//===- HexagonShuffler.cpp - Instruction bundle shuffling -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the shuffling of insns inside a bundle according to the // packet formation rules of the Hexagon ISA. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-shuffle" #include "MCTargetDesc/HexagonShuffler.h" #include "Hexagon.h" #include "MCTargetDesc/HexagonBaseInfo.h" #include "MCTargetDesc/HexagonMCInstrInfo.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; namespace { // Insn shuffling priority. class HexagonBid { // The priority is directly proportional to how restricted the insn is based // on its flexibility to run on the available slots. So, the fewer slots it // may run on, the higher its priority. enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15. unsigned Bid = 0; public: HexagonBid() = default; HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; } // Check if the insn priority is overflowed. bool isSold() const { return (Bid >= MAX); } HexagonBid &operator+=(const HexagonBid &B) { Bid += B.Bid; return *this; } }; // Slot shuffling allocation. class HexagonUnitAuction { HexagonBid Scores[HEXAGON_PACKET_SIZE]; // Mask indicating which slot is unavailable. unsigned isSold : HEXAGON_PACKET_SIZE; public: HexagonUnitAuction(unsigned cs = 0) : isSold(cs) {} // Allocate slots. bool bid(unsigned B) { // Exclude already auctioned slots from the bid. unsigned b = B & ~isSold; if (b) { for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i) if (b & (1 << i)) { // Request candidate slots. Scores[i] += HexagonBid(b); isSold |= Scores[i].isSold() << i; } return true; } else // Error if the desired slots are already full. return false; } }; } // end anonymous namespace unsigned HexagonResource::setWeight(unsigned s) { const unsigned SlotWeight = 8; const unsigned MaskWeight = SlotWeight - 1; unsigned Units = getUnits(); unsigned Key = ((1u << s) & Units) != 0; // Calculate relative weight of the insn for the given slot, weighing it the // heavier the more restrictive the insn is and the lowest the slots that the // insn may be executed in. if (Key == 0 || Units == 0 || (SlotWeight * s >= 32)) return Weight = 0; unsigned Ctpop = countPopulation(Units); unsigned Cttz = countTrailingZeros(Units); Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz); return Weight; } void HexagonCVIResource::SetupTUL(TypeUnitsAndLanes *TUL, StringRef CPU) { (*TUL)[HexagonII::TypeCVI_VA] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VA_DV] = UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2); (*TUL)[HexagonII::TypeCVI_VX] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VX_LATE] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VX_DV] = UnitsAndLanes(CVI_MPY0, 2); (*TUL)[HexagonII::TypeCVI_VP] = UnitsAndLanes(CVI_XLANE, 1); (*TUL)[HexagonII::TypeCVI_VP_VS] = UnitsAndLanes(CVI_XLANE, 2); (*TUL)[HexagonII::TypeCVI_VS] = UnitsAndLanes(CVI_SHIFT, 1); (*TUL)[HexagonII::TypeCVI_VS_VX] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT, 1); (*TUL)[HexagonII::TypeCVI_VINLANESAT] = (CPU == "hexagonv60") ? UnitsAndLanes(CVI_SHIFT, 1) : UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VM_LD] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VM_TMP_LD] = UnitsAndLanes(CVI_NONE, 0); (*TUL)[HexagonII::TypeCVI_VM_VP_LDU] = UnitsAndLanes(CVI_XLANE, 1); (*TUL)[HexagonII::TypeCVI_VM_ST] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VM_NEW_ST] = UnitsAndLanes(CVI_NONE, 0); (*TUL)[HexagonII::TypeCVI_VM_STU] = UnitsAndLanes(CVI_XLANE, 1); (*TUL)[HexagonII::TypeCVI_HIST] = UnitsAndLanes(CVI_XLANE, 4); (*TUL)[HexagonII::TypeCVI_GATHER] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_SCATTER] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_SCATTER_DV] = UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2); (*TUL)[HexagonII::TypeCVI_SCATTER_NEW_ST] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); } HexagonCVIResource::HexagonCVIResource(TypeUnitsAndLanes *TUL, MCInstrInfo const &MCII, unsigned s, MCInst const *id) : HexagonResource(s) { unsigned T = HexagonMCInstrInfo::getType(MCII, *id); if (TUL->count(T)) { // For an HVX insn. Valid = true; setUnits((*TUL)[T].first); setLanes((*TUL)[T].second); setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad()); setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore()); } else { // For core insns. Valid = false; setUnits(0); setLanes(0); setLoad(false); setStore(false); } } struct CVIUnits { unsigned Units; unsigned Lanes; }; using HVXInstsT = SmallVector; static unsigned makeAllBits(unsigned startBit, unsigned Lanes) { for (unsigned i = 1; i < Lanes; ++i) startBit = (startBit << 1) | startBit; return startBit; } static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx, unsigned usedUnits) { if (startIdx < hvxInsts.size()) { if (!hvxInsts[startIdx].Units) return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits); for (unsigned b = 0x1; b <= 0x8; b <<= 1) { if ((hvxInsts[startIdx].Units & b) == 0) continue; unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes); if ((allBits & usedUnits) == 0) { if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits)) return true; } } return false; } return true; } HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors, MCInstrInfo const &MCII, MCSubtargetInfo const &STI) : Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) { reset(); HexagonCVIResource::SetupTUL(&TUL, STI.getCPU()); } void HexagonShuffler::reset() { Packet.clear(); BundleFlags = 0; } void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender, unsigned S) { HexagonInstr PI(&TUL, MCII, &ID, Extender, S); Packet.push_back(PI); } static struct { unsigned first; unsigned second; } jumpSlots[] = {{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}}; #define MAX_JUMP_SLOTS (sizeof(jumpSlots) / sizeof(jumpSlots[0])) void HexagonShuffler::restrictSlot1AOK() { bool HasRestrictSlot1AOK = false; SMLoc RestrictLoc; for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &Inst = ISJ->getDesc(); if (HexagonMCInstrInfo::isRestrictSlot1AOK(MCII, Inst)) { HasRestrictSlot1AOK = true; RestrictLoc = Inst.getLoc(); } } if (HasRestrictSlot1AOK) for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &Inst = ISJ->getDesc(); unsigned Type = HexagonMCInstrInfo::getType(MCII, Inst); if (Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op && Type != HexagonII::TypeALU32_ADDI) { unsigned Units = ISJ->Core.getUnits(); if (Units & 2U) { AppliedRestrictions.push_back(std::make_pair( Inst.getLoc(), "Instruction was restricted from being in slot 1")); AppliedRestrictions.push_back( std::make_pair(RestrictLoc, "Instruction can only be combine " "with an ALU instruction in slot 1")); ISJ->Core.setUnits(Units & ~2U); } } } } void HexagonShuffler::restrictNoSlot1Store() { bool HasRestrictNoSlot1Store = false; SMLoc RestrictLoc; for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &Inst = ISJ->getDesc(); if (HexagonMCInstrInfo::isRestrictNoSlot1Store(MCII, Inst)) { HasRestrictNoSlot1Store = true; RestrictLoc = Inst.getLoc(); } } if (HasRestrictNoSlot1Store) { bool AppliedRestriction = false; for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &Inst = ISJ->getDesc(); if (HexagonMCInstrInfo::getDesc(MCII, Inst).mayStore()) { unsigned Units = ISJ->Core.getUnits(); if (Units & 2U) { AppliedRestriction = true; AppliedRestrictions.push_back(std::make_pair( Inst.getLoc(), "Instruction was restricted from being in slot 1")); ISJ->Core.setUnits(Units & ~2U); } } } if (AppliedRestriction) AppliedRestrictions.push_back(std::make_pair( RestrictLoc, "Instruction does not allow a store in slot 1")); } } void HexagonShuffler::applySlotRestrictions() { restrictSlot1AOK(); restrictNoSlot1Store(); } /// Check that the packet is legal and enforce relative insn order. bool HexagonShuffler::check() { // Descriptive slot masks. const unsigned slotSingleLoad = 0x1, slotSingleStore = 0x1, slotThree = 0x8, // slotFirstJump = 0x8, slotFirstLoadStore = 0x2, slotLastLoadStore = 0x1; // Highest slots for branches and stores used to keep their original order. // unsigned slotJump = slotFirstJump; unsigned slotLoadStore = slotFirstLoadStore; // Number of memory operations, loads, solo loads, stores, solo stores, single // stores. unsigned memory = 0, loads = 0, load0 = 0, stores = 0, store0 = 0, store1 = 0; // Number of duplex insns unsigned duplex = 0; unsigned pSlot3Cnt = 0; unsigned memops = 0; iterator slot3ISJ = end(); std::vector foundBranches; unsigned reservedSlots = 0; // Collect information from the insns in the packet. for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &ID = ISJ->getDesc(); if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) { ++pSlot3Cnt; slot3ISJ = ISJ; } reservedSlots |= HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID); switch (HexagonMCInstrInfo::getType(MCII, ID)) { case HexagonII::TypeS_2op: case HexagonII::TypeS_3op: case HexagonII::TypeALU64: break; case HexagonII::TypeJ: foundBranches.push_back(ISJ); break; case HexagonII::TypeCVI_VM_VP_LDU: case HexagonII::TypeCVI_VM_LD: case HexagonII::TypeCVI_VM_TMP_LD: case HexagonII::TypeCVI_GATHER: case HexagonII::TypeCVI_GATHER_RST: case HexagonII::TypeLD: ++loads; ++memory; if (ISJ->Core.getUnits() == slotSingleLoad || HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU) ++load0; if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn()) foundBranches.push_back(ISJ); break; case HexagonII::TypeCVI_VM_STU: case HexagonII::TypeCVI_VM_ST: case HexagonII::TypeCVI_VM_NEW_ST: case HexagonII::TypeCVI_SCATTER: case HexagonII::TypeCVI_SCATTER_DV: case HexagonII::TypeCVI_SCATTER_RST: case HexagonII::TypeCVI_SCATTER_NEW_RST: case HexagonII::TypeCVI_SCATTER_NEW_ST: case HexagonII::TypeST: ++stores; ++memory; if (ISJ->Core.getUnits() == slotSingleStore || HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU) ++store0; break; case HexagonII::TypeV4LDST: ++loads; ++stores; ++store1; ++memops; ++memory; break; case HexagonII::TypeNCJ: ++memory; // NV insns are memory-like. foundBranches.push_back(ISJ); break; case HexagonII::TypeV2LDST: if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) { ++loads; ++memory; if (ISJ->Core.getUnits() == slotSingleLoad || HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU) ++load0; } else { assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()); ++memory; ++stores; } break; case HexagonII::TypeCR: // Legacy conditional branch predicated on a register. case HexagonII::TypeCJ: if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch()) foundBranches.push_back(ISJ); break; case HexagonII::TypeDUPLEX: { ++duplex; MCInst const &Inst0 = *ID.getOperand(0).getInst(); MCInst const &Inst1 = *ID.getOperand(1).getInst(); if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch()) foundBranches.push_back(ISJ); if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch()) foundBranches.push_back(ISJ); if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn()) foundBranches.push_back(ISJ); if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn()) foundBranches.push_back(ISJ); break; } } } applySlotRestrictions(); // Check if the packet is legal. if ((load0 > 1 || store0 > 1) || (duplex > 1 || (duplex && memory))) { reportError(llvm::Twine("invalid instruction packet")); return false; } // Modify packet accordingly. // TODO: need to reserve slots #0 and #1 for duplex insns. bool bOnlySlot3 = false; for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &ID = ISJ->getDesc(); if (!ISJ->Core.getUnits()) { // Error if insn may not be executed in any slot. return false; } // A single load must use slot #0. if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) { if (loads == 1 && loads == memory && memops == 0) // Pin the load to slot #0. switch (ID.getOpcode()) { case Hexagon::V6_vgathermw: case Hexagon::V6_vgathermh: case Hexagon::V6_vgathermhw: case Hexagon::V6_vgathermwq: case Hexagon::V6_vgathermhq: case Hexagon::V6_vgathermhwq: // Slot1 only loads break; default: ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad); break; } else if (loads >= 1 && isMemReorderDisabled()) { // }:mem_noshuf // Loads must keep the original order ONLY if // isMemReorderDisabled() == true if (slotLoadStore < slotLastLoadStore) { // Error if no more slots available for loads. reportError( llvm::Twine("invalid instruction packet: too many loads")); return false; } // Pin the load to the highest slot available to it. ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore); // Update the next highest slot available to loads. slotLoadStore >>= 1; } } // A single store must use slot #0. if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) { if (!store0) { if (stores == 1 && (loads == 0 || !isMemReorderDisabled())) // Pin the store to slot #0 only if isMemReorderDisabled() == false ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore); else if (stores >= 1) { if (slotLoadStore < slotLastLoadStore) { // Error if no more slots available for stores. reportError(Twine("invalid instruction packet: too many stores")); return false; } // Pin the store to the highest slot available to it. ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore); // Update the next highest slot available to stores. slotLoadStore >>= 1; } } if (store1 && stores > 1) { // Error if a single store with another store. reportError(Twine("invalid instruction packet: too many stores")); return false; } } // flag if an instruction requires to be in slot 3 if (ISJ->Core.getUnits() == slotThree) bOnlySlot3 = true; if (!ISJ->Core.getUnits()) { // Error if insn may not be executed in any slot. reportError(Twine("invalid instruction packet: out of slots")); return false; } } // preserve branch order bool validateSlots = true; if (foundBranches.size() > 1) { if (foundBranches.size() > 2) { reportError(Twine("too many branches in packet")); return false; } // try all possible choices for (unsigned int i = 0; i < MAX_JUMP_SLOTS; ++i) { // validate first jump with this slot rule if (!(jumpSlots[i].first & foundBranches[0]->Core.getUnits())) continue; // validate second jump with this slot rule if (!(jumpSlots[i].second & foundBranches[1]->Core.getUnits())) continue; // both valid for this configuration, set new slot rules PacketSave = Packet; foundBranches[0]->Core.setUnits(jumpSlots[i].first); foundBranches[1]->Core.setUnits(jumpSlots[i].second); HexagonUnitAuction AuctionCore(reservedSlots); std::stable_sort(begin(), end(), HexagonInstr::lessCore); // see if things ok with that instruction being pinned to slot "slotJump" bool bFail = false; for (iterator I = begin(); I != end() && !bFail; ++I) if (!AuctionCore.bid(I->Core.getUnits())) bFail = true; // if yes, great, if not then restore original slot mask if (!bFail) { validateSlots = false; // all good, no need to re-do auction break; } else // restore original values Packet = PacketSave; } if (validateSlots) { reportError(Twine("invalid instruction packet: out of slots")); return false; } } if (foundBranches.size() <= 1 && bOnlySlot3 == false && pSlot3Cnt == 1 && slot3ISJ != end()) { validateSlots = true; // save off slot mask of instruction marked with A_PREFER_SLOT3 // and then pin it to slot #3 unsigned saveUnits = slot3ISJ->Core.getUnits(); slot3ISJ->Core.setUnits(saveUnits & slotThree); HexagonUnitAuction AuctionCore(reservedSlots); std::stable_sort(begin(), end(), HexagonInstr::lessCore); // see if things ok with that instruction being pinned to slot #3 bool bFail = false; for (iterator I = begin(); I != end() && !bFail; ++I) if (!AuctionCore.bid(I->Core.getUnits())) bFail = true; // if yes, great, if not then restore original slot mask if (!bFail) validateSlots = false; // all good, no need to re-do auction else for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &ID = ISJ->getDesc(); if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) ISJ->Core.setUnits(saveUnits); } } // Check if any slot, core or CVI, is over-subscribed. // Verify the core slot subscriptions. if (validateSlots) { HexagonUnitAuction AuctionCore(reservedSlots); std::stable_sort(begin(), end(), HexagonInstr::lessCore); for (iterator I = begin(); I != end(); ++I) if (!AuctionCore.bid(I->Core.getUnits())) { reportError(Twine("invalid instruction packet: slot error")); return false; } } // Verify the CVI slot subscriptions. std::stable_sort(begin(), end(), HexagonInstr::lessCVI); // create vector of hvx instructions to check HVXInstsT hvxInsts; hvxInsts.clear(); for (iterator I = begin(); I != end(); ++I) { struct CVIUnits inst; inst.Units = I->CVI.getUnits(); inst.Lanes = I->CVI.getLanes(); if (inst.Units == 0) continue; // not an hvx inst or an hvx inst that doesn't uses any pipes hvxInsts.push_back(inst); } // if there are any hvx instructions in this packet, check pipe usage if (hvxInsts.size() > 0) { unsigned startIdx, usedUnits; startIdx = usedUnits = 0x0; if (!checkHVXPipes(hvxInsts, startIdx, usedUnits)) { // too many pipes used to be valid reportError(Twine("invalid instruction packet: slot error")); return false; } } return true; } bool HexagonShuffler::shuffle() { if (size() > HEXAGON_PACKET_SIZE) { // Ignore a packet with with more than what a packet can hold // or with compound or duplex insns for now. reportError(Twine("invalid instruction packet")); return false; } // Check and prepare packet. bool Ok = true; if (size() > 1 && (Ok = check())) // Reorder the handles for each slot. for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE; ++nSlot) { iterator ISJ, ISK; unsigned slotSkip, slotWeight; // Prioritize the handles considering their restrictions. for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0; ISK != Packet.end(); ++ISK, ++slotSkip) if (slotSkip < nSlot - emptySlots) // Note which handle to begin at. ++ISJ; else // Calculate the weight of the slot. slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1); if (slotWeight) // Sort the packet, favoring source order, // beginning after the previous slot. std::stable_sort(ISJ, Packet.end()); else // Skip unused slot. ++emptySlots; } for (iterator ISJ = begin(); ISJ != end(); ++ISJ) DEBUG(dbgs().write_hex(ISJ->Core.getUnits()); if (ISJ->CVI.isValid()) { dbgs() << '/'; dbgs().write_hex(ISJ->CVI.getUnits()) << '|'; dbgs() << ISJ->CVI.getLanes(); } dbgs() << ':' << HexagonMCInstrInfo::getDesc(MCII, ISJ->getDesc()).getOpcode(); dbgs() << '\n'); DEBUG(dbgs() << '\n'); return Ok; } void HexagonShuffler::reportError(Twine const &Msg) { if (ReportErrors) { for (auto const &I : AppliedRestrictions) { auto SM = Context.getSourceManager(); if (SM) SM->PrintMessage(I.first, SourceMgr::DK_Note, I.second); } Context.reportError(Loc, Msg); } }