//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This module provides means for calculating a maximum spanning tree for a // given set of weighted edges. The type parameter T is the type of a node. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_MAXIMUMSPANNINGTREE_H #define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_MAXIMUMSPANNINGTREE_H #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/IR/BasicBlock.h" #include #include namespace llvm { /// MaximumSpanningTree - A MST implementation. /// The type parameter T determines the type of the nodes of the graph. template class MaximumSpanningTree { public: typedef std::pair Edge; typedef std::pair EdgeWeight; typedef std::vector EdgeWeights; protected: typedef std::vector MaxSpanTree; MaxSpanTree MST; private: // A comparing class for comparing weighted edges. struct EdgeWeightCompare { static bool getBlockSize(const T *X) { const BasicBlock *BB = dyn_cast_or_null(X); return BB ? BB->size() : 0; } bool operator()(EdgeWeight X, EdgeWeight Y) const { if (X.second > Y.second) return true; if (X.second < Y.second) return false; // Equal edge weights: break ties by comparing block sizes. size_t XSizeA = getBlockSize(X.first.first); size_t YSizeA = getBlockSize(Y.first.first); if (XSizeA > YSizeA) return true; if (XSizeA < YSizeA) return false; size_t XSizeB = getBlockSize(X.first.second); size_t YSizeB = getBlockSize(Y.first.second); if (XSizeB > YSizeB) return true; if (XSizeB < YSizeB) return false; return false; } }; public: static char ID; // Class identification, replacement for typeinfo /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a /// spanning tree. MaximumSpanningTree(EdgeWeights &EdgeVector) { std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare()); // Create spanning tree, Forest contains a special data structure // that makes checking if two nodes are already in a common (sub-)tree // fast and cheap. EquivalenceClasses Forest; for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), EWe = EdgeVector.end(); EWi != EWe; ++EWi) { Edge e = (*EWi).first; Forest.insert(e.first); Forest.insert(e.second); } // Iterate over the sorted edges, biggest first. for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), EWe = EdgeVector.end(); EWi != EWe; ++EWi) { Edge e = (*EWi).first; if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) { Forest.unionSets(e.first, e.second); // So we know now that the edge is not already in a subtree, so we push // the edge to the MST. MST.push_back(e); } } } typename MaxSpanTree::iterator begin() { return MST.begin(); } typename MaxSpanTree::iterator end() { return MST.end(); } }; } // End llvm namespace #endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_MAXIMUMSPANNINGTREE_H