Imported Upstream version 4.6.0.125

Former-commit-id: a2155e9bd80020e49e72e86c44da02a8ac0e57a4
This commit is contained in:
Xamarin Public Jenkins (auto-signing)
2016-08-03 10:59:49 +00:00
parent a569aebcfd
commit e79aa3c0ed
17047 changed files with 3137615 additions and 392334 deletions

View File

@@ -0,0 +1,247 @@
//------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------
namespace System.Runtime.Collections
{
using System;
using System.Collections;
using System.Threading;
using System.Diagnostics;
// This cache works like a MruCache, but operates loosely and without locks in the mainline path.
//
// It consists of three 'hoppers', which are Hashtables (chosen for their nice threading characteristics - reading
// doesn't require a lock). Items enter the cache in the second hopper. On lookups, cache hits result in the
// cache entry being promoted to the first hopper. When the first hopper is full, the third hopper is dropped,
// and the first and second hoppers are shifted down, leaving an empty first hopper. If the second hopper is
// full when a new cache entry is added, the third hopper is dropped, the second hopper is shifted down, and a
// new second hopper is slotted in to become the new item entrypoint.
//
// Items can only be added and looked up. There's no way to remove an item besides through attrition.
//
// This cache has a built-in concept of weakly-referenced items (which can be enabled or disabled in the
// constructor). It needs this concept since the caller of the cache can't remove dead cache items itself.
// A weak HopperCache will simply ignore dead entries.
//
// This structure allows cache lookups to be almost lock-free. The only time the first hopper is written to
// is when a cache entry is promoted. Promoting a cache entry is not critical - it's ok to skip a promotion.
// Only one promotion is allowed at a time. If a second is attempted, it is skipped. This allows promotions
// to be synchronized with just an Interlocked call.
//
// New cache entries go into the second hopper, which requires a lock, as does shifting the hoppers down.
//
// The hopperSize parameter determines the size of the first hopper. When it reaches this size, the hoppers
// are shifted. The second hopper is allowed to grow to twice this size. This is because it needs room to get
// new cache entries into the system, and the second hopper typically starts out 'full'. Entries are never added
// directly to the third hopper.
//
// It's a error on the part of the caller to add the same key to the cache again if it's already in the cache
// with a different value. The new value will not necessarily overwrite the old value.
//
// If a cache entry is about to be promoted from the third hopper, and in the mean time the third hopper has been
// shifted away, an intervening GetValue for the same key might return null, even though the item is still in
// the cache and a later GetValue might find it. So it's very important never to add the same key to the cache
// with two different values, even if GetValue returns null for the key in-between the first add and the second.
// (If this particular behavior is a problem, it may be possible to tighten up, but it's not necessary for the
// current use of HopperCache - UriPrefixTable.)
class HopperCache
{
readonly int hopperSize;
readonly bool weak;
Hashtable outstandingHopper;
Hashtable strongHopper;
Hashtable limitedHopper;
int promoting;
LastHolder mruEntry;
public HopperCache(int hopperSize, bool weak)
{
Fx.Assert(hopperSize > 0, "HopperCache hopperSize must be positive.");
this.hopperSize = hopperSize;
this.weak = weak;
this.outstandingHopper = new Hashtable(hopperSize * 2);
this.strongHopper = new Hashtable(hopperSize * 2);
this.limitedHopper = new Hashtable(hopperSize * 2);
}
// Calls to Add must be synchronized.
public void Add(object key, object value)
{
Fx.Assert(key != null, "HopperCache key cannot be null.");
Fx.Assert(value != null, "HopperCache value cannot be null.");
// Special-case DBNull since it can never be collected.
if (this.weak && !object.ReferenceEquals(value, DBNull.Value))
{
value = new WeakReference(value);
}
Fx.Assert(this.strongHopper.Count <= this.hopperSize * 2,
"HopperCache strongHopper is bigger than it's allowed to get.");
if (this.strongHopper.Count >= this.hopperSize * 2)
{
Hashtable recycled = this.limitedHopper;
recycled.Clear();
recycled.Add(key, value);
// The try/finally is here to make sure these happen without interruption.
try { } finally
{
this.limitedHopper = this.strongHopper;
this.strongHopper = recycled;
}
}
else
{
// We do nothing to prevent things from getting added multiple times. Also may be writing over
// a dead weak entry.
this.strongHopper[key] = value;
}
}
// Calls to GetValue do not need to be synchronized, but the object used to synchronize the Add calls
// must be passed in. It's sometimes used.
public object GetValue(object syncObject, object key)
{
Fx.Assert(key != null, "Can't look up a null key.");
WeakReference weakRef;
object value;
// The MruCache does this so we have to too.
LastHolder last = this.mruEntry;
if (last != null && key.Equals(last.Key))
{
if (this.weak && (weakRef = last.Value as WeakReference) != null)
{
value = weakRef.Target;
if (value != null)
{
return value;
}
this.mruEntry = null;
}
else
{
return last.Value;
}
}
// Try the first hopper.
object origValue = this.outstandingHopper[key];
value = this.weak && (weakRef = origValue as WeakReference) != null ? weakRef.Target : origValue;
if (value != null)
{
this.mruEntry = new LastHolder(key, origValue);
return value;
}
// Try the subsequent hoppers.
origValue = this.strongHopper[key];
value = this.weak && (weakRef = origValue as WeakReference) != null ? weakRef.Target : origValue;
if (value == null)
{
origValue = this.limitedHopper[key];
value = this.weak && (weakRef = origValue as WeakReference) != null ? weakRef.Target : origValue;
if (value == null)
{
// Still no value? It's not here.
return null;
}
}
this.mruEntry = new LastHolder(key, origValue);
// If we can get the promoting semaphore, move up to the outstanding hopper.
int wasPromoting = 1;
try
{
try { } finally
{
// This is effectively a lock, which is why it uses lock semantics. If the Interlocked call
// were 'lost', the cache wouldn't deadlock, but it would be permanently broken.
wasPromoting = Interlocked.CompareExchange(ref this.promoting, 1, 0);
}
// Only one thread can be inside this 'if' at a time.
if (wasPromoting == 0)
{
Fx.Assert(this.outstandingHopper.Count <= this.hopperSize,
"HopperCache outstandingHopper is bigger than it's allowed to get.");
if (this.outstandingHopper.Count >= this.hopperSize)
{
lock (syncObject)
{
Hashtable recycled = this.limitedHopper;
recycled.Clear();
recycled.Add(key, origValue);
// The try/finally is here to make sure these happen without interruption.
try { } finally
{
this.limitedHopper = this.strongHopper;
this.strongHopper = this.outstandingHopper;
this.outstandingHopper = recycled;
}
}
}
else
{
// It's easy for this to happen twice with the same key.
//
// It's important that no one else can be shifting the current oustandingHopper
// during this operation. We are only allowed to modify the *current* outstandingHopper
// while holding the pseudo-lock, which would be violated if it could be shifted out from
// under us (and potentially added to by Add in a ----).
this.outstandingHopper[key] = origValue;
}
}
}
finally
{
if (wasPromoting == 0)
{
this.promoting = 0;
}
}
return value;
}
class LastHolder
{
readonly object key;
readonly object value;
internal LastHolder(object key, object value)
{
this.key = key;
this.value = value;
}
internal object Key
{
get
{
return this.key;
}
}
internal object Value
{
get
{
return this.value;
}
}
}
}
}

View File

@@ -0,0 +1,372 @@
//-----------------------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//-----------------------------------------------------------------------------
namespace System.Runtime.Collections
{
using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Runtime;
class NullableKeyDictionary<TKey, TValue> : IDictionary<TKey, TValue>
{
bool isNullKeyPresent;
TValue nullKeyValue;
IDictionary<TKey, TValue> innerDictionary;
public NullableKeyDictionary()
: base()
{
this.innerDictionary = new Dictionary<TKey, TValue>();
}
public int Count
{
get { return this.innerDictionary.Count + (this.isNullKeyPresent ? 1 : 0); }
}
public bool IsReadOnly
{
get { return false; }
}
public ICollection<TKey> Keys
{
get
{
return new NullKeyDictionaryKeyCollection<TKey, TValue>(this);
}
}
public ICollection<TValue> Values
{
get { return new NullKeyDictionaryValueCollection<TKey, TValue>(this); }
}
public TValue this[TKey key]
{
get
{
if (key == null)
{
if (this.isNullKeyPresent)
{
return this.nullKeyValue;
}
else
{
throw Fx.Exception.AsError(new KeyNotFoundException());
}
}
else
{
return this.innerDictionary[key];
}
}
set
{
if (key == null)
{
this.isNullKeyPresent = true;
this.nullKeyValue = value;
}
else
{
this.innerDictionary[key] = value;
}
}
}
public void Add(TKey key, TValue value)
{
if (key == null)
{
if (this.isNullKeyPresent)
{
throw Fx.Exception.Argument("key", InternalSR.NullKeyAlreadyPresent);
}
this.isNullKeyPresent = true;
this.nullKeyValue = value;
}
else
{
this.innerDictionary.Add(key, value);
}
}
public bool ContainsKey(TKey key)
{
return key == null ? this.isNullKeyPresent : this.innerDictionary.ContainsKey(key);
}
public bool Remove(TKey key)
{
if (key == null)
{
bool result = this.isNullKeyPresent;
this.isNullKeyPresent = false;
this.nullKeyValue = default(TValue);
return result;
}
else
{
return this.innerDictionary.Remove(key);
}
}
public bool TryGetValue(TKey key, out TValue value)
{
if (key == null)
{
if (this.isNullKeyPresent)
{
value = this.nullKeyValue;
return true;
}
else
{
value = default(TValue);
return false;
}
}
else
{
return this.innerDictionary.TryGetValue(key, out value);
}
}
public void Add(KeyValuePair<TKey, TValue> item)
{
Add(item.Key, item.Value);
}
public void Clear()
{
this.isNullKeyPresent = false;
this.nullKeyValue = default(TValue);
this.innerDictionary.Clear();
}
public bool Contains(KeyValuePair<TKey, TValue> item)
{
if (item.Key == null)
{
if (this.isNullKeyPresent)
{
return item.Value == null ? this.nullKeyValue == null : item.Value.Equals(this.nullKeyValue);
}
else
{
return false;
}
}
else
{
return this.innerDictionary.Contains(item);
}
}
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
this.innerDictionary.CopyTo(array, arrayIndex);
if (this.isNullKeyPresent)
{
array[arrayIndex + this.innerDictionary.Count] = new KeyValuePair<TKey, TValue>(default(TKey), this.nullKeyValue);
}
}
public bool Remove(KeyValuePair<TKey, TValue> item)
{
if (item.Key == null)
{
if (this.Contains(item))
{
this.isNullKeyPresent = false;
this.nullKeyValue = default(TValue);
return true;
}
else
{
return false;
}
}
else
{
return this.innerDictionary.Remove(item);
}
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
IEnumerator<KeyValuePair<TKey, TValue>> innerEnumerator = this.innerDictionary.GetEnumerator() as IEnumerator<KeyValuePair<TKey, TValue>>;
while (innerEnumerator.MoveNext())
{
yield return innerEnumerator.Current;
}
if (this.isNullKeyPresent)
{
yield return new KeyValuePair<TKey, TValue>(default(TKey), this.nullKeyValue);
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return ((IEnumerable<KeyValuePair<TKey, TValue>>)this).GetEnumerator();
}
class NullKeyDictionaryKeyCollection<TypeKey, TypeValue> : ICollection<TypeKey>
{
NullableKeyDictionary<TypeKey, TypeValue> nullKeyDictionary;
public NullKeyDictionaryKeyCollection(NullableKeyDictionary<TypeKey, TypeValue> nullKeyDictionary)
{
this.nullKeyDictionary = nullKeyDictionary;
}
public int Count
{
get
{
int count = this.nullKeyDictionary.innerDictionary.Keys.Count;
if (this.nullKeyDictionary.isNullKeyPresent)
{
count++;
}
return count;
}
}
public bool IsReadOnly
{
get { return true; }
}
public void Add(TypeKey item)
{
throw Fx.Exception.AsError(new NotSupportedException(InternalSR.KeyCollectionUpdatesNotAllowed));
}
public void Clear()
{
throw Fx.Exception.AsError(new NotSupportedException(InternalSR.KeyCollectionUpdatesNotAllowed));
}
public bool Contains(TypeKey item)
{
return item == null ? this.nullKeyDictionary.isNullKeyPresent : this.nullKeyDictionary.innerDictionary.Keys.Contains(item);
}
public void CopyTo(TypeKey[] array, int arrayIndex)
{
this.nullKeyDictionary.innerDictionary.Keys.CopyTo(array, arrayIndex);
if (this.nullKeyDictionary.isNullKeyPresent)
{
array[arrayIndex + this.nullKeyDictionary.innerDictionary.Keys.Count] = default(TypeKey);
}
}
public bool Remove(TypeKey item)
{
throw Fx.Exception.AsError(new NotSupportedException(InternalSR.KeyCollectionUpdatesNotAllowed));
}
public IEnumerator<TypeKey> GetEnumerator()
{
foreach (TypeKey item in this.nullKeyDictionary.innerDictionary.Keys)
{
yield return item;
}
if (this.nullKeyDictionary.isNullKeyPresent)
{
yield return default(TypeKey);
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return ((IEnumerable<TypeKey>)this).GetEnumerator();
}
}
class NullKeyDictionaryValueCollection<TypeKey, TypeValue> : ICollection<TypeValue>
{
NullableKeyDictionary<TypeKey, TypeValue> nullKeyDictionary;
public NullKeyDictionaryValueCollection(NullableKeyDictionary<TypeKey, TypeValue> nullKeyDictionary)
{
this.nullKeyDictionary = nullKeyDictionary;
}
public int Count
{
get
{
int count = this.nullKeyDictionary.innerDictionary.Values.Count;
if (this.nullKeyDictionary.isNullKeyPresent)
{
count++;
}
return count;
}
}
public bool IsReadOnly
{
get { return true; }
}
public void Add(TypeValue item)
{
throw Fx.Exception.AsError(new NotSupportedException(InternalSR.ValueCollectionUpdatesNotAllowed));
}
public void Clear()
{
throw Fx.Exception.AsError(new NotSupportedException(InternalSR.ValueCollectionUpdatesNotAllowed));
}
public bool Contains(TypeValue item)
{
return this.nullKeyDictionary.innerDictionary.Values.Contains(item) ||
(this.nullKeyDictionary.isNullKeyPresent && this.nullKeyDictionary.nullKeyValue.Equals(item));
}
public void CopyTo(TypeValue[] array, int arrayIndex)
{
this.nullKeyDictionary.innerDictionary.Values.CopyTo(array, arrayIndex);
if (this.nullKeyDictionary.isNullKeyPresent)
{
array[arrayIndex + this.nullKeyDictionary.innerDictionary.Values.Count] = this.nullKeyDictionary.nullKeyValue;
}
}
public bool Remove(TypeValue item)
{
throw Fx.Exception.AsError(new NotSupportedException(InternalSR.ValueCollectionUpdatesNotAllowed));
}
public IEnumerator<TypeValue> GetEnumerator()
{
foreach (TypeValue item in this.nullKeyDictionary.innerDictionary.Values)
{
yield return item;
}
if (this.nullKeyDictionary.isNullKeyPresent)
{
yield return this.nullKeyDictionary.nullKeyValue;
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return ((IEnumerable<TypeValue>)this).GetEnumerator();
}
}
}
}

View File

@@ -0,0 +1,15 @@
//------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------
namespace System.Runtime.Collections
{
abstract class ObjectCacheItem<T>
where T : class
{
// only valid when you've called TryAddReference successfully
public abstract T Value { get; }
public abstract bool TryAddReference();
public abstract void ReleaseReference();
}
}

View File

@@ -0,0 +1,93 @@
//------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------
namespace System.Runtime.Collections
{
class ObjectCacheSettings
{
int cacheLimit;
TimeSpan idleTimeout;
TimeSpan leaseTimeout;
int purgeFrequency;
const int DefaultCacheLimit = 64;
const int DefaultPurgeFrequency = 32;
static TimeSpan DefaultIdleTimeout = TimeSpan.FromMinutes(2);
static TimeSpan DefaultLeaseTimeout = TimeSpan.FromMinutes(5);
public ObjectCacheSettings()
{
this.CacheLimit = DefaultCacheLimit;
this.IdleTimeout = DefaultIdleTimeout;
this.LeaseTimeout = DefaultLeaseTimeout;
this.PurgeFrequency = DefaultPurgeFrequency;
}
ObjectCacheSettings(ObjectCacheSettings other)
{
this.CacheLimit = other.CacheLimit;
this.IdleTimeout = other.IdleTimeout;
this.LeaseTimeout = other.LeaseTimeout;
this.PurgeFrequency = other.PurgeFrequency;
}
internal ObjectCacheSettings Clone()
{
return new ObjectCacheSettings(this);
}
public int CacheLimit
{
get
{
return this.cacheLimit;
}
set
{
Fx.Assert(value >= 0, "caller should validate cache limit is non-negative");
this.cacheLimit = value;
}
}
public TimeSpan IdleTimeout
{
get
{
return this.idleTimeout;
}
set
{
Fx.Assert(value >= TimeSpan.Zero, "caller should validate cache limit is non-negative");
this.idleTimeout = value;
}
}
public TimeSpan LeaseTimeout
{
get
{
return this.leaseTimeout;
}
set
{
Fx.Assert(value >= TimeSpan.Zero, "caller should validate cache limit is non-negative");
this.leaseTimeout = value;
}
}
public int PurgeFrequency
{
get
{
return this.purgeFrequency;
}
set
{
Fx.Assert(value >= 0, "caller should validate purge frequency is non-negative");
this.purgeFrequency = value;
}
}
}
}

View File

@@ -0,0 +1,342 @@
//-----------------------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//-----------------------------------------------------------------------------
namespace System.Runtime.Collections
{
using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.Specialized;
// System.Collections.Specialized.OrderedDictionary is NOT generic.
// This class is essentially a generic wrapper for OrderedDictionary.
class OrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, IDictionary
{
OrderedDictionary privateDictionary;
public OrderedDictionary()
{
this.privateDictionary = new OrderedDictionary();
}
public OrderedDictionary(IDictionary<TKey, TValue> dictionary)
{
if (dictionary != null)
{
this.privateDictionary = new OrderedDictionary();
foreach (KeyValuePair<TKey, TValue> pair in dictionary)
{
this.privateDictionary.Add(pair.Key, pair.Value);
}
}
}
public int Count
{
get
{
return this.privateDictionary.Count;
}
}
public bool IsReadOnly
{
get
{
return false;
}
}
public TValue this[TKey key]
{
get
{
if (key == null)
{
throw Fx.Exception.ArgumentNull("key");
}
if (this.privateDictionary.Contains(key))
{
return (TValue)this.privateDictionary[(object)key];
}
else
{
throw Fx.Exception.AsError(new KeyNotFoundException(InternalSR.KeyNotFoundInDictionary));
}
}
set
{
if (key == null)
{
throw Fx.Exception.ArgumentNull("key");
}
this.privateDictionary[(object)key] = value;
}
}
public ICollection<TKey> Keys
{
get
{
List<TKey> keys = new List<TKey>(this.privateDictionary.Count);
foreach (TKey key in this.privateDictionary.Keys)
{
keys.Add(key);
}
// Keys should be put in a ReadOnlyCollection,
// but since this is an internal class, for performance reasons,
// we choose to avoid creating yet another collection.
return keys;
}
}
public ICollection<TValue> Values
{
get
{
List<TValue> values = new List<TValue>(this.privateDictionary.Count);
foreach (TValue value in this.privateDictionary.Values)
{
values.Add(value);
}
// Values should be put in a ReadOnlyCollection,
// but since this is an internal class, for performance reasons,
// we choose to avoid creating yet another collection.
return values;
}
}
public void Add(KeyValuePair<TKey, TValue> item)
{
Add(item.Key, item.Value);
}
public void Add(TKey key, TValue value)
{
if (key == null)
{
throw Fx.Exception.ArgumentNull("key");
}
this.privateDictionary.Add(key, value);
}
public void Clear()
{
this.privateDictionary.Clear();
}
public bool Contains(KeyValuePair<TKey, TValue> item)
{
if (item.Key == null || !this.privateDictionary.Contains(item.Key))
{
return false;
}
else
{
return this.privateDictionary[(object)item.Key].Equals(item.Value);
}
}
public bool ContainsKey(TKey key)
{
if (key == null)
{
throw Fx.Exception.ArgumentNull("key");
}
return this.privateDictionary.Contains(key);
}
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
if (array == null)
{
throw Fx.Exception.ArgumentNull("array");
}
if (arrayIndex < 0)
{
throw Fx.Exception.AsError(new ArgumentOutOfRangeException("arrayIndex"));
}
if (array.Rank > 1 || arrayIndex >= array.Length || array.Length - arrayIndex < this.privateDictionary.Count)
{
throw Fx.Exception.Argument("array", InternalSR.BadCopyToArray);
}
int index = arrayIndex;
foreach (DictionaryEntry entry in this.privateDictionary)
{
array[index] = new KeyValuePair<TKey, TValue>((TKey)entry.Key, (TValue)entry.Value);
index++;
}
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
foreach (DictionaryEntry entry in this.privateDictionary)
{
yield return new KeyValuePair<TKey, TValue>((TKey)entry.Key, (TValue)entry.Value);
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
public bool Remove(KeyValuePair<TKey, TValue> item)
{
if (Contains(item))
{
this.privateDictionary.Remove(item.Key);
return true;
}
else
{
return false;
}
}
public bool Remove(TKey key)
{
if (key == null)
{
throw Fx.Exception.ArgumentNull("key");
}
if (this.privateDictionary.Contains(key))
{
this.privateDictionary.Remove(key);
return true;
}
else
{
return false;
}
}
public bool TryGetValue(TKey key, out TValue value)
{
if (key == null)
{
throw Fx.Exception.ArgumentNull("key");
}
bool keyExists = this.privateDictionary.Contains(key);
value = keyExists ? (TValue)this.privateDictionary[(object)key] : default(TValue);
return keyExists;
}
void IDictionary.Add(object key, object value)
{
this.privateDictionary.Add(key, value);
}
void IDictionary.Clear()
{
this.privateDictionary.Clear();
}
bool IDictionary.Contains(object key)
{
return this.privateDictionary.Contains(key);
}
IDictionaryEnumerator IDictionary.GetEnumerator()
{
return this.privateDictionary.GetEnumerator();
}
bool IDictionary.IsFixedSize
{
get
{
return ((IDictionary)this.privateDictionary).IsFixedSize;
}
}
bool IDictionary.IsReadOnly
{
get
{
return this.privateDictionary.IsReadOnly;
}
}
ICollection IDictionary.Keys
{
get
{
return this.privateDictionary.Keys;
}
}
void IDictionary.Remove(object key)
{
this.privateDictionary.Remove(key);
}
ICollection IDictionary.Values
{
get
{
return this.privateDictionary.Values;
}
}
object IDictionary.this[object key]
{
get
{
return this.privateDictionary[key];
}
set
{
this.privateDictionary[key] = value;
}
}
void ICollection.CopyTo(Array array, int index)
{
this.privateDictionary.CopyTo(array, index);
}
int ICollection.Count
{
get
{
return this.privateDictionary.Count;
}
}
bool ICollection.IsSynchronized
{
get
{
return ((ICollection)this.privateDictionary).IsSynchronized;
}
}
object ICollection.SyncRoot
{
get
{
return ((ICollection)this.privateDictionary).SyncRoot;
}
}
}
}

View File

@@ -0,0 +1,61 @@
//------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------
namespace System.Runtime.Collections
{
using System.Collections.ObjectModel;
// simple helper class to allow passing in a func that performs validations of
// acceptible values
class ValidatingCollection<T> : Collection<T>
{
public ValidatingCollection()
{
}
public Action<T> OnAddValidationCallback { get; set; }
public Action OnMutateValidationCallback { get; set; }
void OnAdd(T item)
{
if (OnAddValidationCallback != null)
{
OnAddValidationCallback(item);
}
}
void OnMutate()
{
if (OnMutateValidationCallback != null)
{
OnMutateValidationCallback();
}
}
protected override void ClearItems()
{
OnMutate();
base.ClearItems();
}
protected override void InsertItem(int index, T item)
{
OnAdd(item);
base.InsertItem(index, item);
}
protected override void RemoveItem(int index)
{
OnMutate();
base.RemoveItem(index);
}
protected override void SetItem(int index, T item)
{
OnAdd(item);
OnMutate();
base.SetItem(index, item);
}
}
}