Imported Upstream version 5.18.0.167

Former-commit-id: 289509151e0fee68a1b591a20c9f109c3c789d3a
This commit is contained in:
Xamarin Public Jenkins (auto-signing)
2018-10-20 08:25:10 +00:00
parent e19d552987
commit b084638f15
28489 changed files with 184 additions and 3866856 deletions

View File

@@ -1,19 +0,0 @@
add_llvm_library(LLVMGlobalISel
CallLowering.cpp
GlobalISel.cpp
IRTranslator.cpp
InstructionSelect.cpp
InstructionSelector.cpp
LegalizerHelper.cpp
Legalizer.cpp
LegalizerInfo.cpp
Localizer.cpp
MachineIRBuilder.cpp
RegBankSelect.cpp
RegisterBank.cpp
RegisterBankInfo.cpp
Utils.cpp
DEPENDS
intrinsics_gen
)

View File

@@ -1,180 +0,0 @@
//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements some simple delegations needed for call lowering.
///
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
using namespace llvm;
bool CallLowering::lowerCall(
MachineIRBuilder &MIRBuilder, ImmutableCallSite CS, unsigned ResReg,
ArrayRef<unsigned> ArgRegs, std::function<unsigned()> GetCalleeReg) const {
auto &DL = CS.getParent()->getParent()->getParent()->getDataLayout();
// First step is to marshall all the function's parameters into the correct
// physregs and memory locations. Gather the sequence of argument types that
// we'll pass to the assigner function.
SmallVector<ArgInfo, 8> OrigArgs;
unsigned i = 0;
unsigned NumFixedArgs = CS.getFunctionType()->getNumParams();
for (auto &Arg : CS.args()) {
ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{},
i < NumFixedArgs};
setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CS);
OrigArgs.push_back(OrigArg);
++i;
}
MachineOperand Callee = MachineOperand::CreateImm(0);
if (const Function *F = CS.getCalledFunction())
Callee = MachineOperand::CreateGA(F, 0);
else
Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
ArgInfo OrigRet{ResReg, CS.getType(), ISD::ArgFlagsTy{}};
if (!OrigRet.Ty->isVoidTy())
setArgFlags(OrigRet, AttributeList::ReturnIndex, DL, CS);
return lowerCall(MIRBuilder, CS.getCallingConv(), Callee, OrigRet, OrigArgs);
}
template <typename FuncInfoTy>
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
const DataLayout &DL,
const FuncInfoTy &FuncInfo) const {
const AttributeList &Attrs = FuncInfo.getAttributes();
if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
Arg.Flags.setZExt();
if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
Arg.Flags.setSExt();
if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
Arg.Flags.setInReg();
if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
Arg.Flags.setSRet();
if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
Arg.Flags.setSwiftSelf();
if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
Arg.Flags.setSwiftError();
if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
Arg.Flags.setByVal();
if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
Arg.Flags.setInAlloca();
if (Arg.Flags.isByVal() || Arg.Flags.isInAlloca()) {
Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
Arg.Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
// For ByVal, alignment should be passed from FE. BE will guess if
// this info is not there but there are cases it cannot get right.
unsigned FrameAlign;
if (FuncInfo.getParamAlignment(OpIdx - 2))
FrameAlign = FuncInfo.getParamAlignment(OpIdx - 2);
else
FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
Arg.Flags.setByValAlign(FrameAlign);
}
if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
Arg.Flags.setNest();
Arg.Flags.setOrigAlign(DL.getABITypeAlignment(Arg.Ty));
}
template void
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
const DataLayout &DL,
const Function &FuncInfo) const;
template void
CallLowering::setArgFlags<CallInst>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
const DataLayout &DL,
const CallInst &FuncInfo) const;
bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
ArrayRef<ArgInfo> Args,
ValueHandler &Handler) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
unsigned NumArgs = Args.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT CurVT = MVT::getVT(Args[i].Ty);
if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i], CCInfo))
return false;
}
for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
assert(j < ArgLocs.size() && "Skipped too many arg locs");
CCValAssign &VA = ArgLocs[j];
assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
if (VA.needsCustom()) {
j += Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
continue;
}
if (VA.isRegLoc())
Handler.assignValueToReg(Args[i].Reg, VA.getLocReg(), VA);
else if (VA.isMemLoc()) {
unsigned Size = VA.getValVT() == MVT::iPTR
? DL.getPointerSize()
: alignTo(VA.getValVT().getSizeInBits(), 8) / 8;
unsigned Offset = VA.getLocMemOffset();
MachinePointerInfo MPO;
unsigned StackAddr = Handler.getStackAddress(Size, Offset, MPO);
Handler.assignValueToAddress(Args[i].Reg, StackAddr, Size, MPO, VA);
} else {
// FIXME: Support byvals and other weirdness
return false;
}
}
return true;
}
unsigned CallLowering::ValueHandler::extendRegister(unsigned ValReg,
CCValAssign &VA) {
LLT LocTy{VA.getLocVT()};
switch (VA.getLocInfo()) {
default: break;
case CCValAssign::Full:
case CCValAssign::BCvt:
// FIXME: bitconverting between vector types may or may not be a
// nop in big-endian situations.
return ValReg;
case CCValAssign::AExt: {
assert(!VA.getLocVT().isVector() && "unexpected vector extend");
auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
return MIB->getOperand(0).getReg();
}
case CCValAssign::SExt: {
unsigned NewReg = MRI.createGenericVirtualRegister(LocTy);
MIRBuilder.buildSExt(NewReg, ValReg);
return NewReg;
}
case CCValAssign::ZExt: {
unsigned NewReg = MRI.createGenericVirtualRegister(LocTy);
MIRBuilder.buildZExt(NewReg, ValReg);
return NewReg;
}
}
llvm_unreachable("unable to extend register");
}

View File

@@ -1,25 +0,0 @@
//===-- llvm/CodeGen/GlobalISel/GlobalIsel.cpp --- GlobalISel ----*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
// This file implements the common initialization routines for the
// GlobalISel library.
//===----------------------------------------------------------------------===//
#include "llvm/InitializePasses.h"
#include "llvm/PassRegistry.h"
using namespace llvm;
void llvm::initializeGlobalISel(PassRegistry &Registry) {
initializeIRTranslatorPass(Registry);
initializeLegalizerPass(Registry);
initializeLocalizerPass(Registry);
initializeRegBankSelectPass(Registry);
initializeInstructionSelectPass(Registry);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,211 +0,0 @@
//===- llvm/CodeGen/GlobalISel/InstructionSelect.cpp - InstructionSelect ---==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the InstructionSelect class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
#define DEBUG_TYPE "instruction-select"
using namespace llvm;
#ifdef LLVM_GISEL_COV_PREFIX
static cl::opt<std::string>
CoveragePrefix("gisel-coverage-prefix", cl::init(LLVM_GISEL_COV_PREFIX),
cl::desc("Record GlobalISel rule coverage files of this "
"prefix if instrumentation was generated"));
#else
static const std::string CoveragePrefix = "";
#endif
char InstructionSelect::ID = 0;
INITIALIZE_PASS_BEGIN(InstructionSelect, DEBUG_TYPE,
"Select target instructions out of generic instructions",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(InstructionSelect, DEBUG_TYPE,
"Select target instructions out of generic instructions",
false, false)
InstructionSelect::InstructionSelect() : MachineFunctionPass(ID) {
initializeInstructionSelectPass(*PassRegistry::getPassRegistry());
}
void InstructionSelect::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool InstructionSelect::runOnMachineFunction(MachineFunction &MF) {
const MachineRegisterInfo &MRI = MF.getRegInfo();
// No matter what happens, whether we successfully select the function or not,
// nothing is going to use the vreg types after us. Make sure they disappear.
auto ClearVRegTypesOnReturn =
make_scope_exit([&]() { MRI.getVRegToType().clear(); });
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
DEBUG(dbgs() << "Selecting function: " << MF.getName() << '\n');
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
const InstructionSelector *ISel = MF.getSubtarget().getInstructionSelector();
CodeGenCoverage CoverageInfo;
assert(ISel && "Cannot work without InstructionSelector");
// An optimization remark emitter. Used to report failures.
MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
// FIXME: There are many other MF/MFI fields we need to initialize.
#ifndef NDEBUG
// Check that our input is fully legal: we require the function to have the
// Legalized property, so it should be.
// FIXME: This should be in the MachineVerifier, but it can't use the
// LegalizerInfo as it's currently in the separate GlobalISel library.
// The RegBankSelected property is already checked in the verifier. Note
// that it has the same layering problem, but we only use inline methods so
// end up not needing to link against the GlobalISel library.
if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo())
for (MachineBasicBlock &MBB : MF)
for (MachineInstr &MI : MBB)
if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) {
reportGISelFailure(MF, TPC, MORE, "gisel-select",
"instruction is not legal", MI);
return false;
}
#endif
// FIXME: We could introduce new blocks and will need to fix the outer loop.
// Until then, keep track of the number of blocks to assert that we don't.
const size_t NumBlocks = MF.size();
for (MachineBasicBlock *MBB : post_order(&MF)) {
if (MBB->empty())
continue;
// Select instructions in reverse block order. We permit erasing so have
// to resort to manually iterating and recognizing the begin (rend) case.
bool ReachedBegin = false;
for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
!ReachedBegin;) {
#ifndef NDEBUG
// Keep track of the insertion range for debug printing.
const auto AfterIt = std::next(MII);
#endif
// Select this instruction.
MachineInstr &MI = *MII;
// And have our iterator point to the next instruction, if there is one.
if (MII == Begin)
ReachedBegin = true;
else
--MII;
DEBUG(dbgs() << "Selecting: \n " << MI);
// We could have folded this instruction away already, making it dead.
// If so, erase it.
if (isTriviallyDead(MI, MRI)) {
DEBUG(dbgs() << "Is dead; erasing.\n");
MI.eraseFromParentAndMarkDBGValuesForRemoval();
continue;
}
if (!ISel->select(MI, CoverageInfo)) {
// FIXME: It would be nice to dump all inserted instructions. It's
// not obvious how, esp. considering select() can insert after MI.
reportGISelFailure(MF, TPC, MORE, "gisel-select", "cannot select", MI);
return false;
}
// Dump the range of instructions that MI expanded into.
DEBUG({
auto InsertedBegin = ReachedBegin ? MBB->begin() : std::next(MII);
dbgs() << "Into:\n";
for (auto &InsertedMI : make_range(InsertedBegin, AfterIt))
dbgs() << " " << InsertedMI;
dbgs() << '\n';
});
}
}
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
// Now that selection is complete, there are no more generic vregs. Verify
// that the size of the now-constrained vreg is unchanged and that it has a
// register class.
for (auto &VRegToType : MRI.getVRegToType()) {
unsigned VReg = VRegToType.first;
auto *RC = MRI.getRegClassOrNull(VReg);
MachineInstr *MI = nullptr;
if (!MRI.def_empty(VReg))
MI = &*MRI.def_instr_begin(VReg);
else if (!MRI.use_empty(VReg))
MI = &*MRI.use_instr_begin(VReg);
if (MI && !RC) {
reportGISelFailure(MF, TPC, MORE, "gisel-select",
"VReg has no regclass after selection", *MI);
return false;
} else if (!RC)
continue;
if (VRegToType.second.isValid() &&
VRegToType.second.getSizeInBits() > TRI.getRegSizeInBits(*RC)) {
reportGISelFailure(MF, TPC, MORE, "gisel-select",
"VReg has explicit size different from class size",
*MI);
return false;
}
}
if (MF.size() != NumBlocks) {
MachineOptimizationRemarkMissed R("gisel-select", "GISelFailure",
MF.getFunction().getSubprogram(),
/*MBB=*/nullptr);
R << "inserting blocks is not supported yet";
reportGISelFailure(MF, TPC, MORE, R);
return false;
}
auto &TLI = *MF.getSubtarget().getTargetLowering();
TLI.finalizeLowering(MF);
CoverageInfo.emit(CoveragePrefix,
MF.getSubtarget()
.getTargetLowering()
->getTargetMachine()
.getTarget()
.getBackendName());
// FIXME: Should we accurately track changes?
return true;
}

View File

@@ -1,128 +0,0 @@
//===- llvm/CodeGen/GlobalISel/InstructionSelector.cpp --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the InstructionSelector class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#define DEBUG_TYPE "instructionselector"
using namespace llvm;
InstructionSelector::MatcherState::MatcherState(unsigned MaxRenderers)
: Renderers(MaxRenderers), MIs() {}
InstructionSelector::InstructionSelector() = default;
bool InstructionSelector::constrainOperandRegToRegClass(
MachineInstr &I, unsigned OpIdx, const TargetRegisterClass &RC,
const TargetInstrInfo &TII, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) const {
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
return
constrainRegToClass(MRI, TII, RBI, I, I.getOperand(OpIdx).getReg(), RC);
}
bool InstructionSelector::constrainSelectedInstRegOperands(
MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) const {
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
MachineOperand &MO = I.getOperand(OpI);
// There's nothing to be done on non-register operands.
if (!MO.isReg())
continue;
DEBUG(dbgs() << "Converting operand: " << MO << '\n');
assert(MO.isReg() && "Unsupported non-reg operand");
unsigned Reg = MO.getReg();
// Physical registers don't need to be constrained.
if (TRI.isPhysicalRegister(Reg))
continue;
// Register operands with a value of 0 (e.g. predicate operands) don't need
// to be constrained.
if (Reg == 0)
continue;
// If the operand is a vreg, we should constrain its regclass, and only
// insert COPYs if that's impossible.
// constrainOperandRegClass does that for us.
MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
Reg, OpI));
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
// done.
if (MO.isUse()) {
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
I.tieOperands(DefIdx, OpI);
}
}
return true;
}
bool InstructionSelector::isOperandImmEqual(
const MachineOperand &MO, int64_t Value,
const MachineRegisterInfo &MRI) const {
if (MO.isReg() && MO.getReg())
if (auto VRegVal = getConstantVRegVal(MO.getReg(), MRI))
return *VRegVal == Value;
return false;
}
bool InstructionSelector::isBaseWithConstantOffset(
const MachineOperand &Root, const MachineRegisterInfo &MRI) const {
if (!Root.isReg())
return false;
MachineInstr *RootI = MRI.getVRegDef(Root.getReg());
if (RootI->getOpcode() != TargetOpcode::G_GEP)
return false;
MachineOperand &RHS = RootI->getOperand(2);
MachineInstr *RHSI = MRI.getVRegDef(RHS.getReg());
if (RHSI->getOpcode() != TargetOpcode::G_CONSTANT)
return false;
return true;
}
bool InstructionSelector::isObviouslySafeToFold(MachineInstr &MI,
MachineInstr &IntoMI) const {
// Immediate neighbours are already folded.
if (MI.getParent() == IntoMI.getParent() &&
std::next(MI.getIterator()) == IntoMI.getIterator())
return true;
return !MI.mayLoadOrStore() && !MI.hasUnmodeledSideEffects() &&
MI.implicit_operands().begin() == MI.implicit_operands().end();
}

View File

@@ -1,22 +0,0 @@
;===- ./lib/CodeGen/GlobalISel/LLVMBuild.txt -----------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Library
name = GlobalISel
parent = CodeGen
required_libraries = Analysis CodeGen Core MC Support Target TransformUtils

View File

@@ -1,186 +0,0 @@
//===-- llvm/CodeGen/GlobalISel/Legalizer.cpp -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LegalizerHelper class to legalize individual
/// instructions and the LegalizePass wrapper pass for the primary
/// legalization.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/GlobalISel/GISelWorkList.h"
#include "llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include <iterator>
#define DEBUG_TYPE "legalizer"
using namespace llvm;
char Legalizer::ID = 0;
INITIALIZE_PASS_BEGIN(Legalizer, DEBUG_TYPE,
"Legalize the Machine IR a function's Machine IR", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(Legalizer, DEBUG_TYPE,
"Legalize the Machine IR a function's Machine IR", false,
false)
Legalizer::Legalizer() : MachineFunctionPass(ID) {
initializeLegalizerPass(*PassRegistry::getPassRegistry());
}
void Legalizer::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void Legalizer::init(MachineFunction &MF) {
}
static bool isArtifact(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_UNMERGE_VALUES:
return true;
}
}
bool Legalizer::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
DEBUG(dbgs() << "Legalize Machine IR for: " << MF.getName() << '\n');
init(MF);
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
LegalizerHelper Helper(MF);
const size_t NumBlocks = MF.size();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Populate Insts
GISelWorkList<256> InstList;
GISelWorkList<128> ArtifactList;
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
// Perform legalization bottom up so we can DCE as we legalize.
// Traverse BB in RPOT and within each basic block, add insts top down,
// so when we pop_back_val in the legalization process, we traverse bottom-up.
for (auto *MBB : RPOT) {
if (MBB->empty())
continue;
for (MachineInstr &MI : *MBB) {
// Only legalize pre-isel generic instructions: others don't have types
// and are assumed to be legal.
if (!isPreISelGenericOpcode(MI.getOpcode()))
continue;
if (isArtifact(MI))
ArtifactList.insert(&MI);
else
InstList.insert(&MI);
}
}
Helper.MIRBuilder.recordInsertions([&](MachineInstr *MI) {
// Only legalize pre-isel generic instructions.
// Legalization process could generate Target specific pseudo
// instructions with generic types. Don't record them
if (isPreISelGenericOpcode(MI->getOpcode())) {
if (isArtifact(*MI))
ArtifactList.insert(MI);
else
InstList.insert(MI);
}
DEBUG(dbgs() << ".. .. New MI: " << *MI;);
});
const LegalizerInfo &LInfo(Helper.getLegalizerInfo());
LegalizationArtifactCombiner ArtCombiner(Helper.MIRBuilder, MF.getRegInfo(), LInfo);
auto RemoveDeadInstFromLists = [&InstList,
&ArtifactList](MachineInstr *DeadMI) {
InstList.remove(DeadMI);
ArtifactList.remove(DeadMI);
};
bool Changed = false;
do {
while (!InstList.empty()) {
MachineInstr &MI = *InstList.pop_back_val();
assert(isPreISelGenericOpcode(MI.getOpcode()) && "Expecting generic opcode");
if (isTriviallyDead(MI, MRI)) {
DEBUG(dbgs() << MI << "Is dead; erasing.\n");
MI.eraseFromParentAndMarkDBGValuesForRemoval();
continue;
}
// Do the legalization for this instruction.
auto Res = Helper.legalizeInstrStep(MI);
// Error out if we couldn't legalize this instruction. We may want to
// fall back to DAG ISel instead in the future.
if (Res == LegalizerHelper::UnableToLegalize) {
Helper.MIRBuilder.stopRecordingInsertions();
reportGISelFailure(MF, TPC, MORE, "gisel-legalize",
"unable to legalize instruction", MI);
return false;
}
Changed |= Res == LegalizerHelper::Legalized;
}
while (!ArtifactList.empty()) {
MachineInstr &MI = *ArtifactList.pop_back_val();
assert(isPreISelGenericOpcode(MI.getOpcode()) && "Expecting generic opcode");
if (isTriviallyDead(MI, MRI)) {
DEBUG(dbgs() << MI << "Is dead; erasing.\n");
RemoveDeadInstFromLists(&MI);
MI.eraseFromParentAndMarkDBGValuesForRemoval();
continue;
}
SmallVector<MachineInstr *, 4> DeadInstructions;
if (ArtCombiner.tryCombineInstruction(MI, DeadInstructions)) {
for (auto *DeadMI : DeadInstructions) {
DEBUG(dbgs() << ".. Erasing Dead Instruction " << *DeadMI);
RemoveDeadInstFromLists(DeadMI);
DeadMI->eraseFromParentAndMarkDBGValuesForRemoval();
}
Changed = true;
continue;
}
// If this was not an artifact (that could be combined away), this might
// need special handling. Add it to InstList, so when it's processed
// there, it has to be legal or specially handled.
else
InstList.insert(&MI);
}
} while (!InstList.empty());
// For now don't support if new blocks are inserted - we would need to fix the
// outerloop for that.
if (MF.size() != NumBlocks) {
MachineOptimizationRemarkMissed R("gisel-legalize", "GISelFailure",
MF.getFunction().getSubprogram(),
/*MBB=*/nullptr);
R << "inserting blocks is not supported yet";
reportGISelFailure(MF, TPC, MORE, R);
return false;
}
return Changed;
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,382 +0,0 @@
//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement an interface to specify and query how an illegal operation on a
// given type should be expanded.
//
// Issues to be resolved:
// + Make it fast.
// + Support weird types like i3, <7 x i3>, ...
// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <map>
using namespace llvm;
LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
// Set defaults.
// FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
// fundamental load/store Jakob proposed. Once loads & stores are supported.
setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
}
void LegalizerInfo::computeTables() {
assert(TablesInitialized == false);
for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
const unsigned Opcode = FirstOp + OpcodeIdx;
for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
++TypeIdx) {
// 0. Collect information specified through the setAction API, i.e.
// for specific bit sizes.
// For scalar types:
SizeAndActionsVec ScalarSpecifiedActions;
// For pointer types:
std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
// For vector types:
std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
const LLT Type = LLT2Action.first;
const LegalizeAction Action = LLT2Action.second;
auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
if (Type.isPointer())
AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
SizeAction);
else if (Type.isVector())
ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
.push_back(SizeAction);
else
ScalarSpecifiedActions.push_back(SizeAction);
}
// 1. Handle scalar types
{
// Decide how to handle bit sizes for which no explicit specification
// was given.
SizeChangeStrategy S = &unsupportedForDifferentSizes;
if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
std::sort(ScalarSpecifiedActions.begin(), ScalarSpecifiedActions.end());
checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
}
// 2. Handle pointer types
for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
std::sort(PointerSpecifiedActions.second.begin(),
PointerSpecifiedActions.second.end());
checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
// For pointer types, we assume that there isn't a meaningfull way
// to change the number of bits used in the pointer.
setPointerAction(
Opcode, TypeIdx, PointerSpecifiedActions.first,
unsupportedForDifferentSizes(PointerSpecifiedActions.second));
}
// 3. Handle vector types
SizeAndActionsVec ElementSizesSeen;
for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
std::sort(VectorSpecifiedActions.second.begin(),
VectorSpecifiedActions.second.end());
const uint16_t ElementSize = VectorSpecifiedActions.first;
ElementSizesSeen.push_back({ElementSize, Legal});
checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
// For vector types, we assume that the best way to adapt the number
// of elements is to the next larger number of elements type for which
// the vector type is legal, unless there is no such type. In that case,
// legalize towards a vector type with a smaller number of elements.
SizeAndActionsVec NumElementsActions;
for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
assert(BitsizeAndAction.first % ElementSize == 0);
const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
}
setVectorNumElementAction(
Opcode, TypeIdx, ElementSize,
moreToWiderTypesAndLessToWidest(NumElementsActions));
}
std::sort(ElementSizesSeen.begin(), ElementSizesSeen.end());
SizeChangeStrategy VectorElementSizeChangeStrategy =
&unsupportedForDifferentSizes;
if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
VectorElementSizeChangeStrategy =
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
setScalarInVectorAction(
Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
}
}
TablesInitialized = true;
}
// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
// probably going to need specialized lookup structures for various types before
// we have any hope of doing well with something like <13 x i3>. Even the common
// cases should do better than what we have now.
std::pair<LegalizerInfo::LegalizeAction, LLT>
LegalizerInfo::getAction(const InstrAspect &Aspect) const {
assert(TablesInitialized && "backend forgot to call computeTables");
// These *have* to be implemented for now, they're the fundamental basis of
// how everything else is transformed.
if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
return findScalarLegalAction(Aspect);
assert(Aspect.Type.isVector());
return findVectorLegalAction(Aspect);
}
/// Helper function to get LLT for the given type index.
static LLT getTypeFromTypeIdx(const MachineInstr &MI,
const MachineRegisterInfo &MRI, unsigned OpIdx,
unsigned TypeIdx) {
assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
// G_UNMERGE_VALUES has variable number of operands, but there is only
// one source type and one destination type as all destinations must be the
// same type. So, get the last operand if TypeIdx == 1.
if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
return MRI.getType(MI.getOperand(OpIdx).getReg());
}
std::tuple<LegalizerInfo::LegalizeAction, unsigned, LLT>
LegalizerInfo::getAction(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const {
SmallBitVector SeenTypes(8);
const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
// FIXME: probably we'll need to cache the results here somehow?
for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
if (!OpInfo[i].isGenericType())
continue;
// We must only record actions once for each TypeIdx; otherwise we'd
// try to legalize operands multiple times down the line.
unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
if (SeenTypes[TypeIdx])
continue;
SeenTypes.set(TypeIdx);
LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
auto Action = getAction({MI.getOpcode(), TypeIdx, Ty});
if (Action.first != Legal)
return std::make_tuple(Action.first, TypeIdx, Action.second);
}
return std::make_tuple(Legal, 0, LLT{});
}
bool LegalizerInfo::isLegal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const {
return std::get<0>(getAction(MI, MRI)) == Legal;
}
bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
return false;
}
LegalizerInfo::SizeAndActionsVec
LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
LegalizeAction DecreaseAction) {
SizeAndActionsVec result;
unsigned LargestSizeSoFar = 0;
if (v.size() >= 1 && v[0].first != 1)
result.push_back({1, IncreaseAction});
for (size_t i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
LargestSizeSoFar = v[i].first;
if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
result.push_back({LargestSizeSoFar + 1, IncreaseAction});
LargestSizeSoFar = v[i].first + 1;
}
}
result.push_back({LargestSizeSoFar + 1, DecreaseAction});
return result;
}
LegalizerInfo::SizeAndActionsVec
LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
LegalizeAction IncreaseAction) {
SizeAndActionsVec result;
if (v.size() == 0 || v[0].first != 1)
result.push_back({1, IncreaseAction});
for (size_t i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
result.push_back({v[i].first + 1, DecreaseAction});
}
}
return result;
}
LegalizerInfo::SizeAndAction
LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
assert(Size >= 1);
// Find the last element in Vec that has a bitsize equal to or smaller than
// the requested bit size.
// That is the element just before the first element that is bigger than Size.
auto VecIt = std::upper_bound(
Vec.begin(), Vec.end(), Size,
[](const uint32_t Size, const SizeAndAction lhs) -> bool {
return Size < lhs.first;
});
assert(VecIt != Vec.begin() && "Does Vec not start with size 1?");
--VecIt;
int VecIdx = VecIt - Vec.begin();
LegalizeAction Action = Vec[VecIdx].second;
switch (Action) {
case Legal:
case Lower:
case Libcall:
case Custom:
return {Size, Action};
case FewerElements:
// FIXME: is this special case still needed and correct?
// Special case for scalarization:
if (Vec == SizeAndActionsVec({{1, FewerElements}}))
return {1, FewerElements};
LLVM_FALLTHROUGH;
case NarrowScalar: {
// The following needs to be a loop, as for now, we do allow needing to
// go over "Unsupported" bit sizes before finding a legalizable bit size.
// e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
// we need to iterate over s9, and then to s32 to return (s32, Legal).
// If we want to get rid of the below loop, we should have stronger asserts
// when building the SizeAndActionsVecs, probably not allowing
// "Unsupported" unless at the ends of the vector.
for (int i = VecIdx - 1; i >= 0; --i)
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
Vec[i].second != Unsupported)
return {Vec[i].first, Action};
llvm_unreachable("");
}
case WidenScalar:
case MoreElements: {
// See above, the following needs to be a loop, at least for now.
for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
Vec[i].second != Unsupported)
return {Vec[i].first, Action};
llvm_unreachable("");
}
case Unsupported:
return {Size, Unsupported};
case NotFound:
llvm_unreachable("NotFound");
}
llvm_unreachable("Action has an unknown enum value");
}
std::pair<LegalizerInfo::LegalizeAction, LLT>
LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
return {NotFound, LLT()};
const unsigned OpcodeIdx = Aspect.Opcode - FirstOp;
if (Aspect.Type.isPointer() &&
AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
AddrSpace2PointerActions[OpcodeIdx].end()) {
return {NotFound, LLT()};
}
const SmallVector<SizeAndActionsVec, 1> &Actions =
Aspect.Type.isPointer()
? AddrSpace2PointerActions[OpcodeIdx]
.find(Aspect.Type.getAddressSpace())
->second
: ScalarActions[OpcodeIdx];
if (Aspect.Idx >= Actions.size())
return {NotFound, LLT()};
const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
// FIXME: speed up this search, e.g. by using a results cache for repeated
// queries?
auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
return {SizeAndAction.second,
Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
: LLT::pointer(Aspect.Type.getAddressSpace(),
SizeAndAction.first)};
}
std::pair<LegalizerInfo::LegalizeAction, LLT>
LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
assert(Aspect.Type.isVector());
// First legalize the vector element size, then legalize the number of
// lanes in the vector.
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
return {NotFound, Aspect.Type};
const unsigned OpcodeIdx = Aspect.Opcode - FirstOp;
const unsigned TypeIdx = Aspect.Idx;
if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
return {NotFound, Aspect.Type};
const SizeAndActionsVec &ElemSizeVec =
ScalarInVectorActions[OpcodeIdx][TypeIdx];
LLT IntermediateType;
auto ElementSizeAndAction =
findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
IntermediateType =
LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
if (ElementSizeAndAction.second != Legal)
return {ElementSizeAndAction.second, IntermediateType};
auto i = NumElements2Actions[OpcodeIdx].find(
IntermediateType.getScalarSizeInBits());
if (i == NumElements2Actions[OpcodeIdx].end()) {
return {NotFound, IntermediateType};
}
const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
auto NumElementsAndAction =
findAction(NumElementsVec, IntermediateType.getNumElements());
return {NumElementsAndAction.second,
LLT::vector(NumElementsAndAction.first,
IntermediateType.getScalarSizeInBits())};
}

View File

@@ -1,124 +0,0 @@
//===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the Localizer class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "localizer"
using namespace llvm;
char Localizer::ID = 0;
INITIALIZE_PASS(Localizer, DEBUG_TYPE,
"Move/duplicate certain instructions close to their use", false,
false)
Localizer::Localizer() : MachineFunctionPass(ID) {
initializeLocalizerPass(*PassRegistry::getPassRegistry());
}
void Localizer::init(MachineFunction &MF) { MRI = &MF.getRegInfo(); }
bool Localizer::shouldLocalize(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
// Constants-like instructions should be close to their users.
// We don't want long live-ranges for them.
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FRAME_INDEX:
return true;
}
}
bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def,
MachineBasicBlock *&InsertMBB) {
MachineInstr &MIUse = *MOUse.getParent();
InsertMBB = MIUse.getParent();
if (MIUse.isPHI())
InsertMBB = MIUse.getOperand(MIUse.getOperandNo(&MOUse) + 1).getMBB();
return InsertMBB == Def.getParent();
}
bool Localizer::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n');
init(MF);
bool Changed = false;
// Keep track of the instructions we localized.
// We won't need to process them if we see them later in the CFG.
SmallPtrSet<MachineInstr *, 16> LocalizedInstrs;
DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef;
// TODO: Do bottom up traversal.
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (LocalizedInstrs.count(&MI) || !shouldLocalize(MI))
continue;
DEBUG(dbgs() << "Should localize: " << MI);
assert(MI.getDesc().getNumDefs() == 1 &&
"More than one definition not supported yet");
unsigned Reg = MI.getOperand(0).getReg();
// Check if all the users of MI are local.
// We are going to invalidation the list of use operands, so we
// can't use range iterator.
for (auto MOIt = MRI->use_begin(Reg), MOItEnd = MRI->use_end();
MOIt != MOItEnd;) {
MachineOperand &MOUse = *MOIt++;
// Check if the use is already local.
MachineBasicBlock *InsertMBB;
DEBUG(MachineInstr &MIUse = *MOUse.getParent();
dbgs() << "Checking use: " << MIUse
<< " #Opd: " << MIUse.getOperandNo(&MOUse) << '\n');
if (isLocalUse(MOUse, MI, InsertMBB))
continue;
DEBUG(dbgs() << "Fixing non-local use\n");
Changed = true;
auto MBBAndReg = std::make_pair(InsertMBB, Reg);
auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg);
if (NewVRegIt == MBBWithLocalDef.end()) {
// Create the localized instruction.
MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI);
LocalizedInstrs.insert(LocalizedMI);
// Don't try to be smart for the insertion point.
// There is no guarantee that the first seen use is the first
// use in the block.
InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()),
LocalizedMI);
// Set a new register for the definition.
unsigned NewReg =
MRI->createGenericVirtualRegister(MRI->getType(Reg));
MRI->setRegClassOrRegBank(NewReg, MRI->getRegClassOrRegBank(Reg));
LocalizedMI->getOperand(0).setReg(NewReg);
NewVRegIt =
MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first;
DEBUG(dbgs() << "Inserted: " << *LocalizedMI);
}
DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second)
<< '\n');
// Update the user reg.
MOUse.setReg(NewVRegIt->second);
}
}
}
return Changed;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,113 +0,0 @@
//===- llvm/CodeGen/GlobalISel/RegisterBank.cpp - Register Bank --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegisterBank class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#define DEBUG_TYPE "registerbank"
using namespace llvm;
const unsigned RegisterBank::InvalidID = UINT_MAX;
RegisterBank::RegisterBank(
unsigned ID, const char *Name, unsigned Size,
const uint32_t *CoveredClasses, unsigned NumRegClasses)
: ID(ID), Name(Name), Size(Size) {
ContainedRegClasses.resize(NumRegClasses);
ContainedRegClasses.setBitsInMask(CoveredClasses);
}
bool RegisterBank::verify(const TargetRegisterInfo &TRI) const {
assert(isValid() && "Invalid register bank");
for (unsigned RCId = 0, End = TRI.getNumRegClasses(); RCId != End; ++RCId) {
const TargetRegisterClass &RC = *TRI.getRegClass(RCId);
if (!covers(RC))
continue;
// Verify that the register bank covers all the sub classes of the
// classes it covers.
// Use a different (slow in that case) method than
// RegisterBankInfo to find the subclasses of RC, to make sure
// both agree on the covers.
for (unsigned SubRCId = 0; SubRCId != End; ++SubRCId) {
const TargetRegisterClass &SubRC = *TRI.getRegClass(RCId);
if (!RC.hasSubClassEq(&SubRC))
continue;
// Verify that the Size of the register bank is big enough to cover
// all the register classes it covers.
assert(getSize() >= TRI.getRegSizeInBits(SubRC) &&
"Size is not big enough for all the subclasses!");
assert(covers(SubRC) && "Not all subclasses are covered");
}
}
return true;
}
bool RegisterBank::covers(const TargetRegisterClass &RC) const {
assert(isValid() && "RB hasn't been initialized yet");
return ContainedRegClasses.test(RC.getID());
}
bool RegisterBank::isValid() const {
return ID != InvalidID && Name != nullptr && Size != 0 &&
// A register bank that does not cover anything is useless.
!ContainedRegClasses.empty();
}
bool RegisterBank::operator==(const RegisterBank &OtherRB) const {
// There must be only one instance of a given register bank alive
// for the whole compilation.
// The RegisterBankInfo is supposed to enforce that.
assert((OtherRB.getID() != getID() || &OtherRB == this) &&
"ID does not uniquely identify a RegisterBank");
return &OtherRB == this;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBank::dump(const TargetRegisterInfo *TRI) const {
print(dbgs(), /* IsForDebug */ true, TRI);
}
#endif
void RegisterBank::print(raw_ostream &OS, bool IsForDebug,
const TargetRegisterInfo *TRI) const {
OS << getName();
if (!IsForDebug)
return;
OS << "(ID:" << getID() << ", Size:" << getSize() << ")\n"
<< "isValid:" << isValid() << '\n'
<< "Number of Covered register classes: " << ContainedRegClasses.count()
<< '\n';
// Print all the subclasses if we can.
// This register classes may not be properly initialized yet.
if (!TRI || ContainedRegClasses.empty())
return;
assert(ContainedRegClasses.size() == TRI->getNumRegClasses() &&
"TRI does not match the initialization process?");
bool IsFirst = true;
OS << "Covered register classes:\n";
for (unsigned RCId = 0, End = TRI->getNumRegClasses(); RCId != End; ++RCId) {
const TargetRegisterClass &RC = *TRI->getRegClass(RCId);
if (!covers(RC))
continue;
if (!IsFirst)
OS << ", ";
OS << TRI->getRegClassName(&RC);
IsFirst = false;
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,147 +0,0 @@
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#define DEBUG_TYPE "globalisel-utils"
using namespace llvm;
unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
const TargetInstrInfo &TII,
const RegisterBankInfo &RBI,
MachineInstr &InsertPt, unsigned Reg,
const TargetRegisterClass &RegClass) {
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) {
unsigned NewReg = MRI.createVirtualRegister(&RegClass);
BuildMI(*InsertPt.getParent(), InsertPt, InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), NewReg)
.addReg(Reg);
return NewReg;
}
return Reg;
}
unsigned llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
unsigned Reg, unsigned OpIdx) {
// Assume physical registers are properly constrained.
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"PhysReg not implemented");
const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
return constrainRegToClass(MRI, TII, RBI, InsertPt, Reg, *RegClass);
}
bool llvm::isTriviallyDead(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
// If we can move an instruction, we can remove it. Otherwise, it has
// a side-effect of some sort.
bool SawStore = false;
if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore))
return false;
// Instructions without side-effects are dead iff they only define dead vregs.
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!MRI.use_nodbg_empty(Reg))
return false;
}
return true;
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
R << (" (in function: " + MF.getName() + ")").str();
if (TPC.isGlobalISelAbortEnabled())
report_fatal_error(R.getMsg());
else
MORE.emit(R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
const char *PassName, StringRef Msg,
const MachineInstr &MI) {
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
MI.getDebugLoc(), MI.getParent());
R << Msg;
// Printing MI is expensive; only do it if expensive remarks are enabled.
if (MORE.allowExtraAnalysis(PassName))
R << ": " << ore::MNV("Inst", MI);
reportGISelFailure(MF, TPC, MORE, R);
}
Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (MI->getOpcode() != TargetOpcode::G_CONSTANT)
return None;
if (MI->getOperand(1).isImm())
return MI->getOperand(1).getImm();
if (MI->getOperand(1).isCImm() &&
MI->getOperand(1).getCImm()->getBitWidth() <= 64)
return MI->getOperand(1).getCImm()->getSExtValue();
return None;
}
const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
return nullptr;
return MI->getOperand(1).getFPImm();
}
llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, unsigned Reg,
const MachineRegisterInfo &MRI) {
auto *DefMI = MRI.getVRegDef(Reg);
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
if (!DstTy.isValid())
return nullptr;
while (DefMI->getOpcode() == TargetOpcode::COPY) {
unsigned SrcReg = DefMI->getOperand(1).getReg();
auto SrcTy = MRI.getType(SrcReg);
if (!SrcTy.isValid() || SrcTy != DstTy)
break;
DefMI = MRI.getVRegDef(SrcReg);
}
return DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}