You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.179
Former-commit-id: 67aa10e65b237e1c4537630979ee99ebe1374215
This commit is contained in:
parent
d6bde52373
commit
8625704ad8
236
external/llvm/lib/Analysis/CFG.cpp
vendored
Normal file
236
external/llvm/lib/Analysis/CFG.cpp
vendored
Normal file
@ -0,0 +1,236 @@
|
||||
//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This family of functions performs analyses on basic blocks, and instructions
|
||||
// contained within basic blocks.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
/// FindFunctionBackedges - Analyze the specified function to find all of the
|
||||
/// loop backedges in the function and return them. This is a relatively cheap
|
||||
/// (compared to computing dominators and loop info) analysis.
|
||||
///
|
||||
/// The output is added to Result, as pairs of <from,to> edge info.
|
||||
void llvm::FindFunctionBackedges(const Function &F,
|
||||
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
|
||||
const BasicBlock *BB = &F.getEntryBlock();
|
||||
if (succ_empty(BB))
|
||||
return;
|
||||
|
||||
SmallPtrSet<const BasicBlock*, 8> Visited;
|
||||
SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
|
||||
SmallPtrSet<const BasicBlock*, 8> InStack;
|
||||
|
||||
Visited.insert(BB);
|
||||
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
||||
InStack.insert(BB);
|
||||
do {
|
||||
std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
|
||||
const BasicBlock *ParentBB = Top.first;
|
||||
succ_const_iterator &I = Top.second;
|
||||
|
||||
bool FoundNew = false;
|
||||
while (I != succ_end(ParentBB)) {
|
||||
BB = *I++;
|
||||
if (Visited.insert(BB).second) {
|
||||
FoundNew = true;
|
||||
break;
|
||||
}
|
||||
// Successor is in VisitStack, it's a back edge.
|
||||
if (InStack.count(BB))
|
||||
Result.push_back(std::make_pair(ParentBB, BB));
|
||||
}
|
||||
|
||||
if (FoundNew) {
|
||||
// Go down one level if there is a unvisited successor.
|
||||
InStack.insert(BB);
|
||||
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
||||
} else {
|
||||
// Go up one level.
|
||||
InStack.erase(VisitStack.pop_back_val().first);
|
||||
}
|
||||
} while (!VisitStack.empty());
|
||||
}
|
||||
|
||||
/// GetSuccessorNumber - Search for the specified successor of basic block BB
|
||||
/// and return its position in the terminator instruction's list of
|
||||
/// successors. It is an error to call this with a block that is not a
|
||||
/// successor.
|
||||
unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
|
||||
const BasicBlock *Succ) {
|
||||
const TerminatorInst *Term = BB->getTerminator();
|
||||
#ifndef NDEBUG
|
||||
unsigned e = Term->getNumSuccessors();
|
||||
#endif
|
||||
for (unsigned i = 0; ; ++i) {
|
||||
assert(i != e && "Didn't find edge?");
|
||||
if (Term->getSuccessor(i) == Succ)
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
/// isCriticalEdge - Return true if the specified edge is a critical edge.
|
||||
/// Critical edges are edges from a block with multiple successors to a block
|
||||
/// with multiple predecessors.
|
||||
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
|
||||
bool AllowIdenticalEdges) {
|
||||
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
|
||||
if (TI->getNumSuccessors() == 1) return false;
|
||||
|
||||
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
|
||||
const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
|
||||
|
||||
// If there is more than one predecessor, this is a critical edge...
|
||||
assert(I != E && "No preds, but we have an edge to the block?");
|
||||
const BasicBlock *FirstPred = *I;
|
||||
++I; // Skip one edge due to the incoming arc from TI.
|
||||
if (!AllowIdenticalEdges)
|
||||
return I != E;
|
||||
|
||||
// If AllowIdenticalEdges is true, then we allow this edge to be considered
|
||||
// non-critical iff all preds come from TI's block.
|
||||
for (; I != E; ++I)
|
||||
if (*I != FirstPred)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// LoopInfo contains a mapping from basic block to the innermost loop. Find
|
||||
// the outermost loop in the loop nest that contains BB.
|
||||
static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
|
||||
const Loop *L = LI->getLoopFor(BB);
|
||||
if (L) {
|
||||
while (const Loop *Parent = L->getParentLoop())
|
||||
L = Parent;
|
||||
}
|
||||
return L;
|
||||
}
|
||||
|
||||
// True if there is a loop which contains both BB1 and BB2.
|
||||
static bool loopContainsBoth(const LoopInfo *LI,
|
||||
const BasicBlock *BB1, const BasicBlock *BB2) {
|
||||
const Loop *L1 = getOutermostLoop(LI, BB1);
|
||||
const Loop *L2 = getOutermostLoop(LI, BB2);
|
||||
return L1 != nullptr && L1 == L2;
|
||||
}
|
||||
|
||||
bool llvm::isPotentiallyReachableFromMany(
|
||||
SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
|
||||
const DominatorTree *DT, const LoopInfo *LI) {
|
||||
// When the stop block is unreachable, it's dominated from everywhere,
|
||||
// regardless of whether there's a path between the two blocks.
|
||||
if (DT && !DT->isReachableFromEntry(StopBB))
|
||||
DT = nullptr;
|
||||
|
||||
// Limit the number of blocks we visit. The goal is to avoid run-away compile
|
||||
// times on large CFGs without hampering sensible code. Arbitrarily chosen.
|
||||
unsigned Limit = 32;
|
||||
SmallPtrSet<const BasicBlock*, 32> Visited;
|
||||
do {
|
||||
BasicBlock *BB = Worklist.pop_back_val();
|
||||
if (!Visited.insert(BB).second)
|
||||
continue;
|
||||
if (BB == StopBB)
|
||||
return true;
|
||||
if (DT && DT->dominates(BB, StopBB))
|
||||
return true;
|
||||
if (LI && loopContainsBoth(LI, BB, StopBB))
|
||||
return true;
|
||||
|
||||
if (!--Limit) {
|
||||
// We haven't been able to prove it one way or the other. Conservatively
|
||||
// answer true -- that there is potentially a path.
|
||||
return true;
|
||||
}
|
||||
|
||||
if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
|
||||
// All blocks in a single loop are reachable from all other blocks. From
|
||||
// any of these blocks, we can skip directly to the exits of the loop,
|
||||
// ignoring any other blocks inside the loop body.
|
||||
Outer->getExitBlocks(Worklist);
|
||||
} else {
|
||||
Worklist.append(succ_begin(BB), succ_end(BB));
|
||||
}
|
||||
} while (!Worklist.empty());
|
||||
|
||||
// We have exhausted all possible paths and are certain that 'To' can not be
|
||||
// reached from 'From'.
|
||||
return false;
|
||||
}
|
||||
|
||||
bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
|
||||
const DominatorTree *DT, const LoopInfo *LI) {
|
||||
assert(A->getParent() == B->getParent() &&
|
||||
"This analysis is function-local!");
|
||||
|
||||
SmallVector<BasicBlock*, 32> Worklist;
|
||||
Worklist.push_back(const_cast<BasicBlock*>(A));
|
||||
|
||||
return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
|
||||
DT, LI);
|
||||
}
|
||||
|
||||
bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
|
||||
const DominatorTree *DT, const LoopInfo *LI) {
|
||||
assert(A->getParent()->getParent() == B->getParent()->getParent() &&
|
||||
"This analysis is function-local!");
|
||||
|
||||
SmallVector<BasicBlock*, 32> Worklist;
|
||||
|
||||
if (A->getParent() == B->getParent()) {
|
||||
// The same block case is special because it's the only time we're looking
|
||||
// within a single block to see which instruction comes first. Once we
|
||||
// start looking at multiple blocks, the first instruction of the block is
|
||||
// reachable, so we only need to determine reachability between whole
|
||||
// blocks.
|
||||
BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
|
||||
|
||||
// If the block is in a loop then we can reach any instruction in the block
|
||||
// from any other instruction in the block by going around a backedge.
|
||||
if (LI && LI->getLoopFor(BB) != nullptr)
|
||||
return true;
|
||||
|
||||
// Linear scan, start at 'A', see whether we hit 'B' or the end first.
|
||||
for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E;
|
||||
++I) {
|
||||
if (&*I == B)
|
||||
return true;
|
||||
}
|
||||
|
||||
// Can't be in a loop if it's the entry block -- the entry block may not
|
||||
// have predecessors.
|
||||
if (BB == &BB->getParent()->getEntryBlock())
|
||||
return false;
|
||||
|
||||
// Otherwise, continue doing the normal per-BB CFG walk.
|
||||
Worklist.append(succ_begin(BB), succ_end(BB));
|
||||
|
||||
if (Worklist.empty()) {
|
||||
// We've proven that there's no path!
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
|
||||
}
|
||||
|
||||
if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
|
||||
return true;
|
||||
if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
|
||||
return false;
|
||||
|
||||
return isPotentiallyReachableFromMany(
|
||||
Worklist, const_cast<BasicBlock *>(B->getParent()), DT, LI);
|
||||
}
|
Reference in New Issue
Block a user