You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.207
Former-commit-id: 3b152f462918d427ce18620a2cbe4f8b79650449
This commit is contained in:
parent
8e12397d70
commit
eb85e2fc17
@ -1,467 +0,0 @@
|
||||
//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
/// \file
|
||||
/// \brief R600 Machine Scheduler interface
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "R600MachineScheduler.h"
|
||||
#include "AMDGPUSubtarget.h"
|
||||
#include "R600InstrInfo.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/IR/LegacyPassManager.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "machine-scheduler"
|
||||
|
||||
void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
|
||||
assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
|
||||
DAG = static_cast<ScheduleDAGMILive*>(dag);
|
||||
const R600Subtarget &ST = DAG->MF.getSubtarget<R600Subtarget>();
|
||||
TII = static_cast<const R600InstrInfo*>(DAG->TII);
|
||||
TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
|
||||
VLIW5 = !ST.hasCaymanISA();
|
||||
MRI = &DAG->MRI;
|
||||
CurInstKind = IDOther;
|
||||
CurEmitted = 0;
|
||||
OccupedSlotsMask = 31;
|
||||
InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
|
||||
InstKindLimit[IDOther] = 32;
|
||||
InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
|
||||
AluInstCount = 0;
|
||||
FetchInstCount = 0;
|
||||
}
|
||||
|
||||
void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
|
||||
std::vector<SUnit *> &QDst)
|
||||
{
|
||||
QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
|
||||
QSrc.clear();
|
||||
}
|
||||
|
||||
static unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
|
||||
assert (GPRCount && "GPRCount cannot be 0");
|
||||
return 248 / GPRCount;
|
||||
}
|
||||
|
||||
SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
|
||||
SUnit *SU = nullptr;
|
||||
NextInstKind = IDOther;
|
||||
|
||||
IsTopNode = false;
|
||||
|
||||
// check if we might want to switch current clause type
|
||||
bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
|
||||
(Available[CurInstKind].empty());
|
||||
bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
|
||||
(!Available[IDFetch].empty() || !Available[IDOther].empty());
|
||||
|
||||
if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
|
||||
// We use the heuristic provided by AMD Accelerated Parallel Processing
|
||||
// OpenCL Programming Guide :
|
||||
// The approx. number of WF that allows TEX inst to hide ALU inst is :
|
||||
// 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
|
||||
float ALUFetchRationEstimate =
|
||||
(AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
|
||||
(FetchInstCount + Available[IDFetch].size());
|
||||
if (ALUFetchRationEstimate == 0) {
|
||||
AllowSwitchFromAlu = true;
|
||||
} else {
|
||||
unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
|
||||
DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
|
||||
// We assume the local GPR requirements to be "dominated" by the requirement
|
||||
// of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
|
||||
// after TEX are indeed likely to consume or generate values from/for the
|
||||
// TEX clause.
|
||||
// Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
|
||||
// We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
|
||||
// one GPR) or TmXYZW = TnXYZW (need 2 GPR).
|
||||
// (TODO : use RegisterPressure)
|
||||
// If we are going too use too many GPR, we flush Fetch instruction to lower
|
||||
// register pressure on 128 bits regs.
|
||||
unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
|
||||
if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
|
||||
AllowSwitchFromAlu = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
|
||||
(!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
|
||||
// try to pick ALU
|
||||
SU = pickAlu();
|
||||
if (!SU && !PhysicalRegCopy.empty()) {
|
||||
SU = PhysicalRegCopy.front();
|
||||
PhysicalRegCopy.erase(PhysicalRegCopy.begin());
|
||||
}
|
||||
if (SU) {
|
||||
if (CurEmitted >= InstKindLimit[IDAlu])
|
||||
CurEmitted = 0;
|
||||
NextInstKind = IDAlu;
|
||||
}
|
||||
}
|
||||
|
||||
if (!SU) {
|
||||
// try to pick FETCH
|
||||
SU = pickOther(IDFetch);
|
||||
if (SU)
|
||||
NextInstKind = IDFetch;
|
||||
}
|
||||
|
||||
// try to pick other
|
||||
if (!SU) {
|
||||
SU = pickOther(IDOther);
|
||||
if (SU)
|
||||
NextInstKind = IDOther;
|
||||
}
|
||||
|
||||
DEBUG(
|
||||
if (SU) {
|
||||
dbgs() << " ** Pick node **\n";
|
||||
SU->dump(DAG);
|
||||
} else {
|
||||
dbgs() << "NO NODE \n";
|
||||
for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
|
||||
const SUnit &S = DAG->SUnits[i];
|
||||
if (!S.isScheduled)
|
||||
S.dump(DAG);
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
return SU;
|
||||
}
|
||||
|
||||
void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
|
||||
if (NextInstKind != CurInstKind) {
|
||||
DEBUG(dbgs() << "Instruction Type Switch\n");
|
||||
if (NextInstKind != IDAlu)
|
||||
OccupedSlotsMask |= 31;
|
||||
CurEmitted = 0;
|
||||
CurInstKind = NextInstKind;
|
||||
}
|
||||
|
||||
if (CurInstKind == IDAlu) {
|
||||
AluInstCount ++;
|
||||
switch (getAluKind(SU)) {
|
||||
case AluT_XYZW:
|
||||
CurEmitted += 4;
|
||||
break;
|
||||
case AluDiscarded:
|
||||
break;
|
||||
default: {
|
||||
++CurEmitted;
|
||||
for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
|
||||
E = SU->getInstr()->operands_end(); It != E; ++It) {
|
||||
MachineOperand &MO = *It;
|
||||
if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
|
||||
++CurEmitted;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
++CurEmitted;
|
||||
}
|
||||
|
||||
|
||||
DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
|
||||
|
||||
if (CurInstKind != IDFetch) {
|
||||
MoveUnits(Pending[IDFetch], Available[IDFetch]);
|
||||
} else
|
||||
FetchInstCount++;
|
||||
}
|
||||
|
||||
static bool
|
||||
isPhysicalRegCopy(MachineInstr *MI) {
|
||||
if (MI->getOpcode() != AMDGPU::COPY)
|
||||
return false;
|
||||
|
||||
return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
|
||||
}
|
||||
|
||||
void R600SchedStrategy::releaseTopNode(SUnit *SU) {
|
||||
DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
|
||||
}
|
||||
|
||||
void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
|
||||
DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
|
||||
if (isPhysicalRegCopy(SU->getInstr())) {
|
||||
PhysicalRegCopy.push_back(SU);
|
||||
return;
|
||||
}
|
||||
|
||||
int IK = getInstKind(SU);
|
||||
|
||||
// There is no export clause, we can schedule one as soon as its ready
|
||||
if (IK == IDOther)
|
||||
Available[IDOther].push_back(SU);
|
||||
else
|
||||
Pending[IK].push_back(SU);
|
||||
|
||||
}
|
||||
|
||||
bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
|
||||
const TargetRegisterClass *RC) const {
|
||||
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
|
||||
return RC->contains(Reg);
|
||||
} else {
|
||||
return MRI->getRegClass(Reg) == RC;
|
||||
}
|
||||
}
|
||||
|
||||
R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
|
||||
MachineInstr *MI = SU->getInstr();
|
||||
|
||||
if (TII->isTransOnly(*MI))
|
||||
return AluTrans;
|
||||
|
||||
switch (MI->getOpcode()) {
|
||||
case AMDGPU::PRED_X:
|
||||
return AluPredX;
|
||||
case AMDGPU::INTERP_PAIR_XY:
|
||||
case AMDGPU::INTERP_PAIR_ZW:
|
||||
case AMDGPU::INTERP_VEC_LOAD:
|
||||
case AMDGPU::DOT_4:
|
||||
return AluT_XYZW;
|
||||
case AMDGPU::COPY:
|
||||
if (MI->getOperand(1).isUndef()) {
|
||||
// MI will become a KILL, don't considers it in scheduling
|
||||
return AluDiscarded;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// Does the instruction take a whole IG ?
|
||||
// XXX: Is it possible to add a helper function in R600InstrInfo that can
|
||||
// be used here and in R600PacketizerList::isSoloInstruction() ?
|
||||
if(TII->isVector(*MI) ||
|
||||
TII->isCubeOp(MI->getOpcode()) ||
|
||||
TII->isReductionOp(MI->getOpcode()) ||
|
||||
MI->getOpcode() == AMDGPU::GROUP_BARRIER) {
|
||||
return AluT_XYZW;
|
||||
}
|
||||
|
||||
if (TII->isLDSInstr(MI->getOpcode())) {
|
||||
return AluT_X;
|
||||
}
|
||||
|
||||
// Is the result already assigned to a channel ?
|
||||
unsigned DestSubReg = MI->getOperand(0).getSubReg();
|
||||
switch (DestSubReg) {
|
||||
case AMDGPU::sub0:
|
||||
return AluT_X;
|
||||
case AMDGPU::sub1:
|
||||
return AluT_Y;
|
||||
case AMDGPU::sub2:
|
||||
return AluT_Z;
|
||||
case AMDGPU::sub3:
|
||||
return AluT_W;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// Is the result already member of a X/Y/Z/W class ?
|
||||
unsigned DestReg = MI->getOperand(0).getReg();
|
||||
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
|
||||
regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
|
||||
return AluT_X;
|
||||
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
|
||||
return AluT_Y;
|
||||
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
|
||||
return AluT_Z;
|
||||
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
|
||||
return AluT_W;
|
||||
if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
|
||||
return AluT_XYZW;
|
||||
|
||||
// LDS src registers cannot be used in the Trans slot.
|
||||
if (TII->readsLDSSrcReg(*MI))
|
||||
return AluT_XYZW;
|
||||
|
||||
return AluAny;
|
||||
}
|
||||
|
||||
int R600SchedStrategy::getInstKind(SUnit* SU) {
|
||||
int Opcode = SU->getInstr()->getOpcode();
|
||||
|
||||
if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
|
||||
return IDFetch;
|
||||
|
||||
if (TII->isALUInstr(Opcode)) {
|
||||
return IDAlu;
|
||||
}
|
||||
|
||||
switch (Opcode) {
|
||||
case AMDGPU::PRED_X:
|
||||
case AMDGPU::COPY:
|
||||
case AMDGPU::CONST_COPY:
|
||||
case AMDGPU::INTERP_PAIR_XY:
|
||||
case AMDGPU::INTERP_PAIR_ZW:
|
||||
case AMDGPU::INTERP_VEC_LOAD:
|
||||
case AMDGPU::DOT_4:
|
||||
return IDAlu;
|
||||
default:
|
||||
return IDOther;
|
||||
}
|
||||
}
|
||||
|
||||
SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
|
||||
if (Q.empty())
|
||||
return nullptr;
|
||||
for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
|
||||
It != E; ++It) {
|
||||
SUnit *SU = *It;
|
||||
InstructionsGroupCandidate.push_back(SU->getInstr());
|
||||
if (TII->fitsConstReadLimitations(InstructionsGroupCandidate) &&
|
||||
(!AnyALU || !TII->isVectorOnly(*SU->getInstr()))) {
|
||||
InstructionsGroupCandidate.pop_back();
|
||||
Q.erase((It + 1).base());
|
||||
return SU;
|
||||
} else {
|
||||
InstructionsGroupCandidate.pop_back();
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void R600SchedStrategy::LoadAlu() {
|
||||
std::vector<SUnit *> &QSrc = Pending[IDAlu];
|
||||
for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
|
||||
AluKind AK = getAluKind(QSrc[i]);
|
||||
AvailableAlus[AK].push_back(QSrc[i]);
|
||||
}
|
||||
QSrc.clear();
|
||||
}
|
||||
|
||||
void R600SchedStrategy::PrepareNextSlot() {
|
||||
DEBUG(dbgs() << "New Slot\n");
|
||||
assert (OccupedSlotsMask && "Slot wasn't filled");
|
||||
OccupedSlotsMask = 0;
|
||||
// if (HwGen == R600Subtarget::NORTHERN_ISLANDS)
|
||||
// OccupedSlotsMask |= 16;
|
||||
InstructionsGroupCandidate.clear();
|
||||
LoadAlu();
|
||||
}
|
||||
|
||||
void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
|
||||
int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
|
||||
if (DstIndex == -1) {
|
||||
return;
|
||||
}
|
||||
unsigned DestReg = MI->getOperand(DstIndex).getReg();
|
||||
// PressureRegister crashes if an operand is def and used in the same inst
|
||||
// and we try to constraint its regclass
|
||||
for (MachineInstr::mop_iterator It = MI->operands_begin(),
|
||||
E = MI->operands_end(); It != E; ++It) {
|
||||
MachineOperand &MO = *It;
|
||||
if (MO.isReg() && !MO.isDef() &&
|
||||
MO.getReg() == DestReg)
|
||||
return;
|
||||
}
|
||||
// Constrains the regclass of DestReg to assign it to Slot
|
||||
switch (Slot) {
|
||||
case 0:
|
||||
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
|
||||
break;
|
||||
case 1:
|
||||
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
|
||||
break;
|
||||
case 2:
|
||||
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
|
||||
break;
|
||||
case 3:
|
||||
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
|
||||
static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
|
||||
SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
|
||||
if (SlotedSU)
|
||||
return SlotedSU;
|
||||
SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
|
||||
if (UnslotedSU)
|
||||
AssignSlot(UnslotedSU->getInstr(), Slot);
|
||||
return UnslotedSU;
|
||||
}
|
||||
|
||||
unsigned R600SchedStrategy::AvailablesAluCount() const {
|
||||
return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
|
||||
AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
|
||||
AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
|
||||
AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
|
||||
AvailableAlus[AluPredX].size();
|
||||
}
|
||||
|
||||
SUnit* R600SchedStrategy::pickAlu() {
|
||||
while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
|
||||
if (!OccupedSlotsMask) {
|
||||
// Bottom up scheduling : predX must comes first
|
||||
if (!AvailableAlus[AluPredX].empty()) {
|
||||
OccupedSlotsMask |= 31;
|
||||
return PopInst(AvailableAlus[AluPredX], false);
|
||||
}
|
||||
// Flush physical reg copies (RA will discard them)
|
||||
if (!AvailableAlus[AluDiscarded].empty()) {
|
||||
OccupedSlotsMask |= 31;
|
||||
return PopInst(AvailableAlus[AluDiscarded], false);
|
||||
}
|
||||
// If there is a T_XYZW alu available, use it
|
||||
if (!AvailableAlus[AluT_XYZW].empty()) {
|
||||
OccupedSlotsMask |= 15;
|
||||
return PopInst(AvailableAlus[AluT_XYZW], false);
|
||||
}
|
||||
}
|
||||
bool TransSlotOccuped = OccupedSlotsMask & 16;
|
||||
if (!TransSlotOccuped && VLIW5) {
|
||||
if (!AvailableAlus[AluTrans].empty()) {
|
||||
OccupedSlotsMask |= 16;
|
||||
return PopInst(AvailableAlus[AluTrans], false);
|
||||
}
|
||||
SUnit *SU = AttemptFillSlot(3, true);
|
||||
if (SU) {
|
||||
OccupedSlotsMask |= 16;
|
||||
return SU;
|
||||
}
|
||||
}
|
||||
for (int Chan = 3; Chan > -1; --Chan) {
|
||||
bool isOccupied = OccupedSlotsMask & (1 << Chan);
|
||||
if (!isOccupied) {
|
||||
SUnit *SU = AttemptFillSlot(Chan, false);
|
||||
if (SU) {
|
||||
OccupedSlotsMask |= (1 << Chan);
|
||||
InstructionsGroupCandidate.push_back(SU->getInstr());
|
||||
return SU;
|
||||
}
|
||||
}
|
||||
}
|
||||
PrepareNextSlot();
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
SUnit* R600SchedStrategy::pickOther(int QID) {
|
||||
SUnit *SU = nullptr;
|
||||
std::vector<SUnit *> &AQ = Available[QID];
|
||||
|
||||
if (AQ.empty()) {
|
||||
MoveUnits(Pending[QID], AQ);
|
||||
}
|
||||
if (!AQ.empty()) {
|
||||
SU = AQ.back();
|
||||
AQ.resize(AQ.size() - 1);
|
||||
}
|
||||
return SU;
|
||||
}
|
Reference in New Issue
Block a user