You've already forked linux-packaging-mono
Imported Upstream version 4.8.0.309
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
This commit is contained in:
parent
ee1447783b
commit
94b2861243
29
external/boringssl/crypto/rc4/CMakeLists.txt
vendored
Normal file
29
external/boringssl/crypto/rc4/CMakeLists.txt
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
include_directories(../../include)
|
||||
|
||||
if (${ARCH} STREQUAL "x86_64")
|
||||
set(
|
||||
RC4_ARCH_SOURCES
|
||||
|
||||
rc4-x86_64.${ASM_EXT}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (${ARCH} STREQUAL "x86")
|
||||
set(
|
||||
RC4_ARCH_SOURCES
|
||||
|
||||
rc4-586.${ASM_EXT}
|
||||
)
|
||||
endif()
|
||||
|
||||
add_library(
|
||||
rc4
|
||||
|
||||
OBJECT
|
||||
|
||||
rc4.c
|
||||
${RC4_ARCH_SOURCES}
|
||||
)
|
||||
|
||||
perlasm(rc4-x86_64.${ASM_EXT} asm/rc4-x86_64.pl)
|
||||
perlasm(rc4-586.${ASM_EXT} asm/rc4-586.pl)
|
388
external/boringssl/crypto/rc4/asm/rc4-586.pl
vendored
Normal file
388
external/boringssl/crypto/rc4/asm/rc4-586.pl
vendored
Normal file
@@ -0,0 +1,388 @@
|
||||
#!/usr/bin/env perl
|
||||
|
||||
# ====================================================================
|
||||
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# At some point it became apparent that the original SSLeay RC4
|
||||
# assembler implementation performs suboptimally on latest IA-32
|
||||
# microarchitectures. After re-tuning performance has changed as
|
||||
# following:
|
||||
#
|
||||
# Pentium -10%
|
||||
# Pentium III +12%
|
||||
# AMD +50%(*)
|
||||
# P4 +250%(**)
|
||||
#
|
||||
# (*) This number is actually a trade-off:-) It's possible to
|
||||
# achieve +72%, but at the cost of -48% off PIII performance.
|
||||
# In other words code performing further 13% faster on AMD
|
||||
# would perform almost 2 times slower on Intel PIII...
|
||||
# For reference! This code delivers ~80% of rc4-amd64.pl
|
||||
# performance on the same Opteron machine.
|
||||
# (**) This number requires compressed key schedule set up by
|
||||
# RC4_set_key [see commentary below for further details].
|
||||
#
|
||||
# <appro@fy.chalmers.se>
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
|
||||
# performance in cycles per processed byte (less is better) and
|
||||
# improvement relative to previous version of this module is:
|
||||
#
|
||||
# Pentium 10.2 # original numbers
|
||||
# Pentium III 7.8(*)
|
||||
# Intel P4 7.5
|
||||
#
|
||||
# Opteron 6.1/+20% # new MMX numbers
|
||||
# Core2 5.3/+67%(**)
|
||||
# Westmere 5.1/+94%(**)
|
||||
# Sandy Bridge 5.0/+8%
|
||||
# Atom 12.6/+6%
|
||||
#
|
||||
# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
|
||||
# but this specific code performs poorly on Core2. And vice
|
||||
# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
|
||||
# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
|
||||
# [anymore], I chose to discard PIII-specific code path and opt
|
||||
# for original IALU-only code, which is why MMX/SSE code path
|
||||
# is guarded by SSE2 bit (see below), not MMX/SSE.
|
||||
# (**) Performance vs. block size on Core2 and Westmere had a maximum
|
||||
# at ... 64 bytes block size. And it was quite a maximum, 40-60%
|
||||
# in comparison to largest 8KB block size. Above improvement
|
||||
# coefficients are for the largest block size.
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
push(@INC,"${dir}","${dir}../../perlasm");
|
||||
require "x86asm.pl";
|
||||
|
||||
&asm_init($ARGV[0],"rc4-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
|
||||
|
||||
$xx="eax";
|
||||
$yy="ebx";
|
||||
$tx="ecx";
|
||||
$ty="edx";
|
||||
$inp="esi";
|
||||
$out="ebp";
|
||||
$dat="edi";
|
||||
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $func = ($i==0)?*mov:*or;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&ror ($out,8) if ($i!=0);
|
||||
if ($i<3) {
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
} else {
|
||||
&mov ($tx,&wparam(3)); # reload [re-biased] out
|
||||
}
|
||||
&$func ($out,&DWP(0,$dat,$ty,4));
|
||||
}
|
||||
|
||||
if ($alt=0) {
|
||||
# >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
|
||||
# but ~40% slower on Core2 and Westmere... Attempt to add movz
|
||||
# brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
|
||||
# on Core2 with movz it's almost 20% slower than below alternative
|
||||
# code... Yes, it's a total mess...
|
||||
my @XX=($xx,$out);
|
||||
$RC4_loop_mmx = sub { # SSE actually...
|
||||
my $i=shift;
|
||||
my $j=$i<=0?0:$i>>1;
|
||||
my $mm=$i<=0?"mm0":"mm".($i&1);
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&lea (@XX[1],&DWP(1,@XX[0]));
|
||||
&pxor ("mm2","mm0") if ($i==0);
|
||||
&psllq ("mm1",8) if ($i==0);
|
||||
&and (@XX[1],0xff);
|
||||
&pxor ("mm0","mm0") if ($i<=0);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&pxor ("mm1","mm2") if ($i==0);
|
||||
&mov (&DWP(0,$dat,$XX[0],4),$ty);
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movd (@XX[0],"mm7") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,@XX[1],4));
|
||||
&pxor ("mm1","mm1") if ($i==1);
|
||||
&movq ("mm2",&QWP(0,$inp)) if ($i==1);
|
||||
&movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
|
||||
&pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
|
||||
|
||||
push (@XX,shift(@XX)) if ($i>=0);
|
||||
}
|
||||
} else {
|
||||
# Using pinsrw here improves performane on Intel CPUs by 2-3%, but
|
||||
# brings down AMD by 7%...
|
||||
$RC4_loop_mmx = sub {
|
||||
my $i=shift;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&inc ($xx);
|
||||
&add ($ty,$tx);
|
||||
&movz ($xx,&LB($xx)); # (*)
|
||||
&movz ($ty,&LB($ty)); # (*)
|
||||
&pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
|
||||
&movq ("mm0",&QWP(0,$inp)) if ($i<=0);
|
||||
&movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
|
||||
|
||||
# (*) This is the key to Core2 and Westmere performance.
|
||||
# Whithout movz out-of-order execution logic confuses
|
||||
# itself and fails to reorder loads and stores. Problem
|
||||
# appears to be fixed in Sandy Bridge...
|
||||
}
|
||||
}
|
||||
|
||||
&external_label("OPENSSL_ia32cap_P");
|
||||
|
||||
# void asm_RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
|
||||
&function_begin("asm_RC4");
|
||||
&mov ($dat,&wparam(0)); # load key schedule pointer
|
||||
&mov ($ty, &wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load inp
|
||||
&mov ($out,&wparam(3)); # load out
|
||||
|
||||
&xor ($xx,$xx); # avoid partial register stalls
|
||||
&xor ($yy,$yy);
|
||||
|
||||
&cmp ($ty,0); # safety net
|
||||
&je (&label("abort"));
|
||||
|
||||
&mov (&LB($xx),&BP(0,$dat)); # load key->x
|
||||
&mov (&LB($yy),&BP(4,$dat)); # load key->y
|
||||
&add ($dat,8);
|
||||
|
||||
&lea ($tx,&DWP(0,$inp,$ty));
|
||||
&sub ($out,$inp); # re-bias out
|
||||
&mov (&wparam(1),$tx); # save input+len
|
||||
|
||||
&inc (&LB($xx));
|
||||
|
||||
# detect compressed key schedule...
|
||||
&cmp (&DWP(256,$dat),-1);
|
||||
&je (&label("RC4_CHAR"));
|
||||
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
|
||||
&and ($ty,-4); # how many 4-byte chunks?
|
||||
&jz (&label("loop1"));
|
||||
|
||||
&mov (&wparam(3),$out); # $out as accumulator in these loops
|
||||
if ($x86only) {
|
||||
&jmp (&label("go4loop4"));
|
||||
} else {
|
||||
&test ($ty,-8);
|
||||
&jz (&label("go4loop4"));
|
||||
|
||||
&picmeup($out,"OPENSSL_ia32cap_P");
|
||||
&bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
|
||||
&jnc (&label("go4loop4"));
|
||||
|
||||
&mov ($out,&wparam(3)) if (!$alt);
|
||||
&movd ("mm7",&wparam(3)) if ($alt);
|
||||
&and ($ty,-8);
|
||||
&lea ($ty,&DWP(-8,$inp,$ty));
|
||||
&mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
|
||||
|
||||
&$RC4_loop_mmx(-1);
|
||||
&jmp(&label("loop_mmx_enter"));
|
||||
|
||||
&set_label("loop_mmx",16);
|
||||
&$RC4_loop_mmx(0);
|
||||
&set_label("loop_mmx_enter");
|
||||
for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
|
||||
&mov ($ty,$yy);
|
||||
&xor ($yy,$yy); # this is second key to Core2
|
||||
&mov (&LB($yy),&LB($ty)); # and Westmere performance...
|
||||
&cmp ($inp,&DWP(-4,$dat));
|
||||
&lea ($inp,&DWP(8,$inp));
|
||||
&jb (&label("loop_mmx"));
|
||||
|
||||
if ($alt) {
|
||||
&movd ($out,"mm7");
|
||||
&pxor ("mm2","mm0");
|
||||
&psllq ("mm1",8);
|
||||
&pxor ("mm1","mm2");
|
||||
&movq (&QWP(-8,$out,$inp),"mm1");
|
||||
} else {
|
||||
&psllq ("mm1",56);
|
||||
&pxor ("mm2","mm1");
|
||||
&movq (&QWP(-8,$out,$inp),"mm2");
|
||||
}
|
||||
&emms ();
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&jmp (&label("loop1"));
|
||||
}
|
||||
|
||||
&set_label("go4loop4",16);
|
||||
&lea ($ty,&DWP(-4,$inp,$ty));
|
||||
&mov (&wparam(2),$ty); # save input+(len/4)*4-4
|
||||
|
||||
&set_label("loop4");
|
||||
for ($i=0;$i<4;$i++) { RC4_loop($i); }
|
||||
&ror ($out,8);
|
||||
&xor ($out,&DWP(0,$inp));
|
||||
&cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
|
||||
&mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
|
||||
&lea ($inp,&DWP(4,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&jb (&label("loop4"));
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&mov ($out,&wparam(3)); # restore $out
|
||||
|
||||
&set_label("loop1",16);
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&mov ($ty,&DWP(0,$dat,$ty,4));
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("loop1"));
|
||||
|
||||
&jmp (&label("done"));
|
||||
|
||||
# this is essentially Intel P4 specific codepath...
|
||||
&set_label("RC4_CHAR",16);
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
# strangely enough unrolled loop performs over 20% slower...
|
||||
&set_label("cloop1");
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$yy));
|
||||
&mov (&BP(0,$dat,$yy),&LB($tx));
|
||||
&mov (&BP(0,$dat,$xx),&LB($ty));
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$ty));
|
||||
&add (&LB($xx),1);
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
&cmp ($inp,&wparam(1));
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("cloop1"));
|
||||
|
||||
&set_label("done");
|
||||
&dec (&LB($xx));
|
||||
&mov (&DWP(-4,$dat),$yy); # save key->y
|
||||
&mov (&BP(-8,$dat),&LB($xx)); # save key->x
|
||||
&set_label("abort");
|
||||
&function_end("asm_RC4");
|
||||
|
||||
########################################################################
|
||||
|
||||
$inp="esi";
|
||||
$out="edi";
|
||||
$idi="ebp";
|
||||
$ido="ecx";
|
||||
$idx="edx";
|
||||
|
||||
# void asm_RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
|
||||
&function_begin("asm_RC4_set_key");
|
||||
&mov ($out,&wparam(0)); # load key
|
||||
&mov ($idi,&wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load data
|
||||
&picmeup($idx,"OPENSSL_ia32cap_P");
|
||||
|
||||
&lea ($out,&DWP(2*4,$out)); # &key->data
|
||||
&lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
|
||||
&neg ($idi);
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-4,$out),$idi); # borrow key->y
|
||||
|
||||
&bt (&DWP(0,$idx),20); # check for bit#20
|
||||
&jc (&label("c1stloop"));
|
||||
|
||||
&set_label("w1stloop",16);
|
||||
&mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("w1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
|
||||
&set_label("w2ndloop",16);
|
||||
&mov ("eax",&DWP(0,$out,$ido,4));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov ("ebx",&DWP(0,$out,$idx,4));
|
||||
&jnz (&label("wnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("wnowrap");
|
||||
&mov (&DWP(0,$out,$idx,4),"eax");
|
||||
&mov (&DWP(0,$out,$ido,4),"ebx");
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("w2ndloop"));
|
||||
&jmp (&label("exit"));
|
||||
|
||||
# Unlike all other x86 [and x86_64] implementations, Intel P4 core
|
||||
# [including EM64T] was found to perform poorly with above "32-bit" key
|
||||
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
|
||||
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
|
||||
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
|
||||
# schedule for x86[_64], because non-P4 implementations suffer from
|
||||
# significant performance losses then, e.g. PIII exhibits >2x
|
||||
# deterioration, and so does Opteron. In order to assure optimal
|
||||
# all-round performance, we detect P4 at run-time and set up compressed
|
||||
# key schedule, which is recognized by RC4 procedure.
|
||||
|
||||
&set_label("c1stloop",16);
|
||||
&mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("c1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
&xor ("ebx","ebx");
|
||||
|
||||
&set_label("c2ndloop",16);
|
||||
&mov (&LB("eax"),&BP(0,$out,$ido));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov (&LB("ebx"),&BP(0,$out,$idx));
|
||||
&jnz (&label("cnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("cnowrap");
|
||||
&mov (&BP(0,$out,$idx),&LB("eax"));
|
||||
&mov (&BP(0,$out,$ido),&LB("ebx"));
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("c2ndloop"));
|
||||
|
||||
&mov (&DWP(256,$out),-1); # mark schedule as compressed
|
||||
|
||||
&set_label("exit");
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-8,$out),"eax"); # key->x=0;
|
||||
&mov (&DWP(-4,$out),"eax"); # key->y=0;
|
||||
&function_end("asm_RC4_set_key");
|
||||
|
||||
&asm_finish();
|
||||
|
653
external/boringssl/crypto/rc4/asm/rc4-x86_64.pl
vendored
Normal file
653
external/boringssl/crypto/rc4/asm/rc4-x86_64.pl
vendored
Normal file
File diff suppressed because it is too large
Load Diff
283
external/boringssl/crypto/rc4/rc4.c
vendored
Normal file
283
external/boringssl/crypto/rc4/rc4.c
vendored
Normal file
@@ -0,0 +1,283 @@
|
||||
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||||
* All rights reserved.
|
||||
*
|
||||
* This package is an SSL implementation written
|
||||
* by Eric Young (eay@cryptsoft.com).
|
||||
* The implementation was written so as to conform with Netscapes SSL.
|
||||
*
|
||||
* This library is free for commercial and non-commercial use as long as
|
||||
* the following conditions are aheared to. The following conditions
|
||||
* apply to all code found in this distribution, be it the RC4, RSA,
|
||||
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||||
* included with this distribution is covered by the same copyright terms
|
||||
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||||
*
|
||||
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||||
* the code are not to be removed.
|
||||
* If this package is used in a product, Eric Young should be given attribution
|
||||
* as the author of the parts of the library used.
|
||||
* This can be in the form of a textual message at program startup or
|
||||
* in documentation (online or textual) provided with the package.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* "This product includes cryptographic software written by
|
||||
* Eric Young (eay@cryptsoft.com)"
|
||||
* The word 'cryptographic' can be left out if the rouines from the library
|
||||
* being used are not cryptographic related :-).
|
||||
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||||
* the apps directory (application code) you must include an acknowledgement:
|
||||
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* The licence and distribution terms for any publically available version or
|
||||
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||||
* copied and put under another distribution licence
|
||||
* [including the GNU Public Licence.] */
|
||||
|
||||
#include <openssl/rc4.h>
|
||||
|
||||
#if defined(OPENSSL_NO_ASM) || \
|
||||
(!defined(OPENSSL_X86_64) && !defined(OPENSSL_X86))
|
||||
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
#define RC4_CHUNK uint64_t
|
||||
#elif defined(OPENSSL_32_BIT)
|
||||
#define RC4_CHUNK uint32_t
|
||||
#else
|
||||
#error "Unknown word size"
|
||||
#endif
|
||||
|
||||
|
||||
/* RC4 as implemented from a posting from
|
||||
* Newsgroups: sci.crypt
|
||||
* From: sterndark@netcom.com (David Sterndark)
|
||||
* Subject: RC4 Algorithm revealed.
|
||||
* Message-ID: <sternCvKL4B.Hyy@netcom.com>
|
||||
* Date: Wed, 14 Sep 1994 06:35:31 GMT */
|
||||
|
||||
void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
|
||||
uint32_t *d;
|
||||
uint32_t x, y, tx, ty;
|
||||
size_t i;
|
||||
|
||||
x = key->x;
|
||||
y = key->y;
|
||||
d = key->data;
|
||||
|
||||
#define RC4_STEP \
|
||||
(x = (x + 1) & 0xff, tx = d[x], y = (tx + y) & 0xff, ty = d[y], d[y] = tx, \
|
||||
d[x] = ty, (RC4_CHUNK)d[(tx + ty) & 0xff])
|
||||
|
||||
if ((((size_t)in & (sizeof(RC4_CHUNK) - 1)) |
|
||||
((size_t)out & (sizeof(RC4_CHUNK) - 1))) == 0) {
|
||||
RC4_CHUNK ichunk, otp;
|
||||
const union {
|
||||
long one;
|
||||
char little;
|
||||
} is_endian = {1};
|
||||
|
||||
/* I reckon we can afford to implement both endian
|
||||
* cases and to decide which way to take at run-time
|
||||
* because the machine code appears to be very compact
|
||||
* and redundant 1-2KB is perfectly tolerable (i.e.
|
||||
* in case the compiler fails to eliminate it:-). By
|
||||
* suggestion from Terrel Larson <terr@terralogic.net>
|
||||
* who also stands for the is_endian union:-)
|
||||
*
|
||||
* Special notes.
|
||||
*
|
||||
* - is_endian is declared automatic as doing otherwise
|
||||
* (declaring static) prevents gcc from eliminating
|
||||
* the redundant code;
|
||||
* - compilers (those I've tried) don't seem to have
|
||||
* problems eliminating either the operators guarded
|
||||
* by "if (sizeof(RC4_CHUNK)==8)" or the condition
|
||||
* expressions themselves so I've got 'em to replace
|
||||
* corresponding #ifdefs from the previous version;
|
||||
* - I chose to let the redundant switch cases when
|
||||
* sizeof(RC4_CHUNK)!=8 be (were also #ifdefed
|
||||
* before);
|
||||
* - in case you wonder "&(sizeof(RC4_CHUNK)*8-1)" in
|
||||
* [LB]ESHFT guards against "shift is out of range"
|
||||
* warnings when sizeof(RC4_CHUNK)!=8
|
||||
*
|
||||
* <appro@fy.chalmers.se> */
|
||||
if (!is_endian.little) { /* BIG-ENDIAN CASE */
|
||||
#define BESHFT(c) \
|
||||
(((sizeof(RC4_CHUNK) - (c) - 1) * 8) & (sizeof(RC4_CHUNK) * 8 - 1))
|
||||
for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) {
|
||||
ichunk = *(RC4_CHUNK *)in;
|
||||
otp = RC4_STEP << BESHFT(0);
|
||||
otp |= RC4_STEP << BESHFT(1);
|
||||
otp |= RC4_STEP << BESHFT(2);
|
||||
otp |= RC4_STEP << BESHFT(3);
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
otp |= RC4_STEP << BESHFT(4);
|
||||
otp |= RC4_STEP << BESHFT(5);
|
||||
otp |= RC4_STEP << BESHFT(6);
|
||||
otp |= RC4_STEP << BESHFT(7);
|
||||
#endif
|
||||
*(RC4_CHUNK *)out = otp ^ ichunk;
|
||||
in += sizeof(RC4_CHUNK);
|
||||
out += sizeof(RC4_CHUNK);
|
||||
}
|
||||
} else { /* LITTLE-ENDIAN CASE */
|
||||
#define LESHFT(c) (((c) * 8) & (sizeof(RC4_CHUNK) * 8 - 1))
|
||||
for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) {
|
||||
ichunk = *(RC4_CHUNK *)in;
|
||||
otp = RC4_STEP;
|
||||
otp |= RC4_STEP << 8;
|
||||
otp |= RC4_STEP << 16;
|
||||
otp |= RC4_STEP << 24;
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
otp |= RC4_STEP << LESHFT(4);
|
||||
otp |= RC4_STEP << LESHFT(5);
|
||||
otp |= RC4_STEP << LESHFT(6);
|
||||
otp |= RC4_STEP << LESHFT(7);
|
||||
#endif
|
||||
*(RC4_CHUNK *)out = otp ^ ichunk;
|
||||
in += sizeof(RC4_CHUNK);
|
||||
out += sizeof(RC4_CHUNK);
|
||||
}
|
||||
}
|
||||
}
|
||||
#define LOOP(in, out) \
|
||||
x = ((x + 1) & 0xff); \
|
||||
tx = d[x]; \
|
||||
y = (tx + y) & 0xff; \
|
||||
d[x] = ty = d[y]; \
|
||||
d[y] = tx; \
|
||||
(out) = d[(tx + ty) & 0xff] ^ (in);
|
||||
|
||||
#ifndef RC4_INDEX
|
||||
#define RC4_LOOP(a, b, i) LOOP(*((a)++), *((b)++))
|
||||
#else
|
||||
#define RC4_LOOP(a, b, i) LOOP(a[i], b[i])
|
||||
#endif
|
||||
|
||||
i = len >> 3;
|
||||
if (i) {
|
||||
for (;;) {
|
||||
RC4_LOOP(in, out, 0);
|
||||
RC4_LOOP(in, out, 1);
|
||||
RC4_LOOP(in, out, 2);
|
||||
RC4_LOOP(in, out, 3);
|
||||
RC4_LOOP(in, out, 4);
|
||||
RC4_LOOP(in, out, 5);
|
||||
RC4_LOOP(in, out, 6);
|
||||
RC4_LOOP(in, out, 7);
|
||||
#ifdef RC4_INDEX
|
||||
in += 8;
|
||||
out += 8;
|
||||
#endif
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
i = len & 0x07;
|
||||
if (i) {
|
||||
for (;;) {
|
||||
RC4_LOOP(in, out, 0);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 1);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 2);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 3);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 4);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 5);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
RC4_LOOP(in, out, 6);
|
||||
if (--i == 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
key->x = x;
|
||||
key->y = y;
|
||||
}
|
||||
|
||||
void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
|
||||
uint32_t tmp;
|
||||
unsigned i, id1, id2;
|
||||
uint32_t *d;
|
||||
|
||||
d = &rc4key->data[0];
|
||||
rc4key->x = 0;
|
||||
rc4key->y = 0;
|
||||
id1 = id2 = 0;
|
||||
|
||||
#define SK_LOOP(d, n) \
|
||||
{ \
|
||||
tmp = d[(n)]; \
|
||||
id2 = (key[id1] + tmp + id2) & 0xff; \
|
||||
if (++id1 == len) \
|
||||
id1 = 0; \
|
||||
d[(n)] = d[id2]; \
|
||||
d[id2] = tmp; \
|
||||
}
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
d[i] = i;
|
||||
}
|
||||
for (i = 0; i < 256; i += 4) {
|
||||
SK_LOOP(d, i + 0);
|
||||
SK_LOOP(d, i + 1);
|
||||
SK_LOOP(d, i + 2);
|
||||
SK_LOOP(d, i + 3);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* In this case several functions are provided by asm code. However, one cannot
|
||||
* control asm symbol visibility with command line flags and such so they are
|
||||
* always hidden and wrapped by these C functions, which can be so
|
||||
* controlled. */
|
||||
|
||||
void asm_RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out);
|
||||
void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
|
||||
asm_RC4(key, len, in, out);
|
||||
}
|
||||
|
||||
void asm_RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key);
|
||||
void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
|
||||
asm_RC4_set_key(rc4key, len, key);
|
||||
}
|
||||
|
||||
#endif /* OPENSSL_NO_ASM || (!OPENSSL_X86_64 && !OPENSSL_X86) */
|
Reference in New Issue
Block a user