// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
using System.Runtime.CompilerServices;
namespace System.Numerics
{
// This file contains the definitions for all of the JIT intrinsic methods and properties that are recognized by the current x64 JIT compiler.
// The implementation defined here is used in any circumstance where the JIT fails to recognize these members as intrinsic.
// The JIT recognizes these methods and properties by name and signature: if either is changed, the JIT will no longer recognize the member.
// Some methods declared here are not strictly intrinsic, but delegate to an intrinsic method. For example, only one overload of CopyTo()
// is actually recognized by the JIT, but both are here for simplicity.
public partial struct Vector3
{
///
/// The X component of the vector.
///
public Single X;
///
/// The Y component of the vector.
///
public Single Y;
///
/// The Z component of the vector.
///
public Single Z;
#region Constructors
///
/// Constructs a vector whose elements are all the single specified value.
///
/// The element to fill the vector with.
[JitIntrinsic]
public Vector3(Single value) : this(value, value, value) { }
///
/// Constructs a Vector3 from the given Vector2 and a third value.
///
/// The Vector to extract X and Y components from.
/// The Z component.
public Vector3(Vector2 value, float z) : this(value.X, value.Y, z) { }
///
/// Constructs a vector with the given individual elements.
///
/// The X component.
/// The Y component.
/// The Z component.
[JitIntrinsic]
public Vector3(Single x, Single y, Single z)
{
X = x;
Y = y;
Z = z;
}
#endregion Constructors
#region Public Instance Methods
///
/// Copies the contents of the vector into the given array.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void CopyTo(Single[] array)
{
CopyTo(array, 0);
}
///
/// Copies the contents of the vector into the given array, starting from index.
///
/// If array is null.
/// If array is multidimensional.
/// If index is greater than end of the array or index is less than zero.
/// If number of elements in source vector is greater than those available in destination array.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void CopyTo(Single[] array, int index)
{
if (array == null)
{
// Match the JIT's exception type here. For perf, a NullReference is thrown instead of an ArgumentNull.
throw new NullReferenceException(SR.GetString("Arg_NullArgumentNullRef"));
}
if (index < 0 || index >= array.Length)
{
throw new ArgumentOutOfRangeException(SR.GetString("Arg_ArgumentOutOfRangeException", index));
}
if ((array.Length - index) < 3)
{
throw new ArgumentException(SR.GetString("Arg_ElementsInSourceIsGreaterThanDestination", index));
}
array[index] = X;
array[index + 1] = Y;
array[index + 2] = Z;
}
///
/// Returns a boolean indicating whether the given Vector3 is equal to this Vector3 instance.
///
/// The Vector3 to compare this instance to.
/// True if the other Vector3 is equal to this instance; False otherwise.
[JitIntrinsic]
public bool Equals(Vector3 other)
{
return X == other.X &&
Y == other.Y &&
Z == other.Z;
}
#endregion Public Instance Methods
#region Public Static Methods
///
/// Returns the dot product of two vectors.
///
/// The first vector.
/// The second vector.
/// The dot product.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Dot(Vector3 vector1, Vector3 vector2)
{
return vector1.X * vector2.X +
vector1.Y * vector2.Y +
vector1.Z * vector2.Z;
}
///
/// Returns a vector whose elements are the minimum of each of the pairs of elements in the two source vectors.
///
/// The first source vector.
/// The second source vector.
/// The minimized vector.
[JitIntrinsic]
public static Vector3 Min(Vector3 value1, Vector3 value2)
{
return new Vector3(
(value1.X < value2.X) ? value1.X : value2.X,
(value1.Y < value2.Y) ? value1.Y : value2.Y,
(value1.Z < value2.Z) ? value1.Z : value2.Z);
}
///
/// Returns a vector whose elements are the maximum of each of the pairs of elements in the two source vectors.
///
/// The first source vector.
/// The second source vector.
/// The maximized vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 Max(Vector3 value1, Vector3 value2)
{
return new Vector3(
(value1.X > value2.X) ? value1.X : value2.X,
(value1.Y > value2.Y) ? value1.Y : value2.Y,
(value1.Z > value2.Z) ? value1.Z : value2.Z);
}
///
/// Returns a vector whose elements are the absolute values of each of the source vector's elements.
///
/// The source vector.
/// The absolute value vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 Abs(Vector3 value)
{
return new Vector3(Math.Abs(value.X), Math.Abs(value.Y), Math.Abs(value.Z));
}
///
/// Returns a vector whose elements are the square root of each of the source vector's elements.
///
/// The source vector.
/// The square root vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 SquareRoot(Vector3 value)
{
return new Vector3((Single)Math.Sqrt(value.X), (Single)Math.Sqrt(value.Y), (Single)Math.Sqrt(value.Z));
}
#endregion Public Static Methods
#region Public Static Operators
///
/// Adds two vectors together.
///
/// The first source vector.
/// The second source vector.
/// The summed vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator +(Vector3 left, Vector3 right)
{
return new Vector3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
}
///
/// Subtracts the second vector from the first.
///
/// The first source vector.
/// The second source vector.
/// The difference vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator -(Vector3 left, Vector3 right)
{
return new Vector3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
}
///
/// Multiplies two vectors together.
///
/// The first source vector.
/// The second source vector.
/// The product vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator *(Vector3 left, Vector3 right)
{
return new Vector3(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
}
///
/// Multiplies a vector by the given scalar.
///
/// The source vector.
/// The scalar value.
/// The scaled vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator *(Vector3 left, Single right)
{
return left * new Vector3(right);
}
///
/// Multiplies a vector by the given scalar.
///
/// The scalar value.
/// The source vector.
/// The scaled vector.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator *(Single left, Vector3 right)
{
return new Vector3(left) * right;
}
///
/// Divides the first vector by the second.
///
/// The first source vector.
/// The second source vector.
/// The vector resulting from the division.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator /(Vector3 left, Vector3 right)
{
return new Vector3(left.X / right.X, left.Y / right.Y, left.Z / right.Z);
}
///
/// Divides the vector by the given scalar.
///
/// The source vector.
/// The scalar value.
/// The result of the division.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator /(Vector3 value1, float value2)
{
float invDiv = 1.0f / value2;
return new Vector3(
value1.X * invDiv,
value1.Y * invDiv,
value1.Z * invDiv);
}
///
/// Negates a given vector.
///
/// The source vector.
/// The negated vector.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector3 operator -(Vector3 value)
{
return Zero - value;
}
///
/// Returns a boolean indicating whether the two given vectors are equal.
///
/// The first vector to compare.
/// The second vector to compare.
/// True if the vectors are equal; False otherwise.
[JitIntrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool operator ==(Vector3 left, Vector3 right)
{
return (left.X == right.X &&
left.Y == right.Y &&
left.Z == right.Z);
}
///
/// Returns a boolean indicating whether the two given vectors are not equal.
///
/// The first vector to compare.
/// The second vector to compare.
/// True if the vectors are not equal; False if they are equal.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool operator !=(Vector3 left, Vector3 right)
{
return (left.X != right.X ||
left.Y != right.Y ||
left.Z != right.Z);
}
#endregion Public Static Operators
}
}