You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.167
Former-commit-id: 289509151e0fee68a1b591a20c9f109c3c789d3a
This commit is contained in:
parent
e19d552987
commit
b084638f15
293
external/llvm/docs/tutorial/LangImpl01.rst
vendored
293
external/llvm/docs/tutorial/LangImpl01.rst
vendored
@ -1,293 +0,0 @@
|
||||
=================================================
|
||||
Kaleidoscope: Tutorial Introduction and the Lexer
|
||||
=================================================
|
||||
|
||||
.. contents::
|
||||
:local:
|
||||
|
||||
Tutorial Introduction
|
||||
=====================
|
||||
|
||||
Welcome to the "Implementing a language with LLVM" tutorial. This
|
||||
tutorial runs through the implementation of a simple language, showing
|
||||
how fun and easy it can be. This tutorial will get you up and started as
|
||||
well as help to build a framework you can extend to other languages. The
|
||||
code in this tutorial can also be used as a playground to hack on other
|
||||
LLVM specific things.
|
||||
|
||||
The goal of this tutorial is to progressively unveil our language,
|
||||
describing how it is built up over time. This will let us cover a fairly
|
||||
broad range of language design and LLVM-specific usage issues, showing
|
||||
and explaining the code for it all along the way, without overwhelming
|
||||
you with tons of details up front.
|
||||
|
||||
It is useful to point out ahead of time that this tutorial is really
|
||||
about teaching compiler techniques and LLVM specifically, *not* about
|
||||
teaching modern and sane software engineering principles. In practice,
|
||||
this means that we'll take a number of shortcuts to simplify the
|
||||
exposition. For example, the code uses global variables
|
||||
all over the place, doesn't use nice design patterns like
|
||||
`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
|
||||
it is very simple. If you dig in and use the code as a basis for future
|
||||
projects, fixing these deficiencies shouldn't be hard.
|
||||
|
||||
I've tried to put this tutorial together in a way that makes chapters
|
||||
easy to skip over if you are already familiar with or are uninterested
|
||||
in the various pieces. The structure of the tutorial is:
|
||||
|
||||
- `Chapter #1 <#language>`_: Introduction to the Kaleidoscope
|
||||
language, and the definition of its Lexer - This shows where we are
|
||||
going and the basic functionality that we want it to do. In order to
|
||||
make this tutorial maximally understandable and hackable, we choose
|
||||
to implement everything in C++ instead of using lexer and parser
|
||||
generators. LLVM obviously works just fine with such tools, feel free
|
||||
to use one if you prefer.
|
||||
- `Chapter #2 <LangImpl02.html>`_: Implementing a Parser and AST -
|
||||
With the lexer in place, we can talk about parsing techniques and
|
||||
basic AST construction. This tutorial describes recursive descent
|
||||
parsing and operator precedence parsing. Nothing in Chapters 1 or 2
|
||||
is LLVM-specific, the code doesn't even link in LLVM at this point.
|
||||
:)
|
||||
- `Chapter #3 <LangImpl03.html>`_: Code generation to LLVM IR - With
|
||||
the AST ready, we can show off how easy generation of LLVM IR really
|
||||
is.
|
||||
- `Chapter #4 <LangImpl04.html>`_: Adding JIT and Optimizer Support
|
||||
- Because a lot of people are interested in using LLVM as a JIT,
|
||||
we'll dive right into it and show you the 3 lines it takes to add JIT
|
||||
support. LLVM is also useful in many other ways, but this is one
|
||||
simple and "sexy" way to show off its power. :)
|
||||
- `Chapter #5 <LangImpl05.html>`_: Extending the Language: Control
|
||||
Flow - With the language up and running, we show how to extend it
|
||||
with control flow operations (if/then/else and a 'for' loop). This
|
||||
gives us a chance to talk about simple SSA construction and control
|
||||
flow.
|
||||
- `Chapter #6 <LangImpl06.html>`_: Extending the Language:
|
||||
User-defined Operators - This is a silly but fun chapter that talks
|
||||
about extending the language to let the user program define their own
|
||||
arbitrary unary and binary operators (with assignable precedence!).
|
||||
This lets us build a significant piece of the "language" as library
|
||||
routines.
|
||||
- `Chapter #7 <LangImpl07.html>`_: Extending the Language: Mutable
|
||||
Variables - This chapter talks about adding user-defined local
|
||||
variables along with an assignment operator. The interesting part
|
||||
about this is how easy and trivial it is to construct SSA form in
|
||||
LLVM: no, LLVM does *not* require your front-end to construct SSA
|
||||
form!
|
||||
- `Chapter #8 <LangImpl08.html>`_: Compiling to Object Files - This
|
||||
chapter explains how to take LLVM IR and compile it down to object
|
||||
files.
|
||||
- `Chapter #9 <LangImpl09.html>`_: Extending the Language: Debug
|
||||
Information - Having built a decent little programming language with
|
||||
control flow, functions and mutable variables, we consider what it
|
||||
takes to add debug information to standalone executables. This debug
|
||||
information will allow you to set breakpoints in Kaleidoscope
|
||||
functions, print out argument variables, and call functions - all
|
||||
from within the debugger!
|
||||
- `Chapter #10 <LangImpl10.html>`_: Conclusion and other useful LLVM
|
||||
tidbits - This chapter wraps up the series by talking about
|
||||
potential ways to extend the language, but also includes a bunch of
|
||||
pointers to info about "special topics" like adding garbage
|
||||
collection support, exceptions, debugging, support for "spaghetti
|
||||
stacks", and a bunch of other tips and tricks.
|
||||
|
||||
By the end of the tutorial, we'll have written a bit less than 1000 lines
|
||||
of non-comment, non-blank, lines of code. With this small amount of
|
||||
code, we'll have built up a very reasonable compiler for a non-trivial
|
||||
language including a hand-written lexer, parser, AST, as well as code
|
||||
generation support with a JIT compiler. While other systems may have
|
||||
interesting "hello world" tutorials, I think the breadth of this
|
||||
tutorial is a great testament to the strengths of LLVM and why you
|
||||
should consider it if you're interested in language or compiler design.
|
||||
|
||||
A note about this tutorial: we expect you to extend the language and
|
||||
play with it on your own. Take the code and go crazy hacking away at it,
|
||||
compilers don't need to be scary creatures - it can be a lot of fun to
|
||||
play with languages!
|
||||
|
||||
The Basic Language
|
||||
==================
|
||||
|
||||
This tutorial will be illustrated with a toy language that we'll call
|
||||
"`Kaleidoscope <http://en.wikipedia.org/wiki/Kaleidoscope>`_" (derived
|
||||
from "meaning beautiful, form, and view"). Kaleidoscope is a procedural
|
||||
language that allows you to define functions, use conditionals, math,
|
||||
etc. Over the course of the tutorial, we'll extend Kaleidoscope to
|
||||
support the if/then/else construct, a for loop, user defined operators,
|
||||
JIT compilation with a simple command line interface, etc.
|
||||
|
||||
Because we want to keep things simple, the only datatype in Kaleidoscope
|
||||
is a 64-bit floating point type (aka 'double' in C parlance). As such,
|
||||
all values are implicitly double precision and the language doesn't
|
||||
require type declarations. This gives the language a very nice and
|
||||
simple syntax. For example, the following simple example computes
|
||||
`Fibonacci numbers: <http://en.wikipedia.org/wiki/Fibonacci_number>`_
|
||||
|
||||
::
|
||||
|
||||
# Compute the x'th fibonacci number.
|
||||
def fib(x)
|
||||
if x < 3 then
|
||||
1
|
||||
else
|
||||
fib(x-1)+fib(x-2)
|
||||
|
||||
# This expression will compute the 40th number.
|
||||
fib(40)
|
||||
|
||||
We also allow Kaleidoscope to call into standard library functions (the
|
||||
LLVM JIT makes this completely trivial). This means that you can use the
|
||||
'extern' keyword to define a function before you use it (this is also
|
||||
useful for mutually recursive functions). For example:
|
||||
|
||||
::
|
||||
|
||||
extern sin(arg);
|
||||
extern cos(arg);
|
||||
extern atan2(arg1 arg2);
|
||||
|
||||
atan2(sin(.4), cos(42))
|
||||
|
||||
A more interesting example is included in Chapter 6 where we write a
|
||||
little Kaleidoscope application that `displays a Mandelbrot
|
||||
Set <LangImpl06.html#kicking-the-tires>`_ at various levels of magnification.
|
||||
|
||||
Lets dive into the implementation of this language!
|
||||
|
||||
The Lexer
|
||||
=========
|
||||
|
||||
When it comes to implementing a language, the first thing needed is the
|
||||
ability to process a text file and recognize what it says. The
|
||||
traditional way to do this is to use a
|
||||
"`lexer <http://en.wikipedia.org/wiki/Lexical_analysis>`_" (aka
|
||||
'scanner') to break the input up into "tokens". Each token returned by
|
||||
the lexer includes a token code and potentially some metadata (e.g. the
|
||||
numeric value of a number). First, we define the possibilities:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
|
||||
// of these for known things.
|
||||
enum Token {
|
||||
tok_eof = -1,
|
||||
|
||||
// commands
|
||||
tok_def = -2,
|
||||
tok_extern = -3,
|
||||
|
||||
// primary
|
||||
tok_identifier = -4,
|
||||
tok_number = -5,
|
||||
};
|
||||
|
||||
static std::string IdentifierStr; // Filled in if tok_identifier
|
||||
static double NumVal; // Filled in if tok_number
|
||||
|
||||
Each token returned by our lexer will either be one of the Token enum
|
||||
values or it will be an 'unknown' character like '+', which is returned
|
||||
as its ASCII value. If the current token is an identifier, the
|
||||
``IdentifierStr`` global variable holds the name of the identifier. If
|
||||
the current token is a numeric literal (like 1.0), ``NumVal`` holds its
|
||||
value. Note that we use global variables for simplicity, this is not the
|
||||
best choice for a real language implementation :).
|
||||
|
||||
The actual implementation of the lexer is a single function named
|
||||
``gettok``. The ``gettok`` function is called to return the next token
|
||||
from standard input. Its definition starts as:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
/// gettok - Return the next token from standard input.
|
||||
static int gettok() {
|
||||
static int LastChar = ' ';
|
||||
|
||||
// Skip any whitespace.
|
||||
while (isspace(LastChar))
|
||||
LastChar = getchar();
|
||||
|
||||
``gettok`` works by calling the C ``getchar()`` function to read
|
||||
characters one at a time from standard input. It eats them as it
|
||||
recognizes them and stores the last character read, but not processed,
|
||||
in LastChar. The first thing that it has to do is ignore whitespace
|
||||
between tokens. This is accomplished with the loop above.
|
||||
|
||||
The next thing ``gettok`` needs to do is recognize identifiers and
|
||||
specific keywords like "def". Kaleidoscope does this with this simple
|
||||
loop:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
|
||||
IdentifierStr = LastChar;
|
||||
while (isalnum((LastChar = getchar())))
|
||||
IdentifierStr += LastChar;
|
||||
|
||||
if (IdentifierStr == "def")
|
||||
return tok_def;
|
||||
if (IdentifierStr == "extern")
|
||||
return tok_extern;
|
||||
return tok_identifier;
|
||||
}
|
||||
|
||||
Note that this code sets the '``IdentifierStr``' global whenever it
|
||||
lexes an identifier. Also, since language keywords are matched by the
|
||||
same loop, we handle them here inline. Numeric values are similar:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
|
||||
std::string NumStr;
|
||||
do {
|
||||
NumStr += LastChar;
|
||||
LastChar = getchar();
|
||||
} while (isdigit(LastChar) || LastChar == '.');
|
||||
|
||||
NumVal = strtod(NumStr.c_str(), 0);
|
||||
return tok_number;
|
||||
}
|
||||
|
||||
This is all pretty straight-forward code for processing input. When
|
||||
reading a numeric value from input, we use the C ``strtod`` function to
|
||||
convert it to a numeric value that we store in ``NumVal``. Note that
|
||||
this isn't doing sufficient error checking: it will incorrectly read
|
||||
"1.23.45.67" and handle it as if you typed in "1.23". Feel free to
|
||||
extend it :). Next we handle comments:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
if (LastChar == '#') {
|
||||
// Comment until end of line.
|
||||
do
|
||||
LastChar = getchar();
|
||||
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
|
||||
|
||||
if (LastChar != EOF)
|
||||
return gettok();
|
||||
}
|
||||
|
||||
We handle comments by skipping to the end of the line and then return
|
||||
the next token. Finally, if the input doesn't match one of the above
|
||||
cases, it is either an operator character like '+' or the end of the
|
||||
file. These are handled with this code:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
// Check for end of file. Don't eat the EOF.
|
||||
if (LastChar == EOF)
|
||||
return tok_eof;
|
||||
|
||||
// Otherwise, just return the character as its ascii value.
|
||||
int ThisChar = LastChar;
|
||||
LastChar = getchar();
|
||||
return ThisChar;
|
||||
}
|
||||
|
||||
With this, we have the complete lexer for the basic Kaleidoscope
|
||||
language (the `full code listing <LangImpl02.html#full-code-listing>`_ for the Lexer
|
||||
is available in the `next chapter <LangImpl02.html>`_ of the tutorial).
|
||||
Next we'll `build a simple parser that uses this to build an Abstract
|
||||
Syntax Tree <LangImpl02.html>`_. When we have that, we'll include a
|
||||
driver so that you can use the lexer and parser together.
|
||||
|
||||
`Next: Implementing a Parser and AST <LangImpl02.html>`_
|
||||
|
Reference in New Issue
Block a user