//===- DWARFUnit.cpp ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include #include using namespace llvm; using namespace dwarf; void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) { const DWARFObject &D = C.getDWARFObj(); parseImpl(C, Section, C.getDebugAbbrev(), &D.getRangeSection(), D.getStringSection(), D.getStringOffsetSection(), &D.getAddrSection(), D.getLineSection(), D.isLittleEndian(), false, false); } void DWARFUnitSectionBase::parseDWO(DWARFContext &C, const DWARFSection &DWOSection, bool Lazy) { const DWARFObject &D = C.getDWARFObj(); parseImpl(C, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(), D.getStringDWOSection(), D.getStringOffsetDWOSection(), &D.getAddrSection(), D.getLineDWOSection(), C.isLittleEndian(), true, Lazy); } DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, const DWARFDebugAbbrev *DA, const DWARFSection *RS, StringRef SS, const DWARFSection &SOS, const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, const DWARFUnitSectionBase &UnitSection, const DWARFUnitIndex::Entry *IndexEntry) : Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS), LineSection(LS), StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS), isLittleEndian(LE), isDWO(IsDWO), UnitSection(UnitSection), IndexEntry(IndexEntry) { clear(); } DWARFUnit::~DWARFUnit() = default; DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian, getAddressByteSize()); } bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index, uint64_t &Result) const { uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize(); if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) return false; DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, isLittleEndian, getAddressByteSize()); Result = DA.getRelocatedAddress(&Offset); return true; } bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index, uint64_t &Result) const { if (!StringOffsetsTableContribution) return false; unsigned ItemSize = getDwarfStringOffsetsByteSize(); uint32_t Offset = getStringOffsetsBase() + Index * ItemSize; if (StringOffsetSection.Data.size() < Offset + ItemSize) return false; DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, isLittleEndian, 0); Result = DA.getRelocatedValue(ItemSize, &Offset); return true; } bool DWARFUnit::extractImpl(DataExtractor debug_info, uint32_t *offset_ptr) { Length = debug_info.getU32(offset_ptr); // FIXME: Support DWARF64. FormParams.Format = DWARF32; FormParams.Version = debug_info.getU16(offset_ptr); if (FormParams.Version >= 5) { UnitType = debug_info.getU8(offset_ptr); FormParams.AddrSize = debug_info.getU8(offset_ptr); AbbrOffset = debug_info.getU32(offset_ptr); } else { AbbrOffset = debug_info.getU32(offset_ptr); FormParams.AddrSize = debug_info.getU8(offset_ptr); } if (IndexEntry) { if (AbbrOffset) return false; auto *UnitContrib = IndexEntry->getOffset(); if (!UnitContrib || UnitContrib->Length != (Length + 4)) return false; auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV); if (!AbbrEntry) return false; AbbrOffset = AbbrEntry->Offset; } bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1); bool VersionOK = DWARFContext::isSupportedVersion(getVersion()); bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8; if (!LengthOK || !VersionOK || !AddrSizeOK) return false; // Keep track of the highest DWARF version we encounter across all units. Context.setMaxVersionIfGreater(getVersion()); return true; } bool DWARFUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) { clear(); Offset = *offset_ptr; if (debug_info.isValidOffset(*offset_ptr)) { if (extractImpl(debug_info, offset_ptr)) return true; // reset the offset to where we tried to parse from if anything went wrong *offset_ptr = Offset; } return false; } bool DWARFUnit::extractRangeList(uint32_t RangeListOffset, DWARFDebugRangeList &RangeList) const { // Require that compile unit is extracted. assert(!DieArray.empty()); DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, isLittleEndian, getAddressByteSize()); uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; return RangeList.extract(RangesData, &ActualRangeListOffset); } void DWARFUnit::clear() { Offset = 0; Length = 0; Abbrevs = nullptr; FormParams = DWARFFormParams({0, 0, DWARF32}); BaseAddr.reset(); RangeSectionBase = 0; AddrOffsetSectionBase = 0; clearDIEs(false); DWO.reset(); } const char *DWARFUnit::getCompilationDir() { return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); } Optional DWARFUnit::getDWOId() { return toUnsigned(getUnitDIE().find(DW_AT_GNU_dwo_id)); } void DWARFUnit::extractDIEsToVector( bool AppendCUDie, bool AppendNonCUDies, std::vector &Dies) const { if (!AppendCUDie && !AppendNonCUDies) return; // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. uint32_t DIEOffset = Offset + getHeaderSize(); uint32_t NextCUOffset = getNextUnitOffset(); DWARFDebugInfoEntry DIE; DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); uint32_t Depth = 0; bool IsCUDie = true; while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, Depth)) { if (IsCUDie) { if (AppendCUDie) Dies.push_back(DIE); if (!AppendNonCUDies) break; // The average bytes per DIE entry has been seen to be // around 14-20 so let's pre-reserve the needed memory for // our DIE entries accordingly. Dies.reserve(Dies.size() + getDebugInfoSize() / 14); IsCUDie = false; } else { Dies.push_back(DIE); } if (const DWARFAbbreviationDeclaration *AbbrDecl = DIE.getAbbreviationDeclarationPtr()) { // Normal DIE if (AbbrDecl->hasChildren()) ++Depth; } else { // NULL DIE. if (Depth > 0) --Depth; if (Depth == 0) break; // We are done with this compile unit! } } // Give a little bit of info if we encounter corrupt DWARF (our offset // should always terminate at or before the start of the next compilation // unit header). if (DIEOffset > NextCUOffset) fprintf(stderr, "warning: DWARF compile unit extends beyond its " "bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), DIEOffset); } size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { if ((CUDieOnly && !DieArray.empty()) || DieArray.size() > 1) return 0; // Already parsed. bool HasCUDie = !DieArray.empty(); extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); if (DieArray.empty()) return 0; // If CU DIE was just parsed, copy several attribute values from it. if (!HasCUDie) { DWARFDie UnitDie = getUnitDIE(); Optional PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); if (Optional Addr = toAddress(PC)) setBaseAddress({*Addr, PC->getSectionIndex()}); if (!isDWO) { assert(AddrOffsetSectionBase == 0); assert(RangeSectionBase == 0); AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0); RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); } // In general, in DWARF v5 and beyond we derive the start of the unit's // contribution to the string offsets table from the unit DIE's // DW_AT_str_offsets_base attribute. Split DWARF units do not use this // attribute, so we assume that there is a contribution to the string // offsets table starting at offset 0 of the debug_str_offsets.dwo section. // In both cases we need to determine the format of the contribution, // which may differ from the unit's format. uint64_t StringOffsetsContributionBase = isDWO ? 0 : toSectionOffset(UnitDie.find(DW_AT_str_offsets_base), 0); if (IndexEntry) if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS)) StringOffsetsContributionBase += C->Offset; DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, isLittleEndian, 0); if (isDWO) StringOffsetsTableContribution = determineStringOffsetsTableContributionDWO( DA, StringOffsetsContributionBase); else if (getVersion() >= 5) StringOffsetsTableContribution = determineStringOffsetsTableContribution( DA, StringOffsetsContributionBase); // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for // skeleton CU DIE, so that DWARF users not aware of it are not broken. } return DieArray.size(); } bool DWARFUnit::parseDWO() { if (isDWO) return false; if (DWO.get()) return false; DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return false; auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); if (!DWOFileName) return false; auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); SmallString<16> AbsolutePath; if (sys::path::is_relative(*DWOFileName) && CompilationDir && *CompilationDir) { sys::path::append(AbsolutePath, *CompilationDir); } sys::path::append(AbsolutePath, *DWOFileName); auto DWOId = getDWOId(); if (!DWOId) return false; auto DWOContext = Context.getDWOContext(AbsolutePath); if (!DWOContext) return false; DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); if (!DWOCU) return false; DWO = std::shared_ptr(std::move(DWOContext), DWOCU); // Share .debug_addr and .debug_ranges section with compile unit in .dwo DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase); auto DWORangesBase = UnitDie.getRangesBaseAttribute(); DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0); return true; } void DWARFUnit::clearDIEs(bool KeepCUDie) { if (DieArray.size() > (unsigned)KeepCUDie) { DieArray.resize((unsigned)KeepCUDie); DieArray.shrink_to_fit(); } } void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) { DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return; // First, check if unit DIE describes address ranges for the whole unit. const auto &CUDIERanges = UnitDie.getAddressRanges(); if (!CUDIERanges.empty()) { CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end()); return; } // This function is usually called if there in no .debug_aranges section // in order to produce a compile unit level set of address ranges that // is accurate. If the DIEs weren't parsed, then we don't want all dies for // all compile units to stay loaded when they weren't needed. So we can end // up parsing the DWARF and then throwing them all away to keep memory usage // down. const bool ClearDIEs = extractDIEsIfNeeded(false) > 1; getUnitDIE().collectChildrenAddressRanges(CURanges); // Collect address ranges from DIEs in .dwo if necessary. bool DWOCreated = parseDWO(); if (DWO) DWO->collectAddressRanges(CURanges); if (DWOCreated) DWO.reset(); // Keep memory down by clearing DIEs if this generate function // caused them to be parsed. if (ClearDIEs) clearDIEs(true); } // Populates a map from PC addresses to subprogram DIEs. // // This routine tries to look at the smallest amount of the debug info it can // to locate the DIEs. This is because many subprograms will never end up being // read or needed at all. We want to be as lazy as possible. void DWARFUnit::buildSubprogramDIEAddrMap() { assert(SubprogramDIEAddrMap.empty() && "Must only build this map once!"); SmallVector Worklist; Worklist.push_back(getUnitDIE()); do { DWARFDie Die = Worklist.pop_back_val(); // Queue up child DIEs to recurse through. // FIXME: This causes us to read a lot more debug info than we really need. // We should look at pruning out DIEs which cannot transitively hold // separate subprograms. for (DWARFDie Child : Die.children()) Worklist.push_back(Child); // If handling a non-subprogram DIE, nothing else to do. if (!Die.isSubprogramDIE()) continue; // For subprogram DIEs, store them, and insert relevant markers into the // address map. We don't care about overlap at all here as DWARF doesn't // meaningfully support that, so we simply will insert a range with no DIE // starting from the high PC. In the event there are overlaps, sorting // these may truncate things in surprising ways but still will allow // lookups to proceed. int DIEIndex = SubprogramDIEAddrInfos.size(); SubprogramDIEAddrInfos.push_back({Die, (uint64_t)-1, {}}); for (const auto &R : Die.getAddressRanges()) { // Ignore 0-sized ranges. if (R.LowPC == R.HighPC) continue; SubprogramDIEAddrMap.push_back({R.LowPC, DIEIndex}); SubprogramDIEAddrMap.push_back({R.HighPC, -1}); if (R.LowPC < SubprogramDIEAddrInfos.back().SubprogramBasePC) SubprogramDIEAddrInfos.back().SubprogramBasePC = R.LowPC; } } while (!Worklist.empty()); if (SubprogramDIEAddrMap.empty()) { // If we found no ranges, create a no-op map so that lookups remain simple // but never find anything. SubprogramDIEAddrMap.push_back({0, -1}); return; } // Next, sort the ranges and remove both exact duplicates and runs with the // same DIE index. We order the ranges so that non-empty ranges are // preferred. Because there may be ties, we also need to use stable sort. std::stable_sort(SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(), [](const std::pair &LHS, const std::pair &RHS) { if (LHS.first < RHS.first) return true; if (LHS.first > RHS.first) return false; // For ranges that start at the same address, keep the one // with a DIE. if (LHS.second != -1 && RHS.second == -1) return true; return false; }); SubprogramDIEAddrMap.erase( std::unique(SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(), [](const std::pair &LHS, const std::pair &RHS) { // If the start addresses are exactly the same, we can // remove all but the first one as it is the only one that // will be found and used. // // If the DIE indices are the same, we can "merge" the // ranges by eliminating the second. return LHS.first == RHS.first || LHS.second == RHS.second; }), SubprogramDIEAddrMap.end()); assert(SubprogramDIEAddrMap.back().second == -1 && "The last interval must not have a DIE as each DIE's address range is " "bounded."); } // Build the second level of mapping from PC to DIE, specifically one that maps // a PC *within* a particular DWARF subprogram into a precise, maximally nested // inlined subroutine DIE (if any exists). We build a separate map for each // subprogram because many subprograms will never get queried for an address // and this allows us to be significantly lazier in reading the DWARF itself. void DWARFUnit::buildInlinedSubroutineDIEAddrMap( SubprogramDIEAddrInfo &SPInfo) { auto &AddrMap = SPInfo.InlinedSubroutineDIEAddrMap; uint64_t BasePC = SPInfo.SubprogramBasePC; auto SubroutineAddrMapSorter = [](const std::pair &LHS, const std::pair &RHS) { if (LHS.first < RHS.first) return true; if (LHS.first > RHS.first) return false; // For ranges that start at the same address, keep the // non-empty one. if (LHS.second != -1 && RHS.second == -1) return true; return false; }; auto SubroutineAddrMapUniquer = [](const std::pair &LHS, const std::pair &RHS) { // If the start addresses are exactly the same, we can // remove all but the first one as it is the only one that // will be found and used. // // If the DIE indices are the same, we can "merge" the // ranges by eliminating the second. return LHS.first == RHS.first || LHS.second == RHS.second; }; struct DieAndParentIntervalRange { DWARFDie Die; int ParentIntervalsBeginIdx, ParentIntervalsEndIdx; }; SmallVector Worklist; auto EnqueueChildDIEs = [&](const DWARFDie &Die, int ParentIntervalsBeginIdx, int ParentIntervalsEndIdx) { for (DWARFDie Child : Die.children()) Worklist.push_back( {Child, ParentIntervalsBeginIdx, ParentIntervalsEndIdx}); }; EnqueueChildDIEs(SPInfo.SubprogramDIE, 0, 0); while (!Worklist.empty()) { DWARFDie Die = Worklist.back().Die; int ParentIntervalsBeginIdx = Worklist.back().ParentIntervalsBeginIdx; int ParentIntervalsEndIdx = Worklist.back().ParentIntervalsEndIdx; Worklist.pop_back(); // If we encounter a nested subprogram, simply ignore it. We map to // (disjoint) subprograms before arriving here and we don't want to examine // any inlined subroutines of an unrelated subpragram. if (Die.getTag() == DW_TAG_subprogram) continue; // For non-subroutines, just recurse to keep searching for inlined // subroutines. if (Die.getTag() != DW_TAG_inlined_subroutine) { EnqueueChildDIEs(Die, ParentIntervalsBeginIdx, ParentIntervalsEndIdx); continue; } // Capture the inlined subroutine DIE that we will reference from the map. int DIEIndex = InlinedSubroutineDIEs.size(); InlinedSubroutineDIEs.push_back(Die); int DieIntervalsBeginIdx = AddrMap.size(); // First collect the PC ranges for this DIE into our subroutine interval // map. for (auto R : Die.getAddressRanges()) { // Clamp the PCs to be above the base. R.LowPC = std::max(R.LowPC, BasePC); R.HighPC = std::max(R.HighPC, BasePC); // Compute relative PCs from the subprogram base and drop down to an // unsigned 32-bit int to represent them within the data structure. This // lets us cover a 4gb single subprogram. Because subprograms may be // partitioned into distant parts of a binary (think hot/cold // partitioning) we want to preserve as much as we can here without // burning extra memory. Past that, we will simply truncate and lose the // ability to map those PCs to a DIE more precise than the subprogram. const uint32_t MaxRelativePC = std::numeric_limits::max(); uint32_t RelativeLowPC = (R.LowPC - BasePC) > (uint64_t)MaxRelativePC ? MaxRelativePC : (uint32_t)(R.LowPC - BasePC); uint32_t RelativeHighPC = (R.HighPC - BasePC) > (uint64_t)MaxRelativePC ? MaxRelativePC : (uint32_t)(R.HighPC - BasePC); // Ignore empty or bogus ranges. if (RelativeLowPC >= RelativeHighPC) continue; AddrMap.push_back({RelativeLowPC, DIEIndex}); AddrMap.push_back({RelativeHighPC, -1}); } // If there are no address ranges, there is nothing to do to map into them // and there cannot be any child subroutine DIEs with address ranges of // interest as those would all be required to nest within this DIE's // non-existent ranges, so we can immediately continue to the next DIE in // the worklist. if (DieIntervalsBeginIdx == (int)AddrMap.size()) continue; // The PCs from this DIE should never overlap, so we can easily sort them // here. std::sort(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(), SubroutineAddrMapSorter); // Remove any dead ranges. These should only come from "empty" ranges that // were clobbered by some other range. AddrMap.erase(std::unique(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(), SubroutineAddrMapUniquer), AddrMap.end()); // Compute the end index of this DIE's addr map intervals. int DieIntervalsEndIdx = AddrMap.size(); assert(DieIntervalsBeginIdx != DieIntervalsEndIdx && "Must not have an empty map for this layer!"); assert(AddrMap.back().second == -1 && "Must end with an empty range!"); assert(std::is_sorted(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(), less_first()) && "Failed to sort this DIE's interals!"); // If we have any parent intervals, walk the newly added ranges and find // the parent ranges they were inserted into. Both of these are sorted and // neither has any overlaps. We need to append new ranges to split up any // parent ranges these new ranges would overlap when we merge them. if (ParentIntervalsBeginIdx != ParentIntervalsEndIdx) { int ParentIntervalIdx = ParentIntervalsBeginIdx; for (int i = DieIntervalsBeginIdx, e = DieIntervalsEndIdx - 1; i < e; ++i) { const uint32_t IntervalStart = AddrMap[i].first; const uint32_t IntervalEnd = AddrMap[i + 1].first; const int IntervalDieIdx = AddrMap[i].second; if (IntervalDieIdx == -1) { // For empty intervals, nothing is required. This is a bit surprising // however. If the prior interval overlaps a parent interval and this // would be necessary to mark the end, we will synthesize a new end // that switches back to the parent DIE below. And this interval will // get dropped in favor of one with a DIE attached. However, we'll // still include this and so worst-case, it will still end the prior // interval. continue; } // We are walking the new ranges in order, so search forward from the // last point for a parent range that might overlap. auto ParentIntervalsRange = make_range(AddrMap.begin() + ParentIntervalIdx, AddrMap.begin() + ParentIntervalsEndIdx); assert(std::is_sorted(ParentIntervalsRange.begin(), ParentIntervalsRange.end(), less_first()) && "Unsorted parent intervals can't be searched!"); auto PI = std::upper_bound( ParentIntervalsRange.begin(), ParentIntervalsRange.end(), IntervalStart, [](uint32_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); if (PI == ParentIntervalsRange.begin() || PI == ParentIntervalsRange.end()) continue; ParentIntervalIdx = PI - AddrMap.begin(); int32_t &ParentIntervalDieIdx = std::prev(PI)->second; uint32_t &ParentIntervalStart = std::prev(PI)->first; const uint32_t ParentIntervalEnd = PI->first; // If the new range starts exactly at the position of the parent range, // we need to adjust the parent range. Note that these collisions can // only happen with the original parent range because we will merge any // adjacent ranges in the child. if (IntervalStart == ParentIntervalStart) { // If there will be a tail, just shift the start of the parent // forward. Note that this cannot change the parent ordering. if (IntervalEnd < ParentIntervalEnd) { ParentIntervalStart = IntervalEnd; continue; } // Otherwise, mark this as becoming empty so we'll remove it and // prefer the child range. ParentIntervalDieIdx = -1; continue; } // Finally, if the parent interval will need to remain as a prefix to // this one, insert a new interval to cover any tail. if (IntervalEnd < ParentIntervalEnd) AddrMap.push_back({IntervalEnd, ParentIntervalDieIdx}); } } // Note that we don't need to re-sort even this DIE's address map intervals // after this. All of the newly added intervals actually fill in *gaps* in // this DIE's address map, and we know that children won't need to lookup // into those gaps. // Recurse through its children, giving them the interval map range of this // DIE to use as their parent intervals. EnqueueChildDIEs(Die, DieIntervalsBeginIdx, DieIntervalsEndIdx); } if (AddrMap.empty()) { AddrMap.push_back({0, -1}); return; } // Now that we've added all of the intervals needed, we need to resort and // unique them. Most notably, this will remove all the empty ranges that had // a parent range covering, etc. We only expect a single non-empty interval // at any given start point, so we just use std::sort. This could potentially // produce non-deterministic maps for invalid DWARF. std::sort(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapSorter); AddrMap.erase( std::unique(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapUniquer), AddrMap.end()); } DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { extractDIEsIfNeeded(false); // We use a two-level mapping structure to locate subroutines for a given PC // address. // // First, we map the address to a subprogram. This can be done more cheaply // because subprograms cannot nest within each other. It also allows us to // avoid detailed examination of many subprograms, instead only focusing on // the ones which we end up actively querying. if (SubprogramDIEAddrMap.empty()) buildSubprogramDIEAddrMap(); assert(!SubprogramDIEAddrMap.empty() && "We must always end up with a non-empty map!"); auto I = std::upper_bound( SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(), Address, [](uint64_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); // If we find the beginning, then the address is before the first subprogram. if (I == SubprogramDIEAddrMap.begin()) return DWARFDie(); // Back up to the interval containing the address and see if it // has a DIE associated with it. --I; if (I->second == -1) return DWARFDie(); auto &SPInfo = SubprogramDIEAddrInfos[I->second]; // Now that we have the subprogram for this address, we do the second level // mapping by building a map within a subprogram's PC range to any specific // inlined subroutine. if (SPInfo.InlinedSubroutineDIEAddrMap.empty()) buildInlinedSubroutineDIEAddrMap(SPInfo); // We lookup within the inlined subroutine using a subprogram-relative // address. assert(Address >= SPInfo.SubprogramBasePC && "Address isn't above the start of the subprogram!"); uint32_t RelativeAddr = ((Address - SPInfo.SubprogramBasePC) > (uint64_t)std::numeric_limits::max()) ? std::numeric_limits::max() : (uint32_t)(Address - SPInfo.SubprogramBasePC); auto J = std::upper_bound(SPInfo.InlinedSubroutineDIEAddrMap.begin(), SPInfo.InlinedSubroutineDIEAddrMap.end(), RelativeAddr, [](uint32_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); // If we find the beginning, the address is before any inlined subroutine so // return the subprogram DIE. if (J == SPInfo.InlinedSubroutineDIEAddrMap.begin()) return SPInfo.SubprogramDIE; // Back up `J` and return the inlined subroutine if we have one or the // subprogram if we don't. --J; return J->second == -1 ? SPInfo.SubprogramDIE : InlinedSubroutineDIEs[J->second]; } void DWARFUnit::getInlinedChainForAddress(uint64_t Address, SmallVectorImpl &InlinedChain) { assert(InlinedChain.empty()); // Try to look for subprogram DIEs in the DWO file. parseDWO(); // First, find the subroutine that contains the given address (the leaf // of inlined chain). DWARFDie SubroutineDIE = (DWO ? DWO.get() : this)->getSubroutineForAddress(Address); while (SubroutineDIE) { if (SubroutineDIE.isSubroutineDIE()) InlinedChain.push_back(SubroutineDIE); SubroutineDIE = SubroutineDIE.getParent(); } } const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, DWARFSectionKind Kind) { if (Kind == DW_SECT_INFO) return Context.getCUIndex(); assert(Kind == DW_SECT_TYPES); return Context.getTUIndex(); } DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { if (!Die) return DWARFDie(); const uint32_t Depth = Die->getDepth(); // Unit DIEs always have a depth of zero and never have parents. if (Depth == 0) return DWARFDie(); // Depth of 1 always means parent is the compile/type unit. if (Depth == 1) return getUnitDIE(); // Look for previous DIE with a depth that is one less than the Die's depth. const uint32_t ParentDepth = Depth - 1; for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) { if (DieArray[I].getDepth() == ParentDepth) return DWARFDie(this, &DieArray[I]); } return DWARFDie(); } DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { if (!Die) return DWARFDie(); uint32_t Depth = Die->getDepth(); // Unit DIEs always have a depth of zero and never have siblings. if (Depth == 0) return DWARFDie(); // NULL DIEs don't have siblings. if (Die->getAbbreviationDeclarationPtr() == nullptr) return DWARFDie(); // Find the next DIE whose depth is the same as the Die's depth. for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx; ++I) { if (DieArray[I].getDepth() == Depth) return DWARFDie(this, &DieArray[I]); } return DWARFDie(); } DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { if (!Die->hasChildren()) return DWARFDie(); // We do not want access out of bounds when parsing corrupted debug data. size_t I = getDIEIndex(Die) + 1; if (I >= DieArray.size()) return DWARFDie(); return DWARFDie(this, &DieArray[I]); } const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { if (!Abbrevs) Abbrevs = Abbrev->getAbbreviationDeclarationSet(AbbrOffset); return Abbrevs; } Optional StrOffsetsContributionDescriptor::validateContributionSize( DWARFDataExtractor &DA) { uint8_t EntrySize = getDwarfOffsetByteSize(); // In order to ensure that we don't read a partial record at the end of // the section we validate for a multiple of the entry size. uint64_t ValidationSize = alignTo(Size, EntrySize); // Guard against overflow. if (ValidationSize >= Size) if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) return *this; return Optional(); } // Look for a DWARF64-formatted contribution to the string offsets table // starting at a given offset and record it in a descriptor. static Optional parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { if (!DA.isValidOffsetForDataOfSize(Offset, 16)) return Optional(); if (DA.getU32(&Offset) != 0xffffffff) return Optional(); uint64_t Size = DA.getU64(&Offset); uint8_t Version = DA.getU16(&Offset); (void)DA.getU16(&Offset); // padding return StrOffsetsContributionDescriptor(Offset, Size, Version, DWARF64); //return Optional(Descriptor); } // Look for a DWARF32-formatted contribution to the string offsets table // starting at a given offset and record it in a descriptor. static Optional parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { if (!DA.isValidOffsetForDataOfSize(Offset, 8)) return Optional(); uint32_t ContributionSize = DA.getU32(&Offset); if (ContributionSize >= 0xfffffff0) return Optional(); uint8_t Version = DA.getU16(&Offset); (void)DA.getU16(&Offset); // padding return StrOffsetsContributionDescriptor(Offset, ContributionSize, Version, DWARF32); //return Optional(Descriptor); } Optional DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA, uint64_t Offset) { Optional Descriptor; // Attempt to find a DWARF64 contribution 16 bytes before the base. if (Offset >= 16) Descriptor = parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16); // Try to find a DWARF32 contribution 8 bytes before the base. if (!Descriptor && Offset >= 8) Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8); return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor; } Optional DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA, uint64_t Offset) { if (getVersion() >= 5) { // Look for a valid contribution at the given offset. auto Descriptor = parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset); if (!Descriptor) Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset); return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor; } // Prior to DWARF v5, we derive the contribution size from the // index table (in a package file). In a .dwo file it is simply // the length of the string offsets section. uint64_t Size = 0; if (!IndexEntry) Size = StringOffsetSection.Data.size(); else if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS)) Size = C->Length; // Return a descriptor with the given offset as base, version 4 and // DWARF32 format. //return Optional( //StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32)); return StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32); }