You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.207
Former-commit-id: 3b152f462918d427ce18620a2cbe4f8b79650449
This commit is contained in:
parent
8e12397d70
commit
eb85e2fc17
@ -1,69 +0,0 @@
|
||||
//===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/FuzzMutate/Random.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include <random>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
TEST(ReservoirSamplerTest, OneItem) {
|
||||
std::mt19937 Rand;
|
||||
auto Sampler = makeSampler(Rand, 7, 1);
|
||||
ASSERT_FALSE(Sampler.isEmpty());
|
||||
ASSERT_EQ(7, Sampler.getSelection());
|
||||
}
|
||||
|
||||
TEST(ReservoirSamplerTest, NoWeight) {
|
||||
std::mt19937 Rand;
|
||||
auto Sampler = makeSampler(Rand, 7, 0);
|
||||
ASSERT_TRUE(Sampler.isEmpty());
|
||||
}
|
||||
|
||||
TEST(ReservoirSamplerTest, Uniform) {
|
||||
std::mt19937 Rand;
|
||||
|
||||
// Run three chi-squared tests to check that the distribution is reasonably
|
||||
// uniform.
|
||||
std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
int Failures = 0;
|
||||
for (int Run = 0; Run < 3; ++Run) {
|
||||
std::vector<int> Counts(Items.size(), 0);
|
||||
|
||||
// We need $np_s > 5$ at minimum, but we're better off going a couple of
|
||||
// orders of magnitude larger.
|
||||
int N = Items.size() * 5 * 100;
|
||||
for (int I = 0; I < N; ++I) {
|
||||
auto Sampler = makeSampler(Rand, Items);
|
||||
Counts[Sampler.getSelection()] += 1;
|
||||
}
|
||||
|
||||
// Knuth. TAOCP Vol. 2, 3.3.1 (8):
|
||||
// $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$
|
||||
double Ps = 1.0 / Items.size();
|
||||
double Sum = 0.0;
|
||||
for (int Ys : Counts)
|
||||
Sum += Ys * Ys / Ps;
|
||||
double V = (Sum / N) - N;
|
||||
|
||||
assert(Items.size() == 10 && "Our chi-squared values assume 10 items");
|
||||
// Since we have 10 items, there are 9 degrees of freedom and the table of
|
||||
// chi-squared values is as follows:
|
||||
//
|
||||
// | p=1% | 5% | 25% | 50% | 75% | 95% | 99% |
|
||||
// v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 |
|
||||
//
|
||||
// Check that we're in the likely range of results.
|
||||
//if (V < 2.088 || V > 21.67)
|
||||
if (V < 2.088 || V > 21.67)
|
||||
++Failures;
|
||||
}
|
||||
EXPECT_LT(Failures, 3) << "Non-uniform distribution?";
|
||||
}
|
Reference in New Issue
Block a user