You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.167
Former-commit-id: 289509151e0fee68a1b591a20c9f109c3c789d3a
This commit is contained in:
parent
e19d552987
commit
b084638f15
353
external/llvm/lib/Target/X86/X86VZeroUpper.cpp
vendored
353
external/llvm/lib/Target/X86/X86VZeroUpper.cpp
vendored
@ -1,353 +0,0 @@
|
||||
//===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the pass which inserts x86 AVX vzeroupper instructions
|
||||
// before calls to SSE encoded functions. This avoids transition latency
|
||||
// penalty when transferring control between AVX encoded instructions and old
|
||||
// SSE encoding mode.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "X86InstrInfo.h"
|
||||
#include "X86Subtarget.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineOperand.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/CodeGen/TargetInstrInfo.h"
|
||||
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
||||
#include "llvm/IR/CallingConv.h"
|
||||
#include "llvm/IR/DebugLoc.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <cassert>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "x86-vzeroupper"
|
||||
|
||||
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
|
||||
|
||||
namespace {
|
||||
|
||||
class VZeroUpperInserter : public MachineFunctionPass {
|
||||
public:
|
||||
VZeroUpperInserter() : MachineFunctionPass(ID) {}
|
||||
|
||||
bool runOnMachineFunction(MachineFunction &MF) override;
|
||||
|
||||
MachineFunctionProperties getRequiredProperties() const override {
|
||||
return MachineFunctionProperties().set(
|
||||
MachineFunctionProperties::Property::NoVRegs);
|
||||
}
|
||||
|
||||
StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
|
||||
|
||||
private:
|
||||
void processBasicBlock(MachineBasicBlock &MBB);
|
||||
void insertVZeroUpper(MachineBasicBlock::iterator I,
|
||||
MachineBasicBlock &MBB);
|
||||
void addDirtySuccessor(MachineBasicBlock &MBB);
|
||||
|
||||
using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
|
||||
|
||||
static const char* getBlockExitStateName(BlockExitState ST);
|
||||
|
||||
// Core algorithm state:
|
||||
// BlockState - Each block is either:
|
||||
// - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
|
||||
// vzeroupper instructions in this block.
|
||||
// - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
|
||||
// block that will ensure that YMM/ZMM is clean on exit.
|
||||
// - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
|
||||
// subsequent vzeroupper in the block clears it.
|
||||
//
|
||||
// AddedToDirtySuccessors - This flag is raised when a block is added to the
|
||||
// DirtySuccessors list to ensure that it's not
|
||||
// added multiple times.
|
||||
//
|
||||
// FirstUnguardedCall - Records the location of the first unguarded call in
|
||||
// each basic block that may need to be guarded by a
|
||||
// vzeroupper. We won't know whether it actually needs
|
||||
// to be guarded until we discover a predecessor that
|
||||
// is DIRTY_OUT.
|
||||
struct BlockState {
|
||||
BlockExitState ExitState = PASS_THROUGH;
|
||||
bool AddedToDirtySuccessors = false;
|
||||
MachineBasicBlock::iterator FirstUnguardedCall;
|
||||
|
||||
BlockState() = default;
|
||||
};
|
||||
|
||||
using BlockStateMap = SmallVector<BlockState, 8>;
|
||||
using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
|
||||
|
||||
BlockStateMap BlockStates;
|
||||
DirtySuccessorsWorkList DirtySuccessors;
|
||||
bool EverMadeChange;
|
||||
bool IsX86INTR;
|
||||
const TargetInstrInfo *TII;
|
||||
|
||||
static char ID;
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
char VZeroUpperInserter::ID = 0;
|
||||
|
||||
FunctionPass *llvm::createX86IssueVZeroUpperPass() {
|
||||
return new VZeroUpperInserter();
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
|
||||
switch (ST) {
|
||||
case PASS_THROUGH: return "Pass-through";
|
||||
case EXITS_DIRTY: return "Exits-dirty";
|
||||
case EXITS_CLEAN: return "Exits-clean";
|
||||
}
|
||||
llvm_unreachable("Invalid block exit state.");
|
||||
}
|
||||
#endif
|
||||
|
||||
/// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
|
||||
/// Thus, there is no need to check for Y/ZMM16 and above.
|
||||
static bool isYmmOrZmmReg(unsigned Reg) {
|
||||
return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
|
||||
(Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
|
||||
}
|
||||
|
||||
static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
|
||||
for (std::pair<unsigned, unsigned> LI : MRI.liveins())
|
||||
if (isYmmOrZmmReg(LI.first))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
|
||||
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
|
||||
if (!MO.clobbersPhysReg(reg))
|
||||
return false;
|
||||
}
|
||||
for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
|
||||
if (!MO.clobbersPhysReg(reg))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool hasYmmOrZmmReg(MachineInstr &MI) {
|
||||
for (const MachineOperand &MO : MI.operands()) {
|
||||
if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
|
||||
return true;
|
||||
if (!MO.isReg())
|
||||
continue;
|
||||
if (MO.isDebug())
|
||||
continue;
|
||||
if (isYmmOrZmmReg(MO.getReg()))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Check if given call instruction has a RegMask operand.
|
||||
static bool callHasRegMask(MachineInstr &MI) {
|
||||
assert(MI.isCall() && "Can only be called on call instructions.");
|
||||
for (const MachineOperand &MO : MI.operands()) {
|
||||
if (MO.isRegMask())
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Insert a vzeroupper instruction before I.
|
||||
void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
|
||||
MachineBasicBlock &MBB) {
|
||||
DebugLoc dl = I->getDebugLoc();
|
||||
BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
|
||||
++NumVZU;
|
||||
EverMadeChange = true;
|
||||
}
|
||||
|
||||
/// Add MBB to the DirtySuccessors list if it hasn't already been added.
|
||||
void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
|
||||
if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
|
||||
DirtySuccessors.push_back(&MBB);
|
||||
BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
|
||||
}
|
||||
}
|
||||
|
||||
/// Loop over all of the instructions in the basic block, inserting vzeroupper
|
||||
/// instructions before function calls.
|
||||
void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
|
||||
// Start by assuming that the block is PASS_THROUGH which implies no unguarded
|
||||
// calls.
|
||||
BlockExitState CurState = PASS_THROUGH;
|
||||
BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
|
||||
|
||||
for (MachineInstr &MI : MBB) {
|
||||
bool IsCall = MI.isCall();
|
||||
bool IsReturn = MI.isReturn();
|
||||
bool IsControlFlow = IsCall || IsReturn;
|
||||
|
||||
// No need for vzeroupper before iret in interrupt handler function,
|
||||
// epilogue will restore YMM/ZMM registers if needed.
|
||||
if (IsX86INTR && IsReturn)
|
||||
continue;
|
||||
|
||||
// An existing VZERO* instruction resets the state.
|
||||
if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
|
||||
CurState = EXITS_CLEAN;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Shortcut: don't need to check regular instructions in dirty state.
|
||||
if (!IsControlFlow && CurState == EXITS_DIRTY)
|
||||
continue;
|
||||
|
||||
if (hasYmmOrZmmReg(MI)) {
|
||||
// We found a ymm/zmm-using instruction; this could be an AVX/AVX512
|
||||
// instruction, or it could be control flow.
|
||||
CurState = EXITS_DIRTY;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check for control-flow out of the current function (which might
|
||||
// indirectly execute SSE instructions).
|
||||
if (!IsControlFlow)
|
||||
continue;
|
||||
|
||||
// If the call has no RegMask, skip it as well. It usually happens on
|
||||
// helper function calls (such as '_chkstk', '_ftol2') where standard
|
||||
// calling convention is not used (RegMask is not used to mark register
|
||||
// clobbered and register usage (def/implicit-def/use) is well-defined and
|
||||
// explicitly specified.
|
||||
if (IsCall && !callHasRegMask(MI))
|
||||
continue;
|
||||
|
||||
// The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
|
||||
// registers. In addition, the processor changes back to Clean state, after
|
||||
// which execution of SSE instructions or AVX instructions has no transition
|
||||
// penalty. Add the VZEROUPPER instruction before any function call/return
|
||||
// that might execute SSE code.
|
||||
// FIXME: In some cases, we may want to move the VZEROUPPER into a
|
||||
// predecessor block.
|
||||
if (CurState == EXITS_DIRTY) {
|
||||
// After the inserted VZEROUPPER the state becomes clean again, but
|
||||
// other YMM/ZMM may appear before other subsequent calls or even before
|
||||
// the end of the BB.
|
||||
insertVZeroUpper(MI, MBB);
|
||||
CurState = EXITS_CLEAN;
|
||||
} else if (CurState == PASS_THROUGH) {
|
||||
// If this block is currently in pass-through state and we encounter a
|
||||
// call then whether we need a vzeroupper or not depends on whether this
|
||||
// block has successors that exit dirty. Record the location of the call,
|
||||
// and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
|
||||
// It will be inserted later if necessary.
|
||||
BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
|
||||
CurState = EXITS_CLEAN;
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
|
||||
<< getBlockExitStateName(CurState) << '\n');
|
||||
|
||||
if (CurState == EXITS_DIRTY)
|
||||
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
||||
SE = MBB.succ_end();
|
||||
SI != SE; ++SI)
|
||||
addDirtySuccessor(**SI);
|
||||
|
||||
BlockStates[MBB.getNumber()].ExitState = CurState;
|
||||
}
|
||||
|
||||
/// Loop over all of the basic blocks, inserting vzeroupper instructions before
|
||||
/// function calls.
|
||||
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
|
||||
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
|
||||
if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
|
||||
return false;
|
||||
TII = ST.getInstrInfo();
|
||||
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||||
EverMadeChange = false;
|
||||
IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
|
||||
|
||||
bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
|
||||
|
||||
// Fast check: if the function doesn't use any ymm/zmm registers, we don't
|
||||
// need to insert any VZEROUPPER instructions. This is constant-time, so it
|
||||
// is cheap in the common case of no ymm/zmm use.
|
||||
bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
|
||||
const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
|
||||
for (auto *RC : RCs) {
|
||||
if (!YmmOrZmmUsed) {
|
||||
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
|
||||
i++) {
|
||||
if (!MRI.reg_nodbg_empty(*i)) {
|
||||
YmmOrZmmUsed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!YmmOrZmmUsed) {
|
||||
return false;
|
||||
}
|
||||
|
||||
assert(BlockStates.empty() && DirtySuccessors.empty() &&
|
||||
"X86VZeroUpper state should be clear");
|
||||
BlockStates.resize(MF.getNumBlockIDs());
|
||||
|
||||
// Process all blocks. This will compute block exit states, record the first
|
||||
// unguarded call in each block, and add successors of dirty blocks to the
|
||||
// DirtySuccessors list.
|
||||
for (MachineBasicBlock &MBB : MF)
|
||||
processBasicBlock(MBB);
|
||||
|
||||
// If any YMM/ZMM regs are live-in to this function, add the entry block to
|
||||
// the DirtySuccessors list
|
||||
if (FnHasLiveInYmmOrZmm)
|
||||
addDirtySuccessor(MF.front());
|
||||
|
||||
// Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
|
||||
// vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
|
||||
// through PASS_THROUGH blocks.
|
||||
while (!DirtySuccessors.empty()) {
|
||||
MachineBasicBlock &MBB = *DirtySuccessors.back();
|
||||
DirtySuccessors.pop_back();
|
||||
BlockState &BBState = BlockStates[MBB.getNumber()];
|
||||
|
||||
// MBB is a successor of a dirty block, so its first call needs to be
|
||||
// guarded.
|
||||
if (BBState.FirstUnguardedCall != MBB.end())
|
||||
insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
|
||||
|
||||
// If this successor was a pass-through block, then it is now dirty. Its
|
||||
// successors need to be added to the worklist (if they haven't been
|
||||
// already).
|
||||
if (BBState.ExitState == PASS_THROUGH) {
|
||||
DEBUG(dbgs() << "MBB #" << MBB.getNumber()
|
||||
<< " was Pass-through, is now Dirty-out.\n");
|
||||
for (MachineBasicBlock *Succ : MBB.successors())
|
||||
addDirtySuccessor(*Succ);
|
||||
}
|
||||
}
|
||||
|
||||
BlockStates.clear();
|
||||
return EverMadeChange;
|
||||
}
|
Reference in New Issue
Block a user