You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.207
Former-commit-id: 3b152f462918d427ce18620a2cbe4f8b79650449
This commit is contained in:
parent
8e12397d70
commit
eb85e2fc17
425
external/llvm/lib/Analysis/IVUsers.cpp
vendored
425
external/llvm/lib/Analysis/IVUsers.cpp
vendored
@ -1,425 +0,0 @@
|
||||
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements bookkeeping for "interesting" users of expressions
|
||||
// computed from induction variables.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/IVUsers.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/Analysis/AssumptionCache.h"
|
||||
#include "llvm/Analysis/CodeMetrics.h"
|
||||
#include "llvm/Analysis/LoopAnalysisManager.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/DataLayout.h"
|
||||
#include "llvm/IR/DerivedTypes.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/Type.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "iv-users"
|
||||
|
||||
AnalysisKey IVUsersAnalysis::Key;
|
||||
|
||||
IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
|
||||
LoopStandardAnalysisResults &AR) {
|
||||
return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
|
||||
}
|
||||
|
||||
char IVUsersWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
|
||||
"Induction Variable Users", false, true)
|
||||
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
||||
INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
|
||||
false, true)
|
||||
|
||||
Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
|
||||
|
||||
/// isInteresting - Test whether the given expression is "interesting" when
|
||||
/// used by the given expression, within the context of analyzing the
|
||||
/// given loop.
|
||||
static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
|
||||
ScalarEvolution *SE, LoopInfo *LI) {
|
||||
// An addrec is interesting if it's affine or if it has an interesting start.
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
// Keep things simple. Don't touch loop-variant strides unless they're
|
||||
// only used outside the loop and we can simplify them.
|
||||
if (AR->getLoop() == L)
|
||||
return AR->isAffine() ||
|
||||
(!L->contains(I) &&
|
||||
SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
|
||||
// Otherwise recurse to see if the start value is interesting, and that
|
||||
// the step value is not interesting, since we don't yet know how to
|
||||
// do effective SCEV expansions for addrecs with interesting steps.
|
||||
return isInteresting(AR->getStart(), I, L, SE, LI) &&
|
||||
!isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
|
||||
}
|
||||
|
||||
// An add is interesting if exactly one of its operands is interesting.
|
||||
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
||||
bool AnyInterestingYet = false;
|
||||
for (const auto *Op : Add->operands())
|
||||
if (isInteresting(Op, I, L, SE, LI)) {
|
||||
if (AnyInterestingYet)
|
||||
return false;
|
||||
AnyInterestingYet = true;
|
||||
}
|
||||
return AnyInterestingYet;
|
||||
}
|
||||
|
||||
// Nothing else is interesting here.
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Return true if all loop headers that dominate this block are in simplified
|
||||
/// form.
|
||||
static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
|
||||
const LoopInfo *LI,
|
||||
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
|
||||
Loop *NearestLoop = nullptr;
|
||||
for (DomTreeNode *Rung = DT->getNode(BB);
|
||||
Rung; Rung = Rung->getIDom()) {
|
||||
BasicBlock *DomBB = Rung->getBlock();
|
||||
Loop *DomLoop = LI->getLoopFor(DomBB);
|
||||
if (DomLoop && DomLoop->getHeader() == DomBB) {
|
||||
// If the domtree walk reaches a loop with no preheader, return false.
|
||||
if (!DomLoop->isLoopSimplifyForm())
|
||||
return false;
|
||||
// If we have already checked this loop nest, stop checking.
|
||||
if (SimpleLoopNests.count(DomLoop))
|
||||
break;
|
||||
// If we have not already checked this loop nest, remember the loop
|
||||
// header nearest to BB. The nearest loop may not contain BB.
|
||||
if (!NearestLoop)
|
||||
NearestLoop = DomLoop;
|
||||
}
|
||||
}
|
||||
if (NearestLoop)
|
||||
SimpleLoopNests.insert(NearestLoop);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
|
||||
/// and now we need to decide whether the user should use the preinc or post-inc
|
||||
/// value. If this user should use the post-inc version of the IV, return true.
|
||||
///
|
||||
/// Choosing wrong here can break dominance properties (if we choose to use the
|
||||
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
|
||||
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
|
||||
/// should use the post-inc value).
|
||||
static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
|
||||
const Loop *L, DominatorTree *DT) {
|
||||
// If the user is in the loop, use the preinc value.
|
||||
if (L->contains(User))
|
||||
return false;
|
||||
|
||||
BasicBlock *LatchBlock = L->getLoopLatch();
|
||||
if (!LatchBlock)
|
||||
return false;
|
||||
|
||||
// Ok, the user is outside of the loop. If it is dominated by the latch
|
||||
// block, use the post-inc value.
|
||||
if (DT->dominates(LatchBlock, User->getParent()))
|
||||
return true;
|
||||
|
||||
// There is one case we have to be careful of: PHI nodes. These little guys
|
||||
// can live in blocks that are not dominated by the latch block, but (since
|
||||
// their uses occur in the predecessor block, not the block the PHI lives in)
|
||||
// should still use the post-inc value. Check for this case now.
|
||||
PHINode *PN = dyn_cast<PHINode>(User);
|
||||
if (!PN || !Operand)
|
||||
return false; // not a phi, not dominated by latch block.
|
||||
|
||||
// Look at all of the uses of Operand by the PHI node. If any use corresponds
|
||||
// to a block that is not dominated by the latch block, give up and use the
|
||||
// preincremented value.
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
||||
if (PN->getIncomingValue(i) == Operand &&
|
||||
!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
|
||||
return false;
|
||||
|
||||
// Okay, all uses of Operand by PN are in predecessor blocks that really are
|
||||
// dominated by the latch block. Use the post-incremented value.
|
||||
return true;
|
||||
}
|
||||
|
||||
/// AddUsersImpl - Inspect the specified instruction. If it is a
|
||||
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
||||
/// return true. Otherwise, return false.
|
||||
bool IVUsers::AddUsersImpl(Instruction *I,
|
||||
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
|
||||
const DataLayout &DL = I->getModule()->getDataLayout();
|
||||
|
||||
// Add this IV user to the Processed set before returning false to ensure that
|
||||
// all IV users are members of the set. See IVUsers::isIVUserOrOperand.
|
||||
if (!Processed.insert(I).second)
|
||||
return true; // Instruction already handled.
|
||||
|
||||
if (!SE->isSCEVable(I->getType()))
|
||||
return false; // Void and FP expressions cannot be reduced.
|
||||
|
||||
// IVUsers is used by LSR which assumes that all SCEV expressions are safe to
|
||||
// pass to SCEVExpander. Expressions are not safe to expand if they represent
|
||||
// operations that are not safe to speculate, namely integer division.
|
||||
if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
|
||||
return false;
|
||||
|
||||
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
|
||||
// Also avoid creating IVs of non-native types. For example, we don't want a
|
||||
// 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
|
||||
uint64_t Width = SE->getTypeSizeInBits(I->getType());
|
||||
if (Width > 64 || !DL.isLegalInteger(Width))
|
||||
return false;
|
||||
|
||||
// Don't attempt to promote ephemeral values to indvars. They will be removed
|
||||
// later anyway.
|
||||
if (EphValues.count(I))
|
||||
return false;
|
||||
|
||||
// Get the symbolic expression for this instruction.
|
||||
const SCEV *ISE = SE->getSCEV(I);
|
||||
|
||||
// If we've come to an uninteresting expression, stop the traversal and
|
||||
// call this a user.
|
||||
if (!isInteresting(ISE, I, L, SE, LI))
|
||||
return false;
|
||||
|
||||
SmallPtrSet<Instruction *, 4> UniqueUsers;
|
||||
for (Use &U : I->uses()) {
|
||||
Instruction *User = cast<Instruction>(U.getUser());
|
||||
if (!UniqueUsers.insert(User).second)
|
||||
continue;
|
||||
|
||||
// Do not infinitely recurse on PHI nodes.
|
||||
if (isa<PHINode>(User) && Processed.count(User))
|
||||
continue;
|
||||
|
||||
// Only consider IVUsers that are dominated by simplified loop
|
||||
// headers. Otherwise, SCEVExpander will crash.
|
||||
BasicBlock *UseBB = User->getParent();
|
||||
// A phi's use is live out of its predecessor block.
|
||||
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
|
||||
unsigned OperandNo = U.getOperandNo();
|
||||
unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
|
||||
UseBB = PHI->getIncomingBlock(ValNo);
|
||||
}
|
||||
if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
|
||||
return false;
|
||||
|
||||
// Descend recursively, but not into PHI nodes outside the current loop.
|
||||
// It's important to see the entire expression outside the loop to get
|
||||
// choices that depend on addressing mode use right, although we won't
|
||||
// consider references outside the loop in all cases.
|
||||
// If User is already in Processed, we don't want to recurse into it again,
|
||||
// but do want to record a second reference in the same instruction.
|
||||
bool AddUserToIVUsers = false;
|
||||
if (LI->getLoopFor(User->getParent()) != L) {
|
||||
if (isa<PHINode>(User) || Processed.count(User) ||
|
||||
!AddUsersImpl(User, SimpleLoopNests)) {
|
||||
DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
|
||||
<< " OF SCEV: " << *ISE << '\n');
|
||||
AddUserToIVUsers = true;
|
||||
}
|
||||
} else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
|
||||
DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
|
||||
<< " OF SCEV: " << *ISE << '\n');
|
||||
AddUserToIVUsers = true;
|
||||
}
|
||||
|
||||
if (AddUserToIVUsers) {
|
||||
// Okay, we found a user that we cannot reduce.
|
||||
IVStrideUse &NewUse = AddUser(User, I);
|
||||
// Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
|
||||
// The regular return value here is discarded; instead of recording
|
||||
// it, we just recompute it when we need it.
|
||||
const SCEV *OriginalISE = ISE;
|
||||
|
||||
auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
|
||||
auto *L = AR->getLoop();
|
||||
bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
|
||||
if (Result)
|
||||
NewUse.PostIncLoops.insert(L);
|
||||
return Result;
|
||||
};
|
||||
|
||||
ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
|
||||
|
||||
// PostIncNormalization effectively simplifies the expression under
|
||||
// pre-increment assumptions. Those assumptions (no wrapping) might not
|
||||
// hold for the post-inc value. Catch such cases by making sure the
|
||||
// transformation is invertible.
|
||||
if (OriginalISE != ISE) {
|
||||
const SCEV *DenormalizedISE =
|
||||
denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
|
||||
|
||||
// If we normalized the expression, but denormalization doesn't give the
|
||||
// original one, discard this user.
|
||||
if (OriginalISE != DenormalizedISE) {
|
||||
DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
|
||||
<< *ISE << '\n');
|
||||
IVUses.pop_back();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
DEBUG(if (SE->getSCEV(I) != ISE)
|
||||
dbgs() << " NORMALIZED TO: " << *ISE << '\n');
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
|
||||
// SCEVExpander can only handle users that are dominated by simplified loop
|
||||
// entries. Keep track of all loops that are only dominated by other simple
|
||||
// loops so we don't traverse the domtree for each user.
|
||||
SmallPtrSet<Loop*,16> SimpleLoopNests;
|
||||
|
||||
return AddUsersImpl(I, SimpleLoopNests);
|
||||
}
|
||||
|
||||
IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
|
||||
IVUses.push_back(new IVStrideUse(this, User, Operand));
|
||||
return IVUses.back();
|
||||
}
|
||||
|
||||
IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
|
||||
ScalarEvolution *SE)
|
||||
: L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
|
||||
// Collect ephemeral values so that AddUsersIfInteresting skips them.
|
||||
EphValues.clear();
|
||||
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
||||
|
||||
// Find all uses of induction variables in this loop, and categorize
|
||||
// them by stride. Start by finding all of the PHI nodes in the header for
|
||||
// this loop. If they are induction variables, inspect their uses.
|
||||
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
||||
(void)AddUsersIfInteresting(&*I);
|
||||
}
|
||||
|
||||
void IVUsers::print(raw_ostream &OS, const Module *M) const {
|
||||
OS << "IV Users for loop ";
|
||||
L->getHeader()->printAsOperand(OS, false);
|
||||
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
|
||||
OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
|
||||
}
|
||||
OS << ":\n";
|
||||
|
||||
for (const IVStrideUse &IVUse : IVUses) {
|
||||
OS << " ";
|
||||
IVUse.getOperandValToReplace()->printAsOperand(OS, false);
|
||||
OS << " = " << *getReplacementExpr(IVUse);
|
||||
for (auto PostIncLoop : IVUse.PostIncLoops) {
|
||||
OS << " (post-inc with loop ";
|
||||
PostIncLoop->getHeader()->printAsOperand(OS, false);
|
||||
OS << ")";
|
||||
}
|
||||
OS << " in ";
|
||||
if (IVUse.getUser())
|
||||
IVUse.getUser()->print(OS);
|
||||
else
|
||||
OS << "Printing <null> User";
|
||||
OS << '\n';
|
||||
}
|
||||
}
|
||||
|
||||
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||||
LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
|
||||
#endif
|
||||
|
||||
void IVUsers::releaseMemory() {
|
||||
Processed.clear();
|
||||
IVUses.clear();
|
||||
}
|
||||
|
||||
IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
|
||||
initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequired<AssumptionCacheTracker>();
|
||||
AU.addRequired<LoopInfoWrapperPass>();
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
AU.addRequired<ScalarEvolutionWrapperPass>();
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
|
||||
bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
|
||||
*L->getHeader()->getParent());
|
||||
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
||||
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
||||
|
||||
IU.reset(new IVUsers(L, AC, LI, DT, SE));
|
||||
return false;
|
||||
}
|
||||
|
||||
void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
|
||||
IU->print(OS, M);
|
||||
}
|
||||
|
||||
void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
|
||||
|
||||
/// getReplacementExpr - Return a SCEV expression which computes the
|
||||
/// value of the OperandValToReplace.
|
||||
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
|
||||
return SE->getSCEV(IU.getOperandValToReplace());
|
||||
}
|
||||
|
||||
/// getExpr - Return the expression for the use.
|
||||
const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
|
||||
return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
|
||||
*SE);
|
||||
}
|
||||
|
||||
static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
if (AR->getLoop() == L)
|
||||
return AR;
|
||||
return findAddRecForLoop(AR->getStart(), L);
|
||||
}
|
||||
|
||||
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
||||
for (const auto *Op : Add->operands())
|
||||
if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
|
||||
return AR;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
|
||||
if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
|
||||
return AR->getStepRecurrence(*SE);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void IVStrideUse::transformToPostInc(const Loop *L) {
|
||||
PostIncLoops.insert(L);
|
||||
}
|
||||
|
||||
void IVStrideUse::deleted() {
|
||||
// Remove this user from the list.
|
||||
Parent->Processed.erase(this->getUser());
|
||||
Parent->IVUses.erase(this);
|
||||
// this now dangles!
|
||||
}
|
Reference in New Issue
Block a user