You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.205
Former-commit-id: 7f59f7e792705db773f1caecdaa823092f4e2927
This commit is contained in:
parent
5cd5df71cc
commit
8e12397d70
187
external/llvm/lib/Target/X86/X86FixupSetCC.cpp
vendored
Normal file
187
external/llvm/lib/Target/X86/X86FixupSetCC.cpp
vendored
Normal file
@ -0,0 +1,187 @@
|
||||
//===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines a pass that fixes zero-extension of setcc patterns.
|
||||
// X86 setcc instructions are modeled to have no input arguments, and a single
|
||||
// GR8 output argument. This is consistent with other similar instructions
|
||||
// (e.g. movb), but means it is impossible to directly generate a setcc into
|
||||
// the lower GR8 of a specified GR32.
|
||||
// This means that ISel must select (zext (setcc)) into something like
|
||||
// seta %al; movzbl %al, %eax.
|
||||
// Unfortunately, this can cause a stall due to the partial register write
|
||||
// performed by the setcc. Instead, we can use:
|
||||
// xor %eax, %eax; seta %al
|
||||
// This both avoids the stall, and encodes shorter.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "X86InstrInfo.h"
|
||||
#include "X86Subtarget.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "x86-fixup-setcc"
|
||||
|
||||
STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted");
|
||||
|
||||
namespace {
|
||||
class X86FixupSetCCPass : public MachineFunctionPass {
|
||||
public:
|
||||
X86FixupSetCCPass() : MachineFunctionPass(ID) {}
|
||||
|
||||
StringRef getPassName() const override { return "X86 Fixup SetCC"; }
|
||||
|
||||
bool runOnMachineFunction(MachineFunction &MF) override;
|
||||
|
||||
private:
|
||||
// Find the preceding instruction that imp-defs eflags.
|
||||
MachineInstr *findFlagsImpDef(MachineBasicBlock *MBB,
|
||||
MachineBasicBlock::reverse_iterator MI);
|
||||
|
||||
// Return true if MI imp-uses eflags.
|
||||
bool impUsesFlags(MachineInstr *MI);
|
||||
|
||||
// Return true if this is the opcode of a SetCC instruction with a register
|
||||
// output.
|
||||
bool isSetCCr(unsigned Opode);
|
||||
|
||||
MachineRegisterInfo *MRI;
|
||||
const X86InstrInfo *TII;
|
||||
|
||||
enum { SearchBound = 16 };
|
||||
|
||||
static char ID;
|
||||
};
|
||||
|
||||
char X86FixupSetCCPass::ID = 0;
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); }
|
||||
|
||||
bool X86FixupSetCCPass::isSetCCr(unsigned Opcode) {
|
||||
switch (Opcode) {
|
||||
default:
|
||||
return false;
|
||||
case X86::SETOr:
|
||||
case X86::SETNOr:
|
||||
case X86::SETBr:
|
||||
case X86::SETAEr:
|
||||
case X86::SETEr:
|
||||
case X86::SETNEr:
|
||||
case X86::SETBEr:
|
||||
case X86::SETAr:
|
||||
case X86::SETSr:
|
||||
case X86::SETNSr:
|
||||
case X86::SETPr:
|
||||
case X86::SETNPr:
|
||||
case X86::SETLr:
|
||||
case X86::SETGEr:
|
||||
case X86::SETLEr:
|
||||
case X86::SETGr:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// We expect the instruction *immediately* before the setcc to imp-def
|
||||
// EFLAGS (because of scheduling glue). To make this less brittle w.r.t
|
||||
// scheduling, look backwards until we hit the beginning of the
|
||||
// basic-block, or a small bound (to avoid quadratic behavior).
|
||||
MachineInstr *
|
||||
X86FixupSetCCPass::findFlagsImpDef(MachineBasicBlock *MBB,
|
||||
MachineBasicBlock::reverse_iterator MI) {
|
||||
// FIXME: Should this be instr_rend(), and MI be reverse_instr_iterator?
|
||||
auto MBBStart = MBB->rend();
|
||||
for (int i = 0; (i < SearchBound) && (MI != MBBStart); ++i, ++MI)
|
||||
for (auto &Op : MI->implicit_operands())
|
||||
if ((Op.getReg() == X86::EFLAGS) && (Op.isDef()))
|
||||
return &*MI;
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool X86FixupSetCCPass::impUsesFlags(MachineInstr *MI) {
|
||||
for (auto &Op : MI->implicit_operands())
|
||||
if ((Op.getReg() == X86::EFLAGS) && (Op.isUse()))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) {
|
||||
bool Changed = false;
|
||||
MRI = &MF.getRegInfo();
|
||||
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
|
||||
|
||||
SmallVector<MachineInstr*, 4> ToErase;
|
||||
|
||||
for (auto &MBB : MF) {
|
||||
for (auto &MI : MBB) {
|
||||
// Find a setcc that is used by a zext.
|
||||
// This doesn't have to be the only use, the transformation is safe
|
||||
// regardless.
|
||||
if (!isSetCCr(MI.getOpcode()))
|
||||
continue;
|
||||
|
||||
MachineInstr *ZExt = nullptr;
|
||||
for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg()))
|
||||
if (Use.getOpcode() == X86::MOVZX32rr8)
|
||||
ZExt = &Use;
|
||||
|
||||
if (!ZExt)
|
||||
continue;
|
||||
|
||||
// Find the preceding instruction that imp-defs eflags.
|
||||
MachineInstr *FlagsDefMI = findFlagsImpDef(
|
||||
MI.getParent(), MachineBasicBlock::reverse_iterator(&MI));
|
||||
if (!FlagsDefMI)
|
||||
continue;
|
||||
|
||||
// We'd like to put something that clobbers eflags directly before
|
||||
// FlagsDefMI. This can't hurt anything after FlagsDefMI, because
|
||||
// it, itself, by definition, clobbers eflags. But it may happen that
|
||||
// FlagsDefMI also *uses* eflags, in which case the transformation is
|
||||
// invalid.
|
||||
if (impUsesFlags(FlagsDefMI))
|
||||
continue;
|
||||
|
||||
++NumSubstZexts;
|
||||
Changed = true;
|
||||
|
||||
// On 32-bit, we need to be careful to force an ABCD register.
|
||||
const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit()
|
||||
? &X86::GR32RegClass
|
||||
: &X86::GR32_ABCDRegClass;
|
||||
unsigned ZeroReg = MRI->createVirtualRegister(RC);
|
||||
unsigned InsertReg = MRI->createVirtualRegister(RC);
|
||||
|
||||
// Initialize a register with 0. This must go before the eflags def
|
||||
BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0),
|
||||
ZeroReg);
|
||||
|
||||
// X86 setcc only takes an output GR8, so fake a GR32 input by inserting
|
||||
// the setcc result into the low byte of the zeroed register.
|
||||
BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(),
|
||||
TII->get(X86::INSERT_SUBREG), InsertReg)
|
||||
.addReg(ZeroReg)
|
||||
.addReg(MI.getOperand(0).getReg())
|
||||
.addImm(X86::sub_8bit);
|
||||
MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg);
|
||||
ToErase.push_back(ZExt);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &I : ToErase)
|
||||
I->eraseFromParent();
|
||||
|
||||
return Changed;
|
||||
}
|
Reference in New Issue
Block a user