//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/BoundsChecking.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; #define DEBUG_TYPE "bounds-checking" static cl::opt SingleTrapBB("bounds-checking-single-trap", cl::desc("Use one trap block per function")); STATISTIC(ChecksAdded, "Bounds checks added"); STATISTIC(ChecksSkipped, "Bounds checks skipped"); STATISTIC(ChecksUnable, "Bounds checks unable to add"); using BuilderTy = IRBuilder; /// Adds run-time bounds checks to memory accessing instructions. /// /// \p Ptr is the pointer that will be read/written, and \p InstVal is either /// the result from the load or the value being stored. It is used to determine /// the size of memory block that is touched. /// /// \p GetTrapBB is a callable that returns the trap BB to use on failure. /// /// Returns true if any change was made to the IR, false otherwise. template static bool instrumentMemAccess(Value *Ptr, Value *InstVal, const DataLayout &DL, TargetLibraryInfo &TLI, ObjectSizeOffsetEvaluator &ObjSizeEval, BuilderTy &IRB, GetTrapBBT GetTrapBB) { uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType()); DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize) << " bytes\n"); SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr); if (!ObjSizeEval.bothKnown(SizeOffset)) { ++ChecksUnable; return false; } Value *Size = SizeOffset.first; Value *Offset = SizeOffset.second; ConstantInt *SizeCI = dyn_cast(Size); Type *IntTy = DL.getIntPtrType(Ptr->getType()); Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize); // three checks are required to ensure safety: // . Offset >= 0 (since the offset is given from the base ptr) // . Size >= Offset (unsigned) // . Size - Offset >= NeededSize (unsigned) // // optimization: if Size >= 0 (signed), skip 1st check // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows Value *ObjSize = IRB.CreateSub(Size, Offset); Value *Cmp2 = IRB.CreateICmpULT(Size, Offset); Value *Cmp3 = IRB.CreateICmpULT(ObjSize, NeededSizeVal); Value *Or = IRB.CreateOr(Cmp2, Cmp3); if (!SizeCI || SizeCI->getValue().slt(0)) { Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0)); Or = IRB.CreateOr(Cmp1, Or); } // check if the comparison is always false ConstantInt *C = dyn_cast_or_null(Or); if (C) { ++ChecksSkipped; // If non-zero, nothing to do. if (!C->getZExtValue()) return true; } ++ChecksAdded; BasicBlock::iterator SplitI = IRB.GetInsertPoint(); BasicBlock *OldBB = SplitI->getParent(); BasicBlock *Cont = OldBB->splitBasicBlock(SplitI); OldBB->getTerminator()->eraseFromParent(); if (C) { // If we have a constant zero, unconditionally branch. // FIXME: We should really handle this differently to bypass the splitting // the block. BranchInst::Create(GetTrapBB(IRB), OldBB); return true; } // Create the conditional branch. BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB); return true; } static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI) { const DataLayout &DL = F.getParent()->getDataLayout(); ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), /*RoundToAlign=*/true); // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory // touching instructions std::vector WorkList; for (Instruction &I : instructions(F)) { if (isa(I) || isa(I) || isa(I) || isa(I)) WorkList.push_back(&I); } // Create a trapping basic block on demand using a callback. Depending on // flags, this will either create a single block for the entire function or // will create a fresh block every time it is called. BasicBlock *TrapBB = nullptr; auto GetTrapBB = [&TrapBB](BuilderTy &IRB) { if (TrapBB && SingleTrapBB) return TrapBB; Function *Fn = IRB.GetInsertBlock()->getParent(); // FIXME: This debug location doesn't make a lot of sense in the // `SingleTrapBB` case. auto DebugLoc = IRB.getCurrentDebugLocation(); IRBuilder<>::InsertPointGuard Guard(IRB); TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn); IRB.SetInsertPoint(TrapBB); auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap); CallInst *TrapCall = IRB.CreateCall(F, {}); TrapCall->setDoesNotReturn(); TrapCall->setDoesNotThrow(); TrapCall->setDebugLoc(DebugLoc); IRB.CreateUnreachable(); return TrapBB; }; bool MadeChange = false; for (Instruction *Inst : WorkList) { BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL)); if (LoadInst *LI = dyn_cast(Inst)) { MadeChange |= instrumentMemAccess(LI->getPointerOperand(), LI, DL, TLI, ObjSizeEval, IRB, GetTrapBB); } else if (StoreInst *SI = dyn_cast(Inst)) { MadeChange |= instrumentMemAccess(SI->getPointerOperand(), SI->getValueOperand(), DL, TLI, ObjSizeEval, IRB, GetTrapBB); } else if (AtomicCmpXchgInst *AI = dyn_cast(Inst)) { MadeChange |= instrumentMemAccess(AI->getPointerOperand(), AI->getCompareOperand(), DL, TLI, ObjSizeEval, IRB, GetTrapBB); } else if (AtomicRMWInst *AI = dyn_cast(Inst)) { MadeChange |= instrumentMemAccess(AI->getPointerOperand(), AI->getValOperand(), DL, TLI, ObjSizeEval, IRB, GetTrapBB); } else { llvm_unreachable("unknown Instruction type"); } } return MadeChange; } PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); if (!addBoundsChecking(F, TLI)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } namespace { struct BoundsCheckingLegacyPass : public FunctionPass { static char ID; BoundsCheckingLegacyPass() : FunctionPass(ID) { initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto &TLI = getAnalysis().getTLI(); return addBoundsChecking(F, TLI); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } }; } // namespace char BoundsCheckingLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking", "Run-time bounds checking", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking", "Run-time bounds checking", false, false) FunctionPass *llvm::createBoundsCheckingLegacyPass() { return new BoundsCheckingLegacyPass(); }