You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.247
Former-commit-id: 2d6af2e4ed0eda5cbdc2946446ef7718456ad190
This commit is contained in:
parent
279aa8f685
commit
ce8e504569
467
external/llvm/lib/Support/FoldingSet.cpp
vendored
467
external/llvm/lib/Support/FoldingSet.cpp
vendored
@ -1,467 +0,0 @@
|
||||
//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements a hash set that can be used to remove duplication of
|
||||
// nodes in a graph.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/ADT/FoldingSet.h"
|
||||
#include "llvm/ADT/Hashing.h"
|
||||
#include "llvm/Support/Allocator.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/Host.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
using namespace llvm;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FoldingSetNodeIDRef Implementation
|
||||
|
||||
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
|
||||
/// used to lookup the node in the FoldingSetBase.
|
||||
unsigned FoldingSetNodeIDRef::ComputeHash() const {
|
||||
return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
|
||||
}
|
||||
|
||||
bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
|
||||
if (Size != RHS.Size) return false;
|
||||
return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
|
||||
}
|
||||
|
||||
/// Used to compare the "ordering" of two nodes as defined by the
|
||||
/// profiled bits and their ordering defined by memcmp().
|
||||
bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
|
||||
if (Size != RHS.Size)
|
||||
return Size < RHS.Size;
|
||||
return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FoldingSetNodeID Implementation
|
||||
|
||||
/// Add* - Add various data types to Bit data.
|
||||
///
|
||||
void FoldingSetNodeID::AddPointer(const void *Ptr) {
|
||||
// Note: this adds pointers to the hash using sizes and endianness that
|
||||
// depend on the host. It doesn't matter, however, because hashing on
|
||||
// pointer values is inherently unstable. Nothing should depend on the
|
||||
// ordering of nodes in the folding set.
|
||||
static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
|
||||
"unexpected pointer size");
|
||||
AddInteger(reinterpret_cast<uintptr_t>(Ptr));
|
||||
}
|
||||
void FoldingSetNodeID::AddInteger(signed I) {
|
||||
Bits.push_back(I);
|
||||
}
|
||||
void FoldingSetNodeID::AddInteger(unsigned I) {
|
||||
Bits.push_back(I);
|
||||
}
|
||||
void FoldingSetNodeID::AddInteger(long I) {
|
||||
AddInteger((unsigned long)I);
|
||||
}
|
||||
void FoldingSetNodeID::AddInteger(unsigned long I) {
|
||||
if (sizeof(long) == sizeof(int))
|
||||
AddInteger(unsigned(I));
|
||||
else if (sizeof(long) == sizeof(long long)) {
|
||||
AddInteger((unsigned long long)I);
|
||||
} else {
|
||||
llvm_unreachable("unexpected sizeof(long)");
|
||||
}
|
||||
}
|
||||
void FoldingSetNodeID::AddInteger(long long I) {
|
||||
AddInteger((unsigned long long)I);
|
||||
}
|
||||
void FoldingSetNodeID::AddInteger(unsigned long long I) {
|
||||
AddInteger(unsigned(I));
|
||||
AddInteger(unsigned(I >> 32));
|
||||
}
|
||||
|
||||
void FoldingSetNodeID::AddString(StringRef String) {
|
||||
unsigned Size = String.size();
|
||||
Bits.push_back(Size);
|
||||
if (!Size) return;
|
||||
|
||||
unsigned Units = Size / 4;
|
||||
unsigned Pos = 0;
|
||||
const unsigned *Base = (const unsigned*) String.data();
|
||||
|
||||
// If the string is aligned do a bulk transfer.
|
||||
if (!((intptr_t)Base & 3)) {
|
||||
Bits.append(Base, Base + Units);
|
||||
Pos = (Units + 1) * 4;
|
||||
} else {
|
||||
// Otherwise do it the hard way.
|
||||
// To be compatible with above bulk transfer, we need to take endianness
|
||||
// into account.
|
||||
static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
|
||||
"Unexpected host endianness");
|
||||
if (sys::IsBigEndianHost) {
|
||||
for (Pos += 4; Pos <= Size; Pos += 4) {
|
||||
unsigned V = ((unsigned char)String[Pos - 4] << 24) |
|
||||
((unsigned char)String[Pos - 3] << 16) |
|
||||
((unsigned char)String[Pos - 2] << 8) |
|
||||
(unsigned char)String[Pos - 1];
|
||||
Bits.push_back(V);
|
||||
}
|
||||
} else { // Little-endian host
|
||||
for (Pos += 4; Pos <= Size; Pos += 4) {
|
||||
unsigned V = ((unsigned char)String[Pos - 1] << 24) |
|
||||
((unsigned char)String[Pos - 2] << 16) |
|
||||
((unsigned char)String[Pos - 3] << 8) |
|
||||
(unsigned char)String[Pos - 4];
|
||||
Bits.push_back(V);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// With the leftover bits.
|
||||
unsigned V = 0;
|
||||
// Pos will have overshot size by 4 - #bytes left over.
|
||||
// No need to take endianness into account here - this is always executed.
|
||||
switch (Pos - Size) {
|
||||
case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH;
|
||||
case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH;
|
||||
case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
|
||||
default: return; // Nothing left.
|
||||
}
|
||||
|
||||
Bits.push_back(V);
|
||||
}
|
||||
|
||||
// AddNodeID - Adds the Bit data of another ID to *this.
|
||||
void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
|
||||
Bits.append(ID.Bits.begin(), ID.Bits.end());
|
||||
}
|
||||
|
||||
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
|
||||
/// lookup the node in the FoldingSetBase.
|
||||
unsigned FoldingSetNodeID::ComputeHash() const {
|
||||
return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
|
||||
}
|
||||
|
||||
/// operator== - Used to compare two nodes to each other.
|
||||
///
|
||||
bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
|
||||
return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
|
||||
}
|
||||
|
||||
/// operator== - Used to compare two nodes to each other.
|
||||
///
|
||||
bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
|
||||
return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
|
||||
}
|
||||
|
||||
/// Used to compare the "ordering" of two nodes as defined by the
|
||||
/// profiled bits and their ordering defined by memcmp().
|
||||
bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
|
||||
return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
|
||||
}
|
||||
|
||||
bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
|
||||
return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
|
||||
}
|
||||
|
||||
/// Intern - Copy this node's data to a memory region allocated from the
|
||||
/// given allocator and return a FoldingSetNodeIDRef describing the
|
||||
/// interned data.
|
||||
FoldingSetNodeIDRef
|
||||
FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
|
||||
unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
|
||||
std::uninitialized_copy(Bits.begin(), Bits.end(), New);
|
||||
return FoldingSetNodeIDRef(New, Bits.size());
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// Helper functions for FoldingSetBase.
|
||||
|
||||
/// GetNextPtr - In order to save space, each bucket is a
|
||||
/// singly-linked-list. In order to make deletion more efficient, we make
|
||||
/// the list circular, so we can delete a node without computing its hash.
|
||||
/// The problem with this is that the start of the hash buckets are not
|
||||
/// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
|
||||
/// use GetBucketPtr when this happens.
|
||||
static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
|
||||
// The low bit is set if this is the pointer back to the bucket.
|
||||
if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
|
||||
return nullptr;
|
||||
|
||||
return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
|
||||
}
|
||||
|
||||
|
||||
/// testing.
|
||||
static void **GetBucketPtr(void *NextInBucketPtr) {
|
||||
intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
|
||||
assert((Ptr & 1) && "Not a bucket pointer");
|
||||
return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
|
||||
}
|
||||
|
||||
/// GetBucketFor - Hash the specified node ID and return the hash bucket for
|
||||
/// the specified ID.
|
||||
static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
|
||||
// NumBuckets is always a power of 2.
|
||||
unsigned BucketNum = Hash & (NumBuckets-1);
|
||||
return Buckets + BucketNum;
|
||||
}
|
||||
|
||||
/// AllocateBuckets - Allocated initialized bucket memory.
|
||||
static void **AllocateBuckets(unsigned NumBuckets) {
|
||||
void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
|
||||
|
||||
if (Buckets == nullptr)
|
||||
report_bad_alloc_error("Allocation of Buckets failed.");
|
||||
|
||||
// Set the very last bucket to be a non-null "pointer".
|
||||
Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
|
||||
return Buckets;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FoldingSetBase Implementation
|
||||
|
||||
void FoldingSetBase::anchor() {}
|
||||
|
||||
FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
|
||||
assert(5 < Log2InitSize && Log2InitSize < 32 &&
|
||||
"Initial hash table size out of range");
|
||||
NumBuckets = 1 << Log2InitSize;
|
||||
Buckets = AllocateBuckets(NumBuckets);
|
||||
NumNodes = 0;
|
||||
}
|
||||
|
||||
FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
|
||||
: Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
|
||||
Arg.Buckets = nullptr;
|
||||
Arg.NumBuckets = 0;
|
||||
Arg.NumNodes = 0;
|
||||
}
|
||||
|
||||
FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
|
||||
free(Buckets); // This may be null if the set is in a moved-from state.
|
||||
Buckets = RHS.Buckets;
|
||||
NumBuckets = RHS.NumBuckets;
|
||||
NumNodes = RHS.NumNodes;
|
||||
RHS.Buckets = nullptr;
|
||||
RHS.NumBuckets = 0;
|
||||
RHS.NumNodes = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
FoldingSetBase::~FoldingSetBase() {
|
||||
free(Buckets);
|
||||
}
|
||||
|
||||
void FoldingSetBase::clear() {
|
||||
// Set all but the last bucket to null pointers.
|
||||
memset(Buckets, 0, NumBuckets*sizeof(void*));
|
||||
|
||||
// Set the very last bucket to be a non-null "pointer".
|
||||
Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
|
||||
|
||||
// Reset the node count to zero.
|
||||
NumNodes = 0;
|
||||
}
|
||||
|
||||
void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount) {
|
||||
assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount");
|
||||
assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
|
||||
void **OldBuckets = Buckets;
|
||||
unsigned OldNumBuckets = NumBuckets;
|
||||
|
||||
// Clear out new buckets.
|
||||
Buckets = AllocateBuckets(NewBucketCount);
|
||||
// Set NumBuckets only if allocation of new buckets was succesful
|
||||
NumBuckets = NewBucketCount;
|
||||
NumNodes = 0;
|
||||
|
||||
// Walk the old buckets, rehashing nodes into their new place.
|
||||
FoldingSetNodeID TempID;
|
||||
for (unsigned i = 0; i != OldNumBuckets; ++i) {
|
||||
void *Probe = OldBuckets[i];
|
||||
if (!Probe) continue;
|
||||
while (Node *NodeInBucket = GetNextPtr(Probe)) {
|
||||
// Figure out the next link, remove NodeInBucket from the old link.
|
||||
Probe = NodeInBucket->getNextInBucket();
|
||||
NodeInBucket->SetNextInBucket(nullptr);
|
||||
|
||||
// Insert the node into the new bucket, after recomputing the hash.
|
||||
InsertNode(NodeInBucket,
|
||||
GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
|
||||
Buckets, NumBuckets));
|
||||
TempID.clear();
|
||||
}
|
||||
}
|
||||
|
||||
free(OldBuckets);
|
||||
}
|
||||
|
||||
/// GrowHashTable - Double the size of the hash table and rehash everything.
|
||||
///
|
||||
void FoldingSetBase::GrowHashTable() {
|
||||
GrowBucketCount(NumBuckets * 2);
|
||||
}
|
||||
|
||||
void FoldingSetBase::reserve(unsigned EltCount) {
|
||||
// This will give us somewhere between EltCount / 2 and
|
||||
// EltCount buckets. This puts us in the load factor
|
||||
// range of 1.0 - 2.0.
|
||||
if(EltCount < capacity())
|
||||
return;
|
||||
GrowBucketCount(PowerOf2Floor(EltCount));
|
||||
}
|
||||
|
||||
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
|
||||
/// return it. If not, return the insertion token that will make insertion
|
||||
/// faster.
|
||||
FoldingSetBase::Node *
|
||||
FoldingSetBase::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
|
||||
void *&InsertPos) {
|
||||
unsigned IDHash = ID.ComputeHash();
|
||||
void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
|
||||
void *Probe = *Bucket;
|
||||
|
||||
InsertPos = nullptr;
|
||||
|
||||
FoldingSetNodeID TempID;
|
||||
while (Node *NodeInBucket = GetNextPtr(Probe)) {
|
||||
if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
|
||||
return NodeInBucket;
|
||||
TempID.clear();
|
||||
|
||||
Probe = NodeInBucket->getNextInBucket();
|
||||
}
|
||||
|
||||
// Didn't find the node, return null with the bucket as the InsertPos.
|
||||
InsertPos = Bucket;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// InsertNode - Insert the specified node into the folding set, knowing that it
|
||||
/// is not already in the map. InsertPos must be obtained from
|
||||
/// FindNodeOrInsertPos.
|
||||
void FoldingSetBase::InsertNode(Node *N, void *InsertPos) {
|
||||
assert(!N->getNextInBucket());
|
||||
// Do we need to grow the hashtable?
|
||||
if (NumNodes+1 > capacity()) {
|
||||
GrowHashTable();
|
||||
FoldingSetNodeID TempID;
|
||||
InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
|
||||
}
|
||||
|
||||
++NumNodes;
|
||||
|
||||
/// The insert position is actually a bucket pointer.
|
||||
void **Bucket = static_cast<void**>(InsertPos);
|
||||
|
||||
void *Next = *Bucket;
|
||||
|
||||
// If this is the first insertion into this bucket, its next pointer will be
|
||||
// null. Pretend as if it pointed to itself, setting the low bit to indicate
|
||||
// that it is a pointer to the bucket.
|
||||
if (!Next)
|
||||
Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
|
||||
|
||||
// Set the node's next pointer, and make the bucket point to the node.
|
||||
N->SetNextInBucket(Next);
|
||||
*Bucket = N;
|
||||
}
|
||||
|
||||
/// RemoveNode - Remove a node from the folding set, returning true if one was
|
||||
/// removed or false if the node was not in the folding set.
|
||||
bool FoldingSetBase::RemoveNode(Node *N) {
|
||||
// Because each bucket is a circular list, we don't need to compute N's hash
|
||||
// to remove it.
|
||||
void *Ptr = N->getNextInBucket();
|
||||
if (!Ptr) return false; // Not in folding set.
|
||||
|
||||
--NumNodes;
|
||||
N->SetNextInBucket(nullptr);
|
||||
|
||||
// Remember what N originally pointed to, either a bucket or another node.
|
||||
void *NodeNextPtr = Ptr;
|
||||
|
||||
// Chase around the list until we find the node (or bucket) which points to N.
|
||||
while (true) {
|
||||
if (Node *NodeInBucket = GetNextPtr(Ptr)) {
|
||||
// Advance pointer.
|
||||
Ptr = NodeInBucket->getNextInBucket();
|
||||
|
||||
// We found a node that points to N, change it to point to N's next node,
|
||||
// removing N from the list.
|
||||
if (Ptr == N) {
|
||||
NodeInBucket->SetNextInBucket(NodeNextPtr);
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
void **Bucket = GetBucketPtr(Ptr);
|
||||
Ptr = *Bucket;
|
||||
|
||||
// If we found that the bucket points to N, update the bucket to point to
|
||||
// whatever is next.
|
||||
if (Ptr == N) {
|
||||
*Bucket = NodeNextPtr;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// GetOrInsertNode - If there is an existing simple Node exactly
|
||||
/// equal to the specified node, return it. Otherwise, insert 'N' and it
|
||||
/// instead.
|
||||
FoldingSetBase::Node *FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N) {
|
||||
FoldingSetNodeID ID;
|
||||
GetNodeProfile(N, ID);
|
||||
void *IP;
|
||||
if (Node *E = FindNodeOrInsertPos(ID, IP))
|
||||
return E;
|
||||
InsertNode(N, IP);
|
||||
return N;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FoldingSetIteratorImpl Implementation
|
||||
|
||||
FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
|
||||
// Skip to the first non-null non-self-cycle bucket.
|
||||
while (*Bucket != reinterpret_cast<void*>(-1) &&
|
||||
(!*Bucket || !GetNextPtr(*Bucket)))
|
||||
++Bucket;
|
||||
|
||||
NodePtr = static_cast<FoldingSetNode*>(*Bucket);
|
||||
}
|
||||
|
||||
void FoldingSetIteratorImpl::advance() {
|
||||
// If there is another link within this bucket, go to it.
|
||||
void *Probe = NodePtr->getNextInBucket();
|
||||
|
||||
if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
|
||||
NodePtr = NextNodeInBucket;
|
||||
else {
|
||||
// Otherwise, this is the last link in this bucket.
|
||||
void **Bucket = GetBucketPtr(Probe);
|
||||
|
||||
// Skip to the next non-null non-self-cycle bucket.
|
||||
do {
|
||||
++Bucket;
|
||||
} while (*Bucket != reinterpret_cast<void*>(-1) &&
|
||||
(!*Bucket || !GetNextPtr(*Bucket)));
|
||||
|
||||
NodePtr = static_cast<FoldingSetNode*>(*Bucket);
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FoldingSetBucketIteratorImpl Implementation
|
||||
|
||||
FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
|
||||
Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
|
||||
}
|
Reference in New Issue
Block a user