You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.205
Former-commit-id: 7f59f7e792705db773f1caecdaa823092f4e2927
This commit is contained in:
parent
5cd5df71cc
commit
8e12397d70
439
external/llvm/lib/Transforms/Utils/LCSSA.cpp
vendored
Normal file
439
external/llvm/lib/Transforms/Utils/LCSSA.cpp
vendored
Normal file
@ -0,0 +1,439 @@
|
||||
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass transforms loops by placing phi nodes at the end of the loops for
|
||||
// all values that are live across the loop boundary. For example, it turns
|
||||
// the left into the right code:
|
||||
//
|
||||
// for (...) for (...)
|
||||
// if (c) if (c)
|
||||
// X1 = ... X1 = ...
|
||||
// else else
|
||||
// X2 = ... X2 = ...
|
||||
// X3 = phi(X1, X2) X3 = phi(X1, X2)
|
||||
// ... = X3 + 4 X4 = phi(X3)
|
||||
// ... = X4 + 4
|
||||
//
|
||||
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
|
||||
// be trivially eliminated by InstCombine. The major benefit of this
|
||||
// transformation is that it makes many other loop optimizations, such as
|
||||
// LoopUnswitching, simpler.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Utils/LCSSA.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
||||
#include "llvm/Analysis/GlobalsModRef.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/PredIteratorCache.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||||
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "lcssa"
|
||||
|
||||
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
|
||||
|
||||
#ifdef EXPENSIVE_CHECKS
|
||||
static bool VerifyLoopLCSSA = true;
|
||||
#else
|
||||
static bool VerifyLoopLCSSA = false;
|
||||
#endif
|
||||
static cl::opt<bool, true>
|
||||
VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
|
||||
cl::Hidden,
|
||||
cl::desc("Verify loop lcssa form (time consuming)"));
|
||||
|
||||
/// Return true if the specified block is in the list.
|
||||
static bool isExitBlock(BasicBlock *BB,
|
||||
const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
|
||||
return is_contained(ExitBlocks, BB);
|
||||
}
|
||||
|
||||
/// For every instruction from the worklist, check to see if it has any uses
|
||||
/// that are outside the current loop. If so, insert LCSSA PHI nodes and
|
||||
/// rewrite the uses.
|
||||
bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
|
||||
DominatorTree &DT, LoopInfo &LI) {
|
||||
SmallVector<Use *, 16> UsesToRewrite;
|
||||
SmallSetVector<PHINode *, 16> PHIsToRemove;
|
||||
PredIteratorCache PredCache;
|
||||
bool Changed = false;
|
||||
|
||||
// Cache the Loop ExitBlocks across this loop. We expect to get a lot of
|
||||
// instructions within the same loops, computing the exit blocks is
|
||||
// expensive, and we're not mutating the loop structure.
|
||||
SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
|
||||
|
||||
while (!Worklist.empty()) {
|
||||
UsesToRewrite.clear();
|
||||
|
||||
Instruction *I = Worklist.pop_back_val();
|
||||
assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
|
||||
BasicBlock *InstBB = I->getParent();
|
||||
Loop *L = LI.getLoopFor(InstBB);
|
||||
assert(L && "Instruction belongs to a BB that's not part of a loop");
|
||||
if (!LoopExitBlocks.count(L))
|
||||
L->getExitBlocks(LoopExitBlocks[L]);
|
||||
assert(LoopExitBlocks.count(L));
|
||||
const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
|
||||
|
||||
if (ExitBlocks.empty())
|
||||
continue;
|
||||
|
||||
for (Use &U : I->uses()) {
|
||||
Instruction *User = cast<Instruction>(U.getUser());
|
||||
BasicBlock *UserBB = User->getParent();
|
||||
if (auto *PN = dyn_cast<PHINode>(User))
|
||||
UserBB = PN->getIncomingBlock(U);
|
||||
|
||||
if (InstBB != UserBB && !L->contains(UserBB))
|
||||
UsesToRewrite.push_back(&U);
|
||||
}
|
||||
|
||||
// If there are no uses outside the loop, exit with no change.
|
||||
if (UsesToRewrite.empty())
|
||||
continue;
|
||||
|
||||
++NumLCSSA; // We are applying the transformation
|
||||
|
||||
// Invoke instructions are special in that their result value is not
|
||||
// available along their unwind edge. The code below tests to see whether
|
||||
// DomBB dominates the value, so adjust DomBB to the normal destination
|
||||
// block, which is effectively where the value is first usable.
|
||||
BasicBlock *DomBB = InstBB;
|
||||
if (auto *Inv = dyn_cast<InvokeInst>(I))
|
||||
DomBB = Inv->getNormalDest();
|
||||
|
||||
DomTreeNode *DomNode = DT.getNode(DomBB);
|
||||
|
||||
SmallVector<PHINode *, 16> AddedPHIs;
|
||||
SmallVector<PHINode *, 8> PostProcessPHIs;
|
||||
|
||||
SmallVector<PHINode *, 4> InsertedPHIs;
|
||||
SSAUpdater SSAUpdate(&InsertedPHIs);
|
||||
SSAUpdate.Initialize(I->getType(), I->getName());
|
||||
|
||||
// Insert the LCSSA phi's into all of the exit blocks dominated by the
|
||||
// value, and add them to the Phi's map.
|
||||
for (BasicBlock *ExitBB : ExitBlocks) {
|
||||
if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
|
||||
continue;
|
||||
|
||||
// If we already inserted something for this BB, don't reprocess it.
|
||||
if (SSAUpdate.HasValueForBlock(ExitBB))
|
||||
continue;
|
||||
|
||||
PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
|
||||
I->getName() + ".lcssa", &ExitBB->front());
|
||||
|
||||
// Add inputs from inside the loop for this PHI.
|
||||
for (BasicBlock *Pred : PredCache.get(ExitBB)) {
|
||||
PN->addIncoming(I, Pred);
|
||||
|
||||
// If the exit block has a predecessor not within the loop, arrange for
|
||||
// the incoming value use corresponding to that predecessor to be
|
||||
// rewritten in terms of a different LCSSA PHI.
|
||||
if (!L->contains(Pred))
|
||||
UsesToRewrite.push_back(
|
||||
&PN->getOperandUse(PN->getOperandNumForIncomingValue(
|
||||
PN->getNumIncomingValues() - 1)));
|
||||
}
|
||||
|
||||
AddedPHIs.push_back(PN);
|
||||
|
||||
// Remember that this phi makes the value alive in this block.
|
||||
SSAUpdate.AddAvailableValue(ExitBB, PN);
|
||||
|
||||
// LoopSimplify might fail to simplify some loops (e.g. when indirect
|
||||
// branches are involved). In such situations, it might happen that an
|
||||
// exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
|
||||
// create PHIs in such an exit block, we are also inserting PHIs into L2's
|
||||
// header. This could break LCSSA form for L2 because these inserted PHIs
|
||||
// can also have uses outside of L2. Remember all PHIs in such situation
|
||||
// as to revisit than later on. FIXME: Remove this if indirectbr support
|
||||
// into LoopSimplify gets improved.
|
||||
if (auto *OtherLoop = LI.getLoopFor(ExitBB))
|
||||
if (!L->contains(OtherLoop))
|
||||
PostProcessPHIs.push_back(PN);
|
||||
}
|
||||
|
||||
// Rewrite all uses outside the loop in terms of the new PHIs we just
|
||||
// inserted.
|
||||
for (Use *UseToRewrite : UsesToRewrite) {
|
||||
// If this use is in an exit block, rewrite to use the newly inserted PHI.
|
||||
// This is required for correctness because SSAUpdate doesn't handle uses
|
||||
// in the same block. It assumes the PHI we inserted is at the end of the
|
||||
// block.
|
||||
Instruction *User = cast<Instruction>(UseToRewrite->getUser());
|
||||
BasicBlock *UserBB = User->getParent();
|
||||
if (auto *PN = dyn_cast<PHINode>(User))
|
||||
UserBB = PN->getIncomingBlock(*UseToRewrite);
|
||||
|
||||
if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
|
||||
// Tell the VHs that the uses changed. This updates SCEV's caches.
|
||||
if (UseToRewrite->get()->hasValueHandle())
|
||||
ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
|
||||
UseToRewrite->set(&UserBB->front());
|
||||
continue;
|
||||
}
|
||||
|
||||
// Otherwise, do full PHI insertion.
|
||||
SSAUpdate.RewriteUse(*UseToRewrite);
|
||||
}
|
||||
|
||||
// SSAUpdater might have inserted phi-nodes inside other loops. We'll need
|
||||
// to post-process them to keep LCSSA form.
|
||||
for (PHINode *InsertedPN : InsertedPHIs) {
|
||||
if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
|
||||
if (!L->contains(OtherLoop))
|
||||
PostProcessPHIs.push_back(InsertedPN);
|
||||
}
|
||||
|
||||
// Post process PHI instructions that were inserted into another disjoint
|
||||
// loop and update their exits properly.
|
||||
for (auto *PostProcessPN : PostProcessPHIs)
|
||||
if (!PostProcessPN->use_empty())
|
||||
Worklist.push_back(PostProcessPN);
|
||||
|
||||
// Keep track of PHI nodes that we want to remove because they did not have
|
||||
// any uses rewritten.
|
||||
for (PHINode *PN : AddedPHIs)
|
||||
if (PN->use_empty())
|
||||
PHIsToRemove.insert(PN);
|
||||
|
||||
Changed = true;
|
||||
}
|
||||
// Remove PHI nodes that did not have any uses rewritten.
|
||||
for (PHINode *PN : PHIsToRemove) {
|
||||
assert (PN->use_empty() && "Trying to remove a phi with uses.");
|
||||
PN->eraseFromParent();
|
||||
}
|
||||
return Changed;
|
||||
}
|
||||
|
||||
// Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
|
||||
static void computeBlocksDominatingExits(
|
||||
Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
|
||||
SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
|
||||
SmallVector<BasicBlock *, 8> BBWorklist;
|
||||
|
||||
// We start from the exit blocks, as every block trivially dominates itself
|
||||
// (not strictly).
|
||||
for (BasicBlock *BB : ExitBlocks)
|
||||
BBWorklist.push_back(BB);
|
||||
|
||||
while (!BBWorklist.empty()) {
|
||||
BasicBlock *BB = BBWorklist.pop_back_val();
|
||||
|
||||
// Check if this is a loop header. If this is the case, we're done.
|
||||
if (L.getHeader() == BB)
|
||||
continue;
|
||||
|
||||
// Otherwise, add its immediate predecessor in the dominator tree to the
|
||||
// worklist, unless we visited it already.
|
||||
BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
|
||||
|
||||
// Exit blocks can have an immediate dominator not beloinging to the
|
||||
// loop. For an exit block to be immediately dominated by another block
|
||||
// outside the loop, it implies not all paths from that dominator, to the
|
||||
// exit block, go through the loop.
|
||||
// Example:
|
||||
//
|
||||
// |---- A
|
||||
// | |
|
||||
// | B<--
|
||||
// | | |
|
||||
// |---> C --
|
||||
// |
|
||||
// D
|
||||
//
|
||||
// C is the exit block of the loop and it's immediately dominated by A,
|
||||
// which doesn't belong to the loop.
|
||||
if (!L.contains(IDomBB))
|
||||
continue;
|
||||
|
||||
if (BlocksDominatingExits.insert(IDomBB))
|
||||
BBWorklist.push_back(IDomBB);
|
||||
}
|
||||
}
|
||||
|
||||
bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
||||
ScalarEvolution *SE) {
|
||||
bool Changed = false;
|
||||
|
||||
SmallVector<BasicBlock *, 8> ExitBlocks;
|
||||
L.getExitBlocks(ExitBlocks);
|
||||
if (ExitBlocks.empty())
|
||||
return false;
|
||||
|
||||
SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
|
||||
|
||||
// We want to avoid use-scanning leveraging dominance informations.
|
||||
// If a block doesn't dominate any of the loop exits, the none of the values
|
||||
// defined in the loop can be used outside.
|
||||
// We compute the set of blocks fullfilling the conditions in advance
|
||||
// walking the dominator tree upwards until we hit a loop header.
|
||||
computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
|
||||
|
||||
SmallVector<Instruction *, 8> Worklist;
|
||||
|
||||
// Look at all the instructions in the loop, checking to see if they have uses
|
||||
// outside the loop. If so, put them into the worklist to rewrite those uses.
|
||||
for (BasicBlock *BB : BlocksDominatingExits) {
|
||||
for (Instruction &I : *BB) {
|
||||
// Reject two common cases fast: instructions with no uses (like stores)
|
||||
// and instructions with one use that is in the same block as this.
|
||||
if (I.use_empty() ||
|
||||
(I.hasOneUse() && I.user_back()->getParent() == BB &&
|
||||
!isa<PHINode>(I.user_back())))
|
||||
continue;
|
||||
|
||||
// Tokens cannot be used in PHI nodes, so we skip over them.
|
||||
// We can run into tokens which are live out of a loop with catchswitch
|
||||
// instructions in Windows EH if the catchswitch has one catchpad which
|
||||
// is inside the loop and another which is not.
|
||||
if (I.getType()->isTokenTy())
|
||||
continue;
|
||||
|
||||
Worklist.push_back(&I);
|
||||
}
|
||||
}
|
||||
Changed = formLCSSAForInstructions(Worklist, DT, *LI);
|
||||
|
||||
// If we modified the code, remove any caches about the loop from SCEV to
|
||||
// avoid dangling entries.
|
||||
// FIXME: This is a big hammer, can we clear the cache more selectively?
|
||||
if (SE && Changed)
|
||||
SE->forgetLoop(&L);
|
||||
|
||||
assert(L.isLCSSAForm(DT));
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
/// Process a loop nest depth first.
|
||||
bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
||||
ScalarEvolution *SE) {
|
||||
bool Changed = false;
|
||||
|
||||
// Recurse depth-first through inner loops.
|
||||
for (Loop *SubLoop : L.getSubLoops())
|
||||
Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
|
||||
|
||||
Changed |= formLCSSA(L, DT, LI, SE);
|
||||
return Changed;
|
||||
}
|
||||
|
||||
/// Process all loops in the function, inner-most out.
|
||||
static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
|
||||
ScalarEvolution *SE) {
|
||||
bool Changed = false;
|
||||
for (auto &L : *LI)
|
||||
Changed |= formLCSSARecursively(*L, DT, LI, SE);
|
||||
return Changed;
|
||||
}
|
||||
|
||||
namespace {
|
||||
struct LCSSAWrapperPass : public FunctionPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
LCSSAWrapperPass() : FunctionPass(ID) {
|
||||
initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
// Cached analysis information for the current function.
|
||||
DominatorTree *DT;
|
||||
LoopInfo *LI;
|
||||
ScalarEvolution *SE;
|
||||
|
||||
bool runOnFunction(Function &F) override;
|
||||
void verifyAnalysis() const override {
|
||||
// This check is very expensive. On the loop intensive compiles it may cause
|
||||
// up to 10x slowdown. Currently it's disabled by default. LPPassManager
|
||||
// always does limited form of the LCSSA verification. Similar reasoning
|
||||
// was used for the LoopInfo verifier.
|
||||
if (VerifyLoopLCSSA) {
|
||||
assert(all_of(*LI,
|
||||
[&](Loop *L) {
|
||||
return L->isRecursivelyLCSSAForm(*DT, *LI);
|
||||
}) &&
|
||||
"LCSSA form is broken!");
|
||||
}
|
||||
};
|
||||
|
||||
/// This transformation requires natural loop information & requires that
|
||||
/// loop preheaders be inserted into the CFG. It maintains both of these,
|
||||
/// as well as the CFG. It also requires dominator information.
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.setPreservesCFG();
|
||||
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
AU.addRequired<LoopInfoWrapperPass>();
|
||||
AU.addPreservedID(LoopSimplifyID);
|
||||
AU.addPreserved<AAResultsWrapperPass>();
|
||||
AU.addPreserved<BasicAAWrapperPass>();
|
||||
AU.addPreserved<GlobalsAAWrapperPass>();
|
||||
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
||||
AU.addPreserved<SCEVAAWrapperPass>();
|
||||
|
||||
// This is needed to perform LCSSA verification inside LPPassManager
|
||||
AU.addRequired<LCSSAVerificationPass>();
|
||||
AU.addPreserved<LCSSAVerificationPass>();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
char LCSSAWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
|
||||
false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
|
||||
INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
|
||||
false, false)
|
||||
|
||||
Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
|
||||
char &llvm::LCSSAID = LCSSAWrapperPass::ID;
|
||||
|
||||
/// Transform \p F into loop-closed SSA form.
|
||||
bool LCSSAWrapperPass::runOnFunction(Function &F) {
|
||||
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
|
||||
SE = SEWP ? &SEWP->getSE() : nullptr;
|
||||
|
||||
return formLCSSAOnAllLoops(LI, *DT, SE);
|
||||
}
|
||||
|
||||
PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
|
||||
auto &LI = AM.getResult<LoopAnalysis>(F);
|
||||
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
||||
auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
|
||||
if (!formLCSSAOnAllLoops(&LI, DT, SE))
|
||||
return PreservedAnalyses::all();
|
||||
|
||||
PreservedAnalyses PA;
|
||||
PA.preserveSet<CFGAnalyses>();
|
||||
PA.preserve<BasicAA>();
|
||||
PA.preserve<GlobalsAA>();
|
||||
PA.preserve<SCEVAA>();
|
||||
PA.preserve<ScalarEvolutionAnalysis>();
|
||||
return PA;
|
||||
}
|
Reference in New Issue
Block a user