if (Func == LibFunc_sinpif) SinCalls.push_back(CI); else if (Func == LibFunc_cospif) CosCalls.push_back(CI); else if (Func == LibFunc_sincospif_stret) SinCosCalls.push_back(CI); } else { if (Func == LibFunc_sinpi) SinCalls.push_back(CI); else if (Func == LibFunc_cospi) CosCalls.push_back(CI); else if (Func == LibFunc_sincospi_stret) SinCosCalls.push_back(CI); } } //===----------------------------------------------------------------------===// // Integer Library Call Optimizations //===----------------------------------------------------------------------===// Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 Value *Op = CI->getArgOperand(0); Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), Intrinsic::cttz, ArgType); Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); V = B.CreateIntCast(V, B.getInt32Ty(), false); Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); return B.CreateSelect(Cond, V, B.getInt32(0)); } Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) Value *Op = CI->getArgOperand(0); Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), Intrinsic::ctlz, ArgType); Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), V); return B.CreateIntCast(V, CI->getType(), false); } Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { // abs(x) -> x >s -1 ? x : -x Value *Op = CI->getArgOperand(0); Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); Value *Neg = B.CreateNeg(Op, "neg"); return B.CreateSelect(Pos, Op, Neg); } Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { // isdigit(c) -> (c-'0') getArgOperand(0); Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); return B.CreateZExt(Op, CI->getType()); } Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { // isascii(c) -> c getArgOperand(0); Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); return B.CreateZExt(Op, CI->getType()); } Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { // toascii(c) -> c & 0x7f return B.CreateAnd(CI->getArgOperand(0), ConstantInt::get(CI->getType(), 0x7F)); } //===----------------------------------------------------------------------===// // Formatting and IO Library Call Optimizations //===----------------------------------------------------------------------===// static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, int StreamArg) { Function *Callee = CI->getCalledFunction(); // Error reporting calls should be cold, mark them as such. // This applies even to non-builtin calls: it is only a hint and applies to // functions that the frontend might not understand as builtins. // This heuristic was suggested in: // Improving Static Branch Prediction in a Compiler // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu // Proceedings of PACT'98, Oct. 1998, IEEE if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI, StreamArg)) { CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); } return nullptr; } static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { if (!Callee || !Callee->isDeclaration()) return false; if (StreamArg < 0) return true; // These functions might be considered cold, but only if their stream // argument is stderr. if (StreamArg >= (int)CI->getNumArgOperands()) return false; LoadInst *LI = dyn_cast(CI->getArgOperand(StreamArg)); if (!LI) return false; GlobalVariable *GV = dyn_cast(LI->getPointerOperand()); if (!GV || !GV->isDeclaration()) return false; return GV->getName() == "stderr"; } Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) return nullptr; // Empty format string -> noop. if (FormatStr.empty()) // Tolerate printf's declared void. return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); // Do not do any of the following transformations if the printf return value // is used, in general the printf return value is not compatible with either // putchar() or puts(). if (!CI->use_empty()) return nullptr; // printf("x") -> putchar('x'), even for "%" and "%%". if (FormatStr.size() == 1 || FormatStr == "%%") return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); // printf("%s", "a") --> putchar('a') if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { StringRef ChrStr; if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) return nullptr; if (ChrStr.size() != 1) return nullptr; return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); } // printf("foo\n") --> puts("foo") if (FormatStr[FormatStr.size() - 1] == '\n' && FormatStr.find('%') == StringRef::npos) { // No format characters. // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. FormatStr = FormatStr.drop_back(); Value *GV = B.CreateGlobalString(FormatStr, "str"); return emitPutS(GV, B, TLI); } // Optimize specific format strings. // printf("%c", chr) --> putchar(chr) if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isIntegerTy()) return emitPutChar(CI->getArgOperand(1), B, TLI); // printf("%s\n", str) --> puts(str) if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isPointerTy()) return emitPutS(CI->getArgOperand(1), B, TLI); return nullptr; } Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); FunctionType *FT = Callee->getFunctionType(); if (Value *V = optimizePrintFString(CI, B)) { return V; } // printf(format, ...) -> iprintf(format, ...) if no floating point // arguments. if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *IPrintFFn = M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); CallInst *New = cast(CI->clone()); New->setCalledFunction(IPrintFFn); B.Insert(New); return New; } return nullptr; } Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return nullptr; // If we just have a format string (nothing else crazy) transform it. if (CI->getNumArgOperands() == 2) { // Make sure there's no % in the constant array. We could try to handle // %% -> % in the future if we cared. for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return nullptr; // we found a format specifier, bail out. // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size() + 1), 1); // Copy the null byte. return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return nullptr; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); Value *Ptr = castToCStr(CI->getArgOperand(0), B); B.CreateStore(V, Ptr); Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); B.CreateStore(B.getInt8(0), Ptr); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr; Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); if (!Len) return nullptr; Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); // The sprintf result is the unincremented number of bytes in the string. return B.CreateIntCast(Len, CI->getType(), false); } return nullptr; } Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); FunctionType *FT = Callee->getFunctionType(); if (Value *V = optimizeSPrintFString(CI, B)) { return V; } // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating // point arguments. if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *SIPrintFFn = M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); CallInst *New = cast(CI->clone()); New->setCalledFunction(SIPrintFFn); B.Insert(New); return New; } return nullptr; } Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { optimizeErrorReporting(CI, B, 0); // All the optimizations depend on the format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return nullptr; // Do not do any of the following transformations if the fprintf return // value is used, in general the fprintf return value is not compatible // with fwrite(), fputc() or fputs(). if (!CI->use_empty()) return nullptr; // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) if (CI->getNumArgOperands() == 2) { for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') // Could handle %% -> % if we cared. return nullptr; // We found a format specifier. return emitFWrite( CI->getArgOperand(1), ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), CI->getArgOperand(0), B, DL, TLI); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return nullptr; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // fprintf(F, "%c", chr) --> fputc(chr, F) if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); } if (FormatStr[1] == 's') { // fprintf(F, "%s", str) --> fputs(str, F) if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr; return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); } return nullptr; } Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); FunctionType *FT = Callee->getFunctionType(); if (Value *V = optimizeFPrintFString(CI, B)) { return V; } // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no // floating point arguments. if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *FIPrintFFn = M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); CallInst *New = cast(CI->clone()); New->setCalledFunction(FIPrintFFn); B.Insert(New); return New; } return nullptr; } Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { optimizeErrorReporting(CI, B, 3); // Get the element size and count. ConstantInt *SizeC = dyn_cast(CI->getArgOperand(1)); ConstantInt *CountC = dyn_cast(CI->getArgOperand(2)); if (!SizeC || !CountC) return nullptr; uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); // If this is writing zero records, remove the call (it's a noop). if (Bytes == 0) return ConstantInt::get(CI->getType(), 0); // If this is writing one byte, turn it into fputc. // This optimisation is only valid, if the return value is unused. if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; } return nullptr; } Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { optimizeErrorReporting(CI, B, 1); // Don't rewrite fputs to fwrite when optimising for size because fwrite // requires more arguments and thus extra MOVs are required. if (CI->getParent()->getParent()->optForSize()) return nullptr; // We can't optimize if return value is used. if (!CI->use_empty()) return nullptr; // fputs(s,F) --> fwrite(s,1,strlen(s),F) uint64_t Len = GetStringLength(CI->getArgOperand(0)); if (!Len) return nullptr; // Known to have no uses (see above). return emitFWrite( CI->getArgOperand(0), ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), CI->getArgOperand(1), B, DL, TLI); } Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { // Check for a constant string. StringRef Str; if (!getConstantStringInfo(CI->getArgOperand(0), Str)) return nullptr; if (Str.empty() && CI->use_empty()) { // puts("") -> putchar('\n') Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } return nullptr; } bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { LibFunc Func; SmallString<20> FloatFuncName = FuncName; FloatFuncName += 'f'; if (TLI->getLibFunc(FloatFuncName, Func)) return TLI->has(Func); return false; } Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, IRBuilder<> &Builder) { LibFunc Func; Function *Callee = CI->getCalledFunction(); // Check for string/memory library functions. if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { // Make sure we never change the calling convention. assert((ignoreCallingConv(Func) || isCallingConvCCompatible(CI)) && "Optimizing string/memory libcall would change the calling convention"); switch (Func) { case LibFunc_strcat: return optimizeStrCat(CI, Builder); case LibFunc_strncat: return optimizeStrNCat(CI, Builder); case LibFunc_strchr: return optimizeStrChr(CI, Builder); case LibFunc_strrchr: return optimizeStrRChr(CI, Builder); case LibFunc_strcmp: return optimizeStrCmp(CI, Builder); case LibFunc_strncmp: return optimizeStrNCmp(CI, Builder); case LibFunc_strcpy: return optimizeStrCpy(CI, Builder); case LibFunc_stpcpy: return optimizeStpCpy(CI, Builder); case LibFunc_strncpy: return optimizeStrNCpy(CI, Builder); case LibFunc_strlen: return optimizeStrLen(CI, Builder); case LibFunc_strpbrk: return optimizeStrPBrk(CI, Builder); case LibFunc_strtol: case LibFunc_strtod: case LibFunc_strtof: case LibFunc_strtoul: case LibFunc_strtoll: case LibFunc_strtold: case LibFunc_strtoull: return optimizeStrTo(CI, Builder); case LibFunc_strspn: return optimizeStrSpn(CI, Builder); case LibFunc_strcspn: return optimizeStrCSpn(CI, Builder); case LibFunc_strstr: return optimizeStrStr(CI, Builder); case LibFunc_memchr: return optimizeMemChr(CI, Builder); case LibFunc_memcmp: return optimizeMemCmp(CI, Builder); case LibFunc_memcpy: return optimizeMemCpy(CI, Builder); case LibFunc_memmove: return optimizeMemMove(CI, Builder); case LibFunc_memset: return optimizeMemSet(CI, Builder); case LibFunc_wcslen: return optimizeWcslen(CI, Builder); default: break; } } return nullptr; } Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, LibFunc Func, IRBuilder<> &Builder) { // Don't optimize calls that require strict floating point semantics. if (CI->isStrictFP()) return nullptr; switch (Func) { case LibFunc_cosf: case LibFunc_cos: case LibFunc_cosl: return optimizeCos(CI, Builder); case LibFunc_sinpif: case LibFunc_sinpi: case LibFunc_cospif: case LibFunc_cospi: return optimizeSinCosPi(CI, Builder); case LibFunc_powf: case LibFunc_pow: case LibFunc_powl: return optimizePow(CI, Builder); case LibFunc_exp2l: case LibFunc_exp2: case LibFunc_exp2f: return optimizeExp2(CI, Builder); case LibFunc_fabsf: case LibFunc_fabs: case LibFunc_fabsl: return replaceUnaryCall(CI, Builder, Intrinsic::fabs); case LibFunc_sqrtf: case LibFunc_sqrt: case LibFunc_sqrtl: return optimizeSqrt(CI, Builder); case LibFunc_log: case LibFunc_log10: case LibFunc_log1p: case LibFunc_log2: case LibFunc_logb: return optimizeLog(CI, Builder); case LibFunc_tan: case LibFunc_tanf: case LibFunc_tanl: return optimizeTan(CI, Builder); case LibFunc_ceil: return replaceUnaryCall(CI, Builder, Intrinsic::ceil); case LibFunc_floor: return replaceUnaryCall(CI, Builder, Intrinsic::floor); case LibFunc_round: return replaceUnaryCall(CI, Builder, Intrinsic::round); case LibFunc_nearbyint: return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); case LibFunc_rint: return replaceUnaryCall(CI, Builder, Intrinsic::rint); case LibFunc_trunc: return replaceUnaryCall(CI, Builder, Intrinsic::trunc); case LibFunc_acos: case LibFunc_acosh: case LibFunc_asin: case LibFunc_asinh: case LibFunc_atan: case LibFunc_atanh: case LibFunc_cbrt: case LibFunc_cosh: case LibFunc_exp: case LibFunc_exp10: case LibFunc_expm1: case LibFunc_sin: case LibFunc_sinh: case LibFunc_tanh: if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) return optimizeUnaryDoubleFP(CI, Builder, true); return nullptr; case LibFunc_copysign: if (hasFloatVersion(CI->getCalledFunction()->getName())) return optimizeBinaryDoubleFP(CI, Builder); return nullptr; case LibFunc_fminf: case LibFunc_fmin: case LibFunc_fminl: case LibFunc_fmaxf: case LibFunc_fmax: case LibFunc_fmaxl: return optimizeFMinFMax(CI, Builder); case LibFunc_cabs: case LibFunc_cabsf: case LibFunc_cabsl: return optimizeCAbs(CI, Builder); default: return nullptr; } } Value *LibCallSimplifier::optimizeCall(CallInst *CI) { // TODO: Split out the code below that operates on FP calls so that // we can all non-FP calls with the StrictFP attribute to be // optimized. if (CI->isNoBuiltin()) return nullptr; LibFunc Func; Function *Callee = CI->getCalledFunction(); SmallVector OpBundles; CI->getOperandBundlesAsDefs(OpBundles); IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); bool isCallingConvC = isCallingConvCCompatible(CI); // Command-line parameter overrides instruction attribute. // This can't be moved to optimizeFloatingPointLibCall() because it may be // used by the intrinsic optimizations. if (EnableUnsafeFPShrink.getNumOccurrences() > 0) UnsafeFPShrink = EnableUnsafeFPShrink; else if (isa(CI) && CI->isFast()) UnsafeFPShrink = true; // First, check for intrinsics. if (IntrinsicInst *II = dyn_cast(CI)) { if (!isCallingConvC) return nullptr; // The FP intrinsics have corresponding constrained versions so we don't // need to check for the StrictFP attribute here. switch (II->getIntrinsicID()) { case Intrinsic::pow: return optimizePow(CI, Builder); case Intrinsic::exp2: return optimizeExp2(CI, Builder); case Intrinsic::log: return optimizeLog(CI, Builder); case Intrinsic::sqrt: return optimizeSqrt(CI, Builder); // TODO: Use foldMallocMemset() with memset intrinsic. default: return nullptr; } } // Also try to simplify calls to fortified library functions. if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { // Try to further simplify the result. CallInst *SimplifiedCI = dyn_cast(SimplifiedFortifiedCI); if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { // Use an IR Builder from SimplifiedCI if available instead of CI // to guarantee we reach all uses we might replace later on. IRBuilder<> TmpBuilder(SimplifiedCI); if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { // If we were able to further simplify, remove the now redundant call. SimplifiedCI->replaceAllUsesWith(V); SimplifiedCI->eraseFromParent(); return V; } } return SimplifiedFortifiedCI; } // Then check for known library functions. if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { // We never change the calling convention. if (!ignoreCallingConv(Func) && !isCallingConvC) return nullptr; if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) return V; if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) return V; switch (Func) { case LibFunc_ffs: case LibFunc_ffsl: case LibFunc_ffsll: return optimizeFFS(CI, Builder); case LibFunc_fls: case LibFunc_flsl: case LibFunc_flsll: return optimizeFls(CI, Builder); case LibFunc_abs: case LibFunc_labs: case LibFunc_llabs: return optimizeAbs(CI, Builder); case LibFunc_isdigit: return optimizeIsDigit(CI, Builder); case LibFunc_isascii: return optimizeIsAscii(CI, Builder); case LibFunc_toascii: return optimizeToAscii(CI, Builder); case LibFunc_printf: return optimizePrintF(CI, Builder); case LibFunc_sprintf: return optimizeSPrintF(CI, Builder); case LibFunc_fprintf: return optimizeFPrintF(CI, Builder); case LibFunc_fwrite: return optimizeFWrite(CI, Builder); case LibFunc_fputs: return optimizeFPuts(CI, Builder); case LibFunc_puts: return optimizePuts(CI, Builder); case LibFunc_perror: return optimizeErrorReporting(CI, Builder); case LibFunc_vfprintf: case LibFunc_fiprintf: return optimizeErrorReporting(CI, Builder, 0); case LibFunc_fputc: return optimizeErrorReporting(CI, Builder, 1); default: return nullptr; } } return nullptr; } LibCallSimplifier::LibCallSimplifier( const DataLayout &DL, const TargetLibraryInfo *TLI, OptimizationRemarkEmitter &ORE, function_ref Replacer) : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), UnsafeFPShrink(false), Replacer(Replacer) {} void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { // Indirect through the replacer used in this instance. Replacer(I, With); } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(cbrt(x)) -> pow(x,1/9) // // exp, expf, expl: // * exp(log(x)) -> x // // log, logf, logl: // * log(exp(x)) -> x // * log(exp(y)) -> y*log(e) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // // pow, powf, powl: // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // //===----------------------------------------------------------------------===// // Fortified Library Call Optimizations //===----------------------------------------------------------------------===// bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, unsigned ObjSizeOp, unsigned SizeOp, bool isString) { if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) return true; if (ConstantInt *ObjSizeCI = dyn_cast(CI->getArgOperand(ObjSizeOp))) { if (ObjSizeCI->isMinusOne()) return true; // If the object size wasn't -1 (unknown), bail out if we were asked to. if (OnlyLowerUnknownSize) return false; if (isString) { uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); // If the length is 0 we don't know how long it is and so we can't // remove the check. if (Len == 0) return false; return ObjSizeCI->getZExtValue() >= Len; } if (ConstantInt *SizeCI = dyn_cast(CI->getArgOperand(SizeOp))) return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); } return false; } Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { if (isFortifiedCallFoldable(CI, 3, 2, false)) { B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } return nullptr; } Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { if (isFortifiedCallFoldable(CI, 3, 2, false)) { B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } return nullptr; } Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { // TODO: Try foldMallocMemset() here. if (isFortifiedCallFoldable(CI, 3, 2, false)) { Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); return CI->getArgOperand(0); } return nullptr; } Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, IRBuilder<> &B, LibFunc Func) { Function *Callee = CI->getCalledFunction(); StringRef Name = Callee->getName(); const DataLayout &DL = CI->getModule()->getDataLayout(); Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), *ObjSize = CI->getArgOperand(2); // __stpcpy_chk(x,x,...) -> x+strlen(x) if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { Value *StrLen = emitStrLen(Src, B, DL, TLI); return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; } // If a) we don't have any length information, or b) we know this will // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our // st[rp]cpy_chk call which may fail at runtime if the size is too long. // TODO: It might be nice to get a maximum length out of the possible // string lengths for varying. if (isFortifiedCallFoldable(CI, 2, 1, true)) return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); if (OnlyLowerUnknownSize) return nullptr; // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. uint64_t Len = GetStringLength(Src); if (Len == 0) return nullptr; Type *SizeTTy = DL.getIntPtrType(CI->getContext()); Value *LenV = ConstantInt::get(SizeTTy, Len); Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); // If the function was an __stpcpy_chk, and we were able to fold it into // a __memcpy_chk, we still need to return the correct end pointer. if (Ret && Func == LibFunc_stpcpy_chk) return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); return Ret; } Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, IRBuilder<> &B, LibFunc Func) { Function *Callee = CI->getCalledFunction(); StringRef Name = Callee->getName(); if (isFortifiedCallFoldable(CI, 3, 2, false)) { Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); return Ret; } return nullptr; } Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. // Some clang users checked for _chk libcall availability using: // __has_builtin(__builtin___memcpy_chk) // When compiling with -fno-builtin, this is always true. // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we // end up with fortified libcalls, which isn't acceptable in a freestanding // environment which only provides their non-fortified counterparts. // // Until we change clang and/or teach external users to check for availability // differently, disregard the "nobuiltin" attribute and TLI::has. // // PR23093. LibFunc Func; Function *Callee = CI->getCalledFunction(); SmallVector OpBundles; CI->getOperandBundlesAsDefs(OpBundles); IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); bool isCallingConvC = isCallingConvCCompatible(CI); // First, check that this is a known library functions and that the prototype // is correct. if (!TLI->getLibFunc(*Callee, Func)) return nullptr; // We never change the calling convention. if (!ignoreCallingConv(Func) && !isCallingConvC) return nullptr; switch (Func) { case LibFunc_memcpy_chk: return optimizeMemCpyChk(CI, Builder); case LibFunc_memmove_chk: return optimizeMemMoveChk(CI, Builder); case LibFunc_memset_chk: return optimizeMemSetChk(CI, Builder); case LibFunc_stpcpy_chk: case LibFunc_strcpy_chk: return optimizeStrpCpyChk(CI, Builder, Func); case LibFunc_stpncpy_chk: case LibFunc_strncpy_chk: return optimizeStrpNCpyChk(CI, Builder, Func); default: break; } return nullptr; } FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}