Imported Upstream version 5.10.0.69

Former-commit-id: fc39669a0b707dd3c063977486506b6793da2890
This commit is contained in:
Xamarin Public Jenkins (auto-signing)
2018-01-29 19:03:06 +00:00
parent d8f8abd549
commit e2950ec768
6283 changed files with 453847 additions and 91879 deletions

View File

@@ -6,7 +6,7 @@ Native compilation is a great scenario addition to .NET Core apps on Windows, OS
Architecture
============
[.NET Native](https://msdn.microsoft.com/library/dn584397.aspx) is a native toolchain that compiles [IL byte code](https://en.wikipedia.org/wiki/Common_Intermediate_Language) to machine code (e.g. X64 instructions). By default, .NET Native (for .NET Core, as opposed to UWP) uses RyuJIT as an ahead-of-time (AOT) compiler, the same one that CoreCLR uses as a just-in-time (JIT) compiler. It can also be used with other compilers, such as [LLILC](https://github.com/dotnet/llilc), UTC for UWP apps and [IL to CPP](https://github.com/dotnet/corert/tree/master/src/ILCompiler.CppCodeGen/src/CppCodeGen) (an IL to textual C++ compiler we have built as a reference prototype).
[.NET Native](https://msdn.microsoft.com/library/dn584397.aspx) is a native toolchain that compiles [CIL byte code](https://en.wikipedia.org/wiki/Common_Intermediate_Language) to machine code (e.g. X64 instructions). By default, .NET Native (for .NET Core, as opposed to UWP) uses RyuJIT as an ahead-of-time (AOT) compiler, the same one that CoreCLR uses as a just-in-time (JIT) compiler. It can also be used with other compilers, such as [LLILC](https://github.com/dotnet/llilc), UTC for UWP apps and [IL to CPP](https://github.com/dotnet/corert/tree/master/src/ILCompiler.CppCodeGen/src/CppCodeGen) (an IL to textual C++ compiler we have built as a reference prototype).
[CoreRT](https://github.com/dotnet/corert) is the .NET Core runtime that is optimized for AOT scenarios, which .NET Native targets. This is a refactored and layered runtime. The base is a small native execution engine that provides services such as garbage collection(GC). This is the same GC used in CoreCLR. Many other parts of the traditional .NET runtime, such as the [type system](https://github.com/dotnet/corert/tree/master/src/Common/src/TypeSystem), are implemented in C#. We've always wanted to implement runtime functionality in C#. We now have the infrastructure to do that. In addition, library implementations that were built deep into CoreCLR, have also been cleanly refactored and implemented as C# libraries.
@@ -27,4 +27,4 @@ These benefits open up some new scenarios for .NET developers
Roadmap
=======
To start, we are targeting native executables (AKA "console apps"). Over time, we'll extend that to include ASP.NET 5 apps. You can continue to use CoreCLR for your .NET Core apps. It remains a great option if native compilation isn't critical for your needs. CoreCLR will also provide a superior debugging experience until we add debugging support to CoreRT.
To start, we are targeting native executables (AKA "console apps"). Over time, we'll extend that to include ASP.NET Core apps. You can continue to use CoreCLR for your .NET Core apps. It remains a great option if native compilation isn't critical for your needs. CoreCLR will also provide a superior debugging experience until we add debugging support to CoreRT.