Imported Upstream version 6.10.0.49

Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
This commit is contained in:
Xamarin Public Jenkins (auto-signing)
2020-01-16 16:38:04 +00:00
parent d94e79959b
commit 468663ddbb
48518 changed files with 2789335 additions and 61176 deletions

View File

@@ -0,0 +1,305 @@
# Testing rules for AddressSanitizer.
#
# These are broken into two buckets. One set of tests directly interacts with
# the runtime library and checks its functionality. These are the
# no-instrumentation tests.
#
# Another group of tests relies upon the ability to compile the test with
# address sanitizer instrumentation pass. These tests form "integration" tests
# and have some elements of version skew -- they test the *host* compiler's
# instrumentation against the just-built runtime library.
include(CheckCXXCompilerFlag)
include(CompilerRTCompile)
include_directories(..)
include_directories(../..)
set(ASAN_UNITTEST_HEADERS
asan_mac_test.h
asan_test_config.h
asan_test_utils.h)
set(ASAN_UNITTEST_COMMON_CFLAGS
${COMPILER_RT_UNITTEST_CFLAGS}
${COMPILER_RT_GTEST_CFLAGS}
${COMPILER_RT_ASAN_SHADOW_SCALE_LLVM_FLAG}
-I${COMPILER_RT_SOURCE_DIR}/include
-I${COMPILER_RT_SOURCE_DIR}/lib
-I${COMPILER_RT_SOURCE_DIR}/lib/asan
-I${COMPILER_RT_SOURCE_DIR}/lib/sanitizer_common/tests
-fno-rtti
-O2
-Wno-format
-Werror=sign-compare
-Wno-non-virtual-dtor)
append_list_if(COMPILER_RT_HAS_WVARIADIC_MACROS_FLAG -Wno-variadic-macros ASAN_UNITTEST_COMMON_CFLAGS)
# This will ensure the target linker is used
# during cross compilation
set(ASAN_UNITTEST_COMMON_LINK_FLAGS
${COMPILER_RT_UNITTEST_LINK_FLAGS})
# -gline-tables-only must be enough for ASan, so use it if possible.
if(COMPILER_RT_TEST_COMPILER_ID MATCHES "Clang")
list(APPEND ASAN_UNITTEST_COMMON_CFLAGS -gline-tables-only)
else()
list(APPEND ASAN_UNITTEST_COMMON_CFLAGS -g)
endif()
if(MSVC)
list(APPEND ASAN_UNITTEST_COMMON_CFLAGS -gcodeview)
endif()
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS -g)
# Use -D instead of definitions to please custom compile command.
list(APPEND ASAN_UNITTEST_COMMON_CFLAGS
${COMPILER_RT_ASAN_SHADOW_SCALE_FLAG}
-DASAN_HAS_BLACKLIST=1
-DASAN_HAS_EXCEPTIONS=1
-DASAN_UAR=0)
if(APPLE)
list(APPEND ASAN_UNITTEST_COMMON_CFLAGS ${DARWIN_osx_CFLAGS})
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS ${DARWIN_osx_LINK_FLAGS})
add_weak_symbols("asan" WEAK_SYMBOL_LINK_FLAGS)
add_weak_symbols("ubsan" WEAK_SYMBOL_LINK_FLAGS)
add_weak_symbols("sanitizer_common" WEAK_SYMBOL_LINK_FLAGS)
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS ${WEAK_SYMBOL_LINK_FLAGS})
endif()
if(MSVC)
# Disable exceptions on Windows until they work reliably.
list(APPEND ASAN_UNITTEST_COMMON_CFLAGS -fno-exceptions -DGTEST_HAS_SEH=0)
endif()
set(ASAN_BLACKLIST_FILE "${CMAKE_CURRENT_SOURCE_DIR}/asan_test.ignore")
set(ASAN_UNITTEST_INSTRUMENTED_CFLAGS
${ASAN_UNITTEST_COMMON_CFLAGS}
-fsanitize=address
"-fsanitize-blacklist=${ASAN_BLACKLIST_FILE}"
)
if(CAN_TARGET_x86_64 OR CAN_TARGET_i386)
list(APPEND ASAN_UNITTEST_INSTRUMENTED_CFLAGS -mllvm -asan-instrument-assembly)
endif()
if(NOT MSVC)
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS --driver-mode=g++)
endif()
# x86_64 FreeBSD 9.2 additionally requires libc++ to build the tests.
if(CMAKE_SYSTEM MATCHES "FreeBSD-9.2-RELEASE")
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS "-lc++")
endif()
# Unit tests on Mac depend on Foundation.
if(APPLE)
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS -framework Foundation)
endif()
if(ANDROID)
list(APPEND ASAN_UNITTEST_COMMON_LINK_FLAGS -pie)
endif()
set(ASAN_UNITTEST_INSTRUMENTED_LINK_FLAGS
${ASAN_UNITTEST_COMMON_LINK_FLAGS})
list(APPEND ASAN_UNITTEST_INSTRUMENTED_LINK_FLAGS -fsanitize=address)
set(ASAN_DYNAMIC_UNITTEST_INSTRUMENTED_LINK_FLAGS
${ASAN_UNITTEST_INSTRUMENTED_LINK_FLAGS}
-shared-libasan)
set(ASAN_UNITTEST_INSTRUMENTED_LIBS)
# NDK r10 requires -latomic almost always.
append_list_if(ANDROID atomic ASAN_UNITTEST_INSTRUMENTED_LIBS)
set(ASAN_UNITTEST_NOINST_LINK_FLAGS ${ASAN_UNITTEST_COMMON_LINK_FLAGS})
if(NOT APPLE)
append_list_if(COMPILER_RT_HAS_LIBM -lm ASAN_UNITTEST_NOINST_LINK_FLAGS)
append_list_if(COMPILER_RT_HAS_LIBDL -ldl ASAN_UNITTEST_NOINST_LINK_FLAGS)
append_list_if(COMPILER_RT_HAS_LIBRT -lrt ASAN_UNITTEST_NOINST_LINK_FLAGS)
append_list_if(COMPILER_RT_HAS_LIBPTHREAD -pthread ASAN_UNITTEST_NOINST_LINK_FLAGS)
append_list_if(COMPILER_RT_HAS_LIBPTHREAD -pthread ASAN_DYNAMIC_UNITTEST_INSTRUMENTED_LINK_FLAGS)
endif()
# TODO(eugenis): move all -l flags above to _LIBS?
set(ASAN_UNITTEST_NOINST_LIBS)
append_list_if(COMPILER_RT_HAS_LIBLOG log ASAN_UNITTEST_NOINST_LIBS)
# NDK r10 requires -latomic almost always.
append_list_if(ANDROID atomic ASAN_UNITTEST_NOINST_LIBS)
# Main AddressSanitizer unit tests.
add_custom_target(AsanUnitTests)
set_target_properties(AsanUnitTests PROPERTIES FOLDER "Compiler-RT Tests")
# AddressSanitizer unit tests with dynamic runtime (on platforms where it's
# not the default).
add_custom_target(AsanDynamicUnitTests)
set_target_properties(AsanDynamicUnitTests PROPERTIES FOLDER "Compiler-RT Tests")
# ASan benchmarks (not actively used now).
add_custom_target(AsanBenchmarks)
set_target_properties(AsanBenchmarks PROPERTIES FOLDER "Compiler-RT Tests")
set(ASAN_NOINST_TEST_SOURCES
${COMPILER_RT_GTEST_SOURCE}
asan_fake_stack_test.cc
asan_noinst_test.cc
asan_test_main.cc)
set(ASAN_INST_TEST_SOURCES
${COMPILER_RT_GTEST_SOURCE}
asan_asm_test.cc
asan_globals_test.cc
asan_interface_test.cc
asan_internal_interface_test.cc
asan_test.cc
asan_oob_test.cc
asan_mem_test.cc
asan_str_test.cc
asan_test_main.cc)
if(APPLE)
list(APPEND ASAN_INST_TEST_SOURCES asan_mac_test.cc asan_mac_test_helpers.mm)
endif()
set(ASAN_BENCHMARKS_SOURCES
${COMPILER_RT_GTEST_SOURCE}
asan_benchmarks_test.cc)
function(add_asan_tests arch test_runtime)
cmake_parse_arguments(TEST "" "KIND" "CFLAGS" ${ARGN})
# Closure to keep the values.
function(generate_asan_tests test_objects test_suite testname)
generate_compiler_rt_tests(${test_objects} ${test_suite} ${testname} ${arch}
COMPILE_DEPS ${ASAN_UNITTEST_HEADERS} ${ASAN_BLACKLIST_FILE}
DEPS gtest asan
KIND ${TEST_KIND}
${ARGN}
)
set("${test_objects}" "${${test_objects}}" PARENT_SCOPE)
endfunction()
set(ASAN_INST_TEST_OBJECTS)
generate_asan_tests(ASAN_INST_TEST_OBJECTS AsanUnitTests
"Asan-${arch}${TEST_KIND}-Test"
SUBDIR "default"
LINK_FLAGS ${ASAN_UNITTEST_INSTRUMENTED_LINK_FLAGS}
SOURCES ${ASAN_INST_TEST_SOURCES}
CFLAGS ${ASAN_UNITTEST_INSTRUMENTED_CFLAGS} ${TEST_CFLAGS})
if(COMPILER_RT_ASAN_HAS_STATIC_RUNTIME)
set(dynamic_test_name "Asan-${arch}${TEST_KIND}-Dynamic-Test")
if(MSVC)
# With the MSVC CRT, the choice between static and dynamic CRT is made at
# compile time with a macro. Simulate the effect of passing /MD to clang-cl.
set(ASAN_DYNAMIC_TEST_OBJECTS)
generate_asan_tests(ASAN_DYNAMIC_TEST_OBJECTS
AsanDynamicUnitTests "${dynamic_test_name}"
SUBDIR "dynamic"
CFLAGS ${ASAN_UNITTEST_INSTRUMENTED_CFLAGS} -D_MT -D_DLL
SOURCES ${ASAN_INST_TEST_SOURCES}
LINK_FLAGS ${ASAN_DYNAMIC_UNITTEST_INSTRUMENTED_LINK_FLAGS}
-Wl,-nodefaultlib:libcmt,-defaultlib:msvcrt,-defaultlib:oldnames
)
else()
# Otherwise, reuse ASAN_INST_TEST_OBJECTS.
add_compiler_rt_test(AsanDynamicUnitTests "${dynamic_test_name}" "${arch}"
SUBDIR "dynamic"
OBJECTS ${ASAN_INST_TEST_OBJECTS}
DEPS asan ${ASAN_INST_TEST_OBJECTS}
LINK_FLAGS ${ASAN_DYNAMIC_UNITTEST_INSTRUMENTED_LINK_FLAGS}
)
endif()
endif()
# Uninstrumented tests.
set(ASAN_NOINST_TEST_OBJECTS)
generate_asan_tests(ASAN_NOINST_TEST_OBJECTS
AsanUnitTests "Asan-${arch}${TEST_KIND}-Noinst-Test"
SUBDIR "default"
CFLAGS ${ASAN_UNITTEST_COMMON_CFLAGS}
LINK_FLAGS ${ASAN_UNITTEST_NOINST_LINK_FLAGS}
SOURCES ${ASAN_NOINST_TEST_SOURCES}
RUNTIME ${test_runtime})
set(ASAN_BENCHMARK_OBJECTS)
generate_asan_tests(ASAN_BENCHMARK_OBJECTS
AsanBenchmarks "Asan-${arch}${TEST_KIND}-Benchmark"
SUBDIR "default"
CFLAGS ${ASAN_UNITTEST_INSTRUMENTED_CFLAGS}
SOURCES ${ASAN_BENCHMARKS_SOURCES}
LINK_FLAGS ${ASAN_UNITTEST_INSTRUMENTED_LINK_FLAGS})
endfunction()
if(COMPILER_RT_CAN_EXECUTE_TESTS AND NOT ANDROID)
set(ASAN_TEST_ARCH ${ASAN_SUPPORTED_ARCH})
if(APPLE)
darwin_filter_host_archs(ASAN_SUPPORTED_ARCH ASAN_TEST_ARCH)
endif()
foreach(arch ${ASAN_TEST_ARCH})
# Add static ASan runtime that will be linked with uninstrumented tests.
set(ASAN_TEST_RUNTIME RTAsanTest.${arch})
if(APPLE)
set(ASAN_TEST_RUNTIME_OBJECTS
$<TARGET_OBJECTS:RTAsan_dynamic.osx>
$<TARGET_OBJECTS:RTInterception.osx>
$<TARGET_OBJECTS:RTSanitizerCommon.osx>
$<TARGET_OBJECTS:RTSanitizerCommonLibc.osx>
$<TARGET_OBJECTS:RTLSanCommon.osx>
$<TARGET_OBJECTS:RTUbsan.osx>)
else()
set(ASAN_TEST_RUNTIME_OBJECTS
$<TARGET_OBJECTS:RTAsan.${arch}>
$<TARGET_OBJECTS:RTAsan_cxx.${arch}>
$<TARGET_OBJECTS:RTInterception.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommon.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommonLibc.${arch}>
$<TARGET_OBJECTS:RTLSanCommon.${arch}>
$<TARGET_OBJECTS:RTUbsan.${arch}>
$<TARGET_OBJECTS:RTUbsan_cxx.${arch}>)
endif()
add_library(${ASAN_TEST_RUNTIME} STATIC ${ASAN_TEST_RUNTIME_OBJECTS})
set_target_properties(${ASAN_TEST_RUNTIME} PROPERTIES
ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
FOLDER "Compiler-RT Runtime tests")
add_asan_tests(${arch} ${ASAN_TEST_RUNTIME} KIND "-inline")
add_asan_tests(${arch} ${ASAN_TEST_RUNTIME} KIND "-calls"
CFLAGS -mllvm -asan-instrumentation-with-call-threshold=0)
endforeach()
endif()
if(ANDROID)
foreach(arch ${ASAN_SUPPORTED_ARCH})
# Test w/o ASan instrumentation. Link it with ASan statically.
add_executable(AsanNoinstTest # FIXME: .arch?
$<TARGET_OBJECTS:RTAsan.${arch}>
$<TARGET_OBJECTS:RTInterception.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommon.${arch}>
$<TARGET_OBJECTS:RTSanitizerCommonLibc.${arch}>
$<TARGET_OBJECTS:RTUbsan.${arch}>
$<TARGET_OBJECTS:RTUbsan_cxx.${arch}>
${COMPILER_RT_GTEST_SOURCE}
${ASAN_NOINST_TEST_SOURCES})
set_target_compile_flags(AsanNoinstTest ${ASAN_UNITTEST_COMMON_CFLAGS})
set_target_link_flags(AsanNoinstTest ${ASAN_UNITTEST_NOINST_LINK_FLAGS})
target_link_libraries(AsanNoinstTest ${ASAN_UNITTEST_NOINST_LIBS})
# Test with ASan instrumentation. Link with ASan dynamic runtime.
add_executable(AsanTest
${COMPILER_RT_GTEST_SOURCE}
${ASAN_INST_TEST_SOURCES})
set_target_compile_flags(AsanTest ${ASAN_UNITTEST_INSTRUMENTED_CFLAGS})
set_target_link_flags(AsanTest ${ASAN_UNITTEST_INSTRUMENTED_LINK_FLAGS})
target_link_libraries(AsanTest ${ASAN_UNITTEST_INSTRUMENTED_LIBS})
# Setup correct output directory and link flags.
set_target_properties(AsanNoinstTest AsanTest PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# Add unit tests to the test suite.
add_dependencies(AsanUnitTests AsanNoinstTest AsanTest)
endforeach()
endif()

View File

@@ -0,0 +1,274 @@
//===-- asan_asm_test.cc --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#if defined(__linux__) && \
(!defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3)
// Assembly instrumentation is broken on x86 Android (x86 + PIC + shared runtime
// library). See https://github.com/google/sanitizers/issues/353
#if defined(__x86_64__) || \
(defined(__i386__) && defined(__SSE2__) && !defined(__ANDROID__))
#include <emmintrin.h>
namespace {
template<typename T> void asm_write(T *ptr, T val);
template<typename T> T asm_read(T *ptr);
template<typename T> void asm_rep_movs(T *dst, T *src, size_t n);
} // End of anonymous namespace
#endif // defined(__x86_64__) || (defined(__i386__) && defined(__SSE2__))
#if defined(__x86_64__)
namespace {
#define DECLARE_ASM_WRITE(Type, Size, Mov, Reg) \
template<> void asm_write<Type>(Type *ptr, Type val) { \
__asm__( \
Mov " %[val], (%[ptr]) \n\t" \
: \
: [ptr] "r" (ptr), [val] Reg (val) \
: "memory" \
); \
}
#define DECLARE_ASM_READ(Type, Size, Mov, Reg) \
template<> Type asm_read<Type>(Type *ptr) { \
Type res; \
__asm__( \
Mov " (%[ptr]), %[res] \n\t" \
: [res] Reg (res) \
: [ptr] "r" (ptr) \
: "memory" \
); \
return res; \
}
#define DECLARE_ASM_REP_MOVS(Type, Movs) \
template <> \
void asm_rep_movs<Type>(Type * dst, Type * src, size_t size) { \
__asm__("rep " Movs " \n\t" \
: "+D"(dst), "+S"(src), "+c"(size) \
: \
: "memory"); \
}
DECLARE_ASM_WRITE(U8, "8", "movq", "r");
DECLARE_ASM_READ(U8, "8", "movq", "=r");
DECLARE_ASM_REP_MOVS(U8, "movsq");
} // End of anonymous namespace
#endif // defined(__x86_64__)
#if defined(__i386__) && defined(__SSE2__) && !defined(__ANDROID__)
namespace {
#define DECLARE_ASM_WRITE(Type, Size, Mov, Reg) \
template<> void asm_write<Type>(Type *ptr, Type val) { \
__asm__( \
Mov " %[val], (%[ptr]) \n\t" \
: \
: [ptr] "r" (ptr), [val] Reg (val) \
: "memory" \
); \
}
#define DECLARE_ASM_READ(Type, Size, Mov, Reg) \
template<> Type asm_read<Type>(Type *ptr) { \
Type res; \
__asm__( \
Mov " (%[ptr]), %[res] \n\t" \
: [res] Reg (res) \
: [ptr] "r" (ptr) \
: "memory" \
); \
return res; \
}
#define DECLARE_ASM_REP_MOVS(Type, Movs) \
template <> \
void asm_rep_movs<Type>(Type * dst, Type * src, size_t size) { \
__asm__("rep " Movs " \n\t" \
: "+D"(dst), "+S"(src), "+c"(size) \
: \
: "memory"); \
}
} // End of anonymous namespace
#endif // defined(__i386__) && defined(__SSE2__)
#if defined(__x86_64__) || \
(defined(__i386__) && defined(__SSE2__) && !defined(__ANDROID__))
namespace {
DECLARE_ASM_WRITE(U1, "1", "movb", "r");
DECLARE_ASM_WRITE(U2, "2", "movw", "r");
DECLARE_ASM_WRITE(U4, "4", "movl", "r");
DECLARE_ASM_WRITE(__m128i, "16", "movaps", "x");
DECLARE_ASM_READ(U1, "1", "movb", "=r");
DECLARE_ASM_READ(U2, "2", "movw", "=r");
DECLARE_ASM_READ(U4, "4", "movl", "=r");
DECLARE_ASM_READ(__m128i, "16", "movaps", "=x");
DECLARE_ASM_REP_MOVS(U1, "movsb");
DECLARE_ASM_REP_MOVS(U2, "movsw");
DECLARE_ASM_REP_MOVS(U4, "movsl");
template<typename T> void TestAsmWrite(const char *DeathPattern) {
T *buf = new T;
EXPECT_DEATH(asm_write(&buf[1], static_cast<T>(0)), DeathPattern);
T var = 0x12;
asm_write(&var, static_cast<T>(0x21));
ASSERT_EQ(static_cast<T>(0x21), var);
delete buf;
}
template<> void TestAsmWrite<__m128i>(const char *DeathPattern) {
char *buf = new char[16];
char *p = buf + 16;
if (((uintptr_t) p % 16) != 0)
p = buf + 8;
assert(((uintptr_t) p % 16) == 0);
__m128i val = _mm_set1_epi16(0x1234);
EXPECT_DEATH(asm_write<__m128i>((__m128i*) p, val), DeathPattern);
__m128i var = _mm_set1_epi16(0x4321);
asm_write(&var, val);
ASSERT_EQ(0x1234, _mm_extract_epi16(var, 0));
delete [] buf;
}
template<typename T> void TestAsmRead(const char *DeathPattern) {
T *buf = new T;
EXPECT_DEATH(asm_read(&buf[1]), DeathPattern);
T var = 0x12;
ASSERT_EQ(static_cast<T>(0x12), asm_read(&var));
delete buf;
}
template<> void TestAsmRead<__m128i>(const char *DeathPattern) {
char *buf = new char[16];
char *p = buf + 16;
if (((uintptr_t) p % 16) != 0)
p = buf + 8;
assert(((uintptr_t) p % 16) == 0);
EXPECT_DEATH(asm_read<__m128i>((__m128i*) p), DeathPattern);
__m128i val = _mm_set1_epi16(0x1234);
ASSERT_EQ(0x1234, _mm_extract_epi16(asm_read(&val), 0));
delete [] buf;
}
U4 AsmLoad(U4 *a) {
U4 r;
__asm__("movl (%[a]), %[r] \n\t" : [r] "=r" (r) : [a] "r" (a) : "memory");
return r;
}
void AsmStore(U4 r, U4 *a) {
__asm__("movl %[r], (%[a]) \n\t" : : [a] "r" (a), [r] "r" (r) : "memory");
}
template <typename T>
void TestAsmRepMovs(const char *DeathPatternRead,
const char *DeathPatternWrite) {
T src_good[4] = { 0x0, 0x1, 0x2, 0x3 };
T dst_good[4] = {};
asm_rep_movs(dst_good, src_good, 4);
ASSERT_EQ(static_cast<T>(0x0), dst_good[0]);
ASSERT_EQ(static_cast<T>(0x1), dst_good[1]);
ASSERT_EQ(static_cast<T>(0x2), dst_good[2]);
ASSERT_EQ(static_cast<T>(0x3), dst_good[3]);
T dst_bad[3];
EXPECT_DEATH(asm_rep_movs(dst_bad, src_good, 4), DeathPatternWrite);
T src_bad[3] = { 0x0, 0x1, 0x2 };
EXPECT_DEATH(asm_rep_movs(dst_good, src_bad, 4), DeathPatternRead);
T* dp = dst_bad + 4;
T* sp = src_bad + 4;
asm_rep_movs(dp, sp, 0);
}
} // End of anonymous namespace
TEST(AddressSanitizer, asm_load_store) {
U4* buf = new U4[2];
EXPECT_DEATH(AsmLoad(&buf[3]), "READ of size 4");
EXPECT_DEATH(AsmStore(0x1234, &buf[3]), "WRITE of size 4");
delete [] buf;
}
TEST(AddressSanitizer, asm_rw) {
TestAsmWrite<U1>("WRITE of size 1");
TestAsmWrite<U2>("WRITE of size 2");
TestAsmWrite<U4>("WRITE of size 4");
#if defined(__x86_64__)
TestAsmWrite<U8>("WRITE of size 8");
#endif // defined(__x86_64__)
TestAsmWrite<__m128i>("WRITE of size 16");
TestAsmRead<U1>("READ of size 1");
TestAsmRead<U2>("READ of size 2");
TestAsmRead<U4>("READ of size 4");
#if defined(__x86_64__)
TestAsmRead<U8>("READ of size 8");
#endif // defined(__x86_64__)
TestAsmRead<__m128i>("READ of size 16");
}
TEST(AddressSanitizer, asm_flags) {
long magic = 0x1234;
long r = 0x0;
#if defined(__x86_64__) && !defined(__ILP32__)
__asm__("xorq %%rax, %%rax \n\t"
"movq (%[p]), %%rax \n\t"
"sete %%al \n\t"
"movzbq %%al, %[r] \n\t"
: [r] "=r"(r)
: [p] "r"(&magic)
: "rax", "memory");
#else
__asm__("xorl %%eax, %%eax \n\t"
"movl (%[p]), %%eax \n\t"
"sete %%al \n\t"
"movzbl %%al, %[r] \n\t"
: [r] "=r"(r)
: [p] "r"(&magic)
: "eax", "memory");
#endif // defined(__x86_64__) && !defined(__ILP32__)
ASSERT_EQ(0x1, r);
}
TEST(AddressSanitizer, asm_rep_movs) {
TestAsmRepMovs<U1>("READ of size 1", "WRITE of size 1");
TestAsmRepMovs<U2>("READ of size 2", "WRITE of size 2");
TestAsmRepMovs<U4>("READ of size 4", "WRITE of size 4");
#if defined(__x86_64__)
TestAsmRepMovs<U8>("READ of size 8", "WRITE of size 8");
#endif // defined(__x86_64__)
}
#endif // defined(__x86_64__) || (defined(__i386__) && defined(__SSE2__))
#endif // defined(__linux__)

View File

@@ -0,0 +1,85 @@
//===-- asan_benchmarks_test.cc ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Some benchmarks for the instrumented code.
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
template<class T>
__attribute__((noinline))
static void ManyAccessFunc(T *x, size_t n_elements, size_t n_iter) {
for (size_t iter = 0; iter < n_iter; iter++) {
break_optimization(0);
// hand unroll the loop to stress the reg alloc.
for (size_t i = 0; i <= n_elements - 16; i += 16) {
x[i + 0] = i;
x[i + 1] = i;
x[i + 2] = i;
x[i + 3] = i;
x[i + 4] = i;
x[i + 5] = i;
x[i + 6] = i;
x[i + 7] = i;
x[i + 8] = i;
x[i + 9] = i;
x[i + 10] = i;
x[i + 11] = i;
x[i + 12] = i;
x[i + 13] = i;
x[i + 14] = i;
x[i + 15] = i;
}
}
}
TEST(AddressSanitizer, ManyAccessBenchmark) {
size_t kLen = 1024;
int *int_array = new int[kLen];
ManyAccessFunc(int_array, kLen, 1 << 24);
delete [] int_array;
}
// access 7 char elements in a 7 byte array (i.e. on the border).
__attribute__((noinline))
static void BorderAccessFunc(char *x, size_t n_iter) {
for (size_t iter = 0; iter < n_iter; iter++) {
break_optimization(x);
x[0] = 0;
x[1] = 0;
x[2] = 0;
x[3] = 0;
x[4] = 0;
x[5] = 0;
x[6] = 0;
}
}
TEST(AddressSanitizer, BorderAccessBenchmark) {
char *char_7_array = new char[7];
BorderAccessFunc(char_7_array, 1 << 30);
delete [] char_7_array;
}
static void FunctionWithLargeStack() {
int stack[1000];
Ident(stack);
}
TEST(AddressSanitizer, FakeStackBenchmark) {
for (int i = 0; i < 10000000; i++)
Ident(&FunctionWithLargeStack)();
}
int main(int argc, char **argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@@ -0,0 +1,27 @@
// See http://llvm.org/bugs/show_bug.cgi?id=11468
#include <stdio.h>
#include <string>
class Action {
public:
Action() {}
void PrintString(const std::string& msg) const {
fprintf(stderr, "%s\n", msg.c_str());
}
void Throw(const char& arg) const {
PrintString("PrintString called!"); // this line is important
throw arg;
}
};
int main() {
const Action a;
fprintf(stderr, "&a before = %p\n", &a);
try {
a.Throw('c');
} catch(const char&) {
fprintf(stderr, "&a in catch = %p\n", &a);
}
fprintf(stderr, "&a final = %p\n", &a);
return 0;
}

View File

@@ -0,0 +1,152 @@
//===-- asan_fake_stack_test.cc -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Tests for FakeStack.
// This test file should be compiled w/o asan instrumentation.
//===----------------------------------------------------------------------===//
#include "asan_fake_stack.h"
#include "asan_test_utils.h"
#include "sanitizer_common/sanitizer_common.h"
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <map>
namespace __asan {
TEST(FakeStack, FlagsSize) {
EXPECT_EQ(FakeStack::SizeRequiredForFlags(10), 1U << 5);
EXPECT_EQ(FakeStack::SizeRequiredForFlags(11), 1U << 6);
EXPECT_EQ(FakeStack::SizeRequiredForFlags(20), 1U << 15);
}
TEST(FakeStack, RequiredSize) {
// for (int i = 15; i < 20; i++) {
// uptr alloc_size = FakeStack::RequiredSize(i);
// printf("%zdK ==> %zd\n", 1 << (i - 10), alloc_size);
// }
EXPECT_EQ(FakeStack::RequiredSize(15), 365568U);
EXPECT_EQ(FakeStack::RequiredSize(16), 727040U);
EXPECT_EQ(FakeStack::RequiredSize(17), 1449984U);
EXPECT_EQ(FakeStack::RequiredSize(18), 2895872U);
EXPECT_EQ(FakeStack::RequiredSize(19), 5787648U);
}
TEST(FakeStack, FlagsOffset) {
for (uptr stack_size_log = 15; stack_size_log <= 20; stack_size_log++) {
uptr stack_size = 1UL << stack_size_log;
uptr offset = 0;
for (uptr class_id = 0; class_id < FakeStack::kNumberOfSizeClasses;
class_id++) {
uptr frame_size = FakeStack::BytesInSizeClass(class_id);
uptr num_flags = stack_size / frame_size;
EXPECT_EQ(offset, FakeStack::FlagsOffset(stack_size_log, class_id));
// printf("%zd: %zd => %zd %zd\n", stack_size_log, class_id, offset,
// FakeStack::FlagsOffset(stack_size_log, class_id));
offset += num_flags;
}
}
}
#if !defined(_WIN32) // FIXME: Fails due to OOM on Windows.
TEST(FakeStack, CreateDestroy) {
for (int i = 0; i < 1000; i++) {
for (uptr stack_size_log = 20; stack_size_log <= 22; stack_size_log++) {
FakeStack *fake_stack = FakeStack::Create(stack_size_log);
fake_stack->Destroy(0);
}
}
}
#endif
TEST(FakeStack, ModuloNumberOfFrames) {
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, 0), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<15)), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<10)), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<9)), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<8)), 1U<<8);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<15) + 1), 1U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 0), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<9), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<8), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<7), 1U<<7);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 0), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 1), 1U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 15), 15U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 16), 0U);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 17), 1U);
}
TEST(FakeStack, GetFrame) {
const uptr stack_size_log = 20;
const uptr stack_size = 1 << stack_size_log;
FakeStack *fs = FakeStack::Create(stack_size_log);
u8 *base = fs->GetFrame(stack_size_log, 0, 0);
EXPECT_EQ(base, reinterpret_cast<u8 *>(fs) +
fs->SizeRequiredForFlags(stack_size_log) + 4096);
EXPECT_EQ(base + 0*stack_size + 64 * 7, fs->GetFrame(stack_size_log, 0, 7U));
EXPECT_EQ(base + 1*stack_size + 128 * 3, fs->GetFrame(stack_size_log, 1, 3U));
EXPECT_EQ(base + 2*stack_size + 256 * 5, fs->GetFrame(stack_size_log, 2, 5U));
fs->Destroy(0);
}
TEST(FakeStack, Allocate) {
const uptr stack_size_log = 19;
FakeStack *fs = FakeStack::Create(stack_size_log);
std::map<FakeFrame *, uptr> s;
for (int iter = 0; iter < 2; iter++) {
s.clear();
for (uptr cid = 0; cid < FakeStack::kNumberOfSizeClasses; cid++) {
uptr n = FakeStack::NumberOfFrames(stack_size_log, cid);
uptr bytes_in_class = FakeStack::BytesInSizeClass(cid);
for (uptr j = 0; j < n; j++) {
FakeFrame *ff = fs->Allocate(stack_size_log, cid, 0);
uptr x = reinterpret_cast<uptr>(ff);
EXPECT_TRUE(s.insert(std::make_pair(ff, cid)).second);
EXPECT_EQ(x, fs->AddrIsInFakeStack(x));
EXPECT_EQ(x, fs->AddrIsInFakeStack(x + 1));
EXPECT_EQ(x, fs->AddrIsInFakeStack(x + bytes_in_class - 1));
EXPECT_NE(x, fs->AddrIsInFakeStack(x + bytes_in_class));
}
// We are out of fake stack, so Allocate should return 0.
EXPECT_EQ(0UL, fs->Allocate(stack_size_log, cid, 0));
}
for (std::map<FakeFrame *, uptr>::iterator it = s.begin(); it != s.end();
++it) {
fs->Deallocate(reinterpret_cast<uptr>(it->first), it->second);
}
}
fs->Destroy(0);
}
static void RecursiveFunction(FakeStack *fs, int depth) {
uptr class_id = depth / 3;
FakeFrame *ff = fs->Allocate(fs->stack_size_log(), class_id, 0);
if (depth) {
RecursiveFunction(fs, depth - 1);
RecursiveFunction(fs, depth - 1);
}
fs->Deallocate(reinterpret_cast<uptr>(ff), class_id);
}
TEST(FakeStack, RecursiveStressTest) {
const uptr stack_size_log = 16;
FakeStack *fs = FakeStack::Create(stack_size_log);
RecursiveFunction(fs, 22); // with 26 runs for 2-3 seconds.
fs->Destroy(0);
}
} // namespace __asan

View File

@@ -0,0 +1,45 @@
//===-- asan_globals_test.cc ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Some globals in a separate file.
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
char glob1[1];
char glob2[2];
char glob3[3];
char glob4[4];
char glob5[5];
char glob6[6];
char glob7[7];
char glob8[8];
char glob9[9];
char glob10[10];
char glob11[11];
char glob12[12];
char glob13[13];
char glob14[14];
char glob15[15];
char glob16[16];
char glob17[17];
char glob1000[1000];
char glob10000[10000];
char glob100000[100000];
static char static10[10];
int GlobalsTest(int zero) {
static char func_static15[15];
glob5[zero] = 0;
static10[zero] = 0;
func_static15[zero] = 0;
return glob5[1] + func_static15[2];
}

View File

@@ -0,0 +1,420 @@
//===-- asan_interface_test.cc --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include <sanitizer/allocator_interface.h>
#include <sanitizer/asan_interface.h>
#include <vector>
TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(0));
const size_t sizes[] = { 1, 30, 1<<30 };
for (size_t i = 0; i < 3; i++) {
EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(sizes[i]));
}
}
static const char* kGetAllocatedSizeErrorMsg =
"attempting to call __sanitizer_get_allocated_size";
TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
const size_t kArraySize = 100;
char *array = Ident((char*)malloc(kArraySize));
int *int_ptr = Ident(new int);
// Allocated memory is owned by allocator. Allocated size should be
// equal to requested size.
EXPECT_EQ(true, __sanitizer_get_ownership(array));
EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(array));
EXPECT_EQ(true, __sanitizer_get_ownership(int_ptr));
EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(int_ptr));
// We cannot call GetAllocatedSize from the memory we didn't map,
// and from the interior pointers (not returned by previous malloc).
void *wild_addr = (void*)0x1;
EXPECT_FALSE(__sanitizer_get_ownership(wild_addr));
EXPECT_DEATH(__sanitizer_get_allocated_size(wild_addr),
kGetAllocatedSizeErrorMsg);
EXPECT_FALSE(__sanitizer_get_ownership(array + kArraySize / 2));
EXPECT_DEATH(__sanitizer_get_allocated_size(array + kArraySize / 2),
kGetAllocatedSizeErrorMsg);
// NULL is not owned, but is a valid argument for
// __sanitizer_get_allocated_size().
EXPECT_FALSE(__sanitizer_get_ownership(NULL));
EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL));
// When memory is freed, it's not owned, and call to GetAllocatedSize
// is forbidden.
free(array);
EXPECT_FALSE(__sanitizer_get_ownership(array));
EXPECT_DEATH(__sanitizer_get_allocated_size(array),
kGetAllocatedSizeErrorMsg);
delete int_ptr;
void *zero_alloc = Ident(malloc(0));
if (zero_alloc != 0) {
// If malloc(0) is not null, this pointer is owned and should have valid
// allocated size.
EXPECT_TRUE(__sanitizer_get_ownership(zero_alloc));
// Allocated size is 0 or 1 depending on the allocator used.
EXPECT_LT(__sanitizer_get_allocated_size(zero_alloc), 2U);
}
free(zero_alloc);
}
TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
size_t before_malloc, after_malloc, after_free;
char *array;
const size_t kMallocSize = 100;
before_malloc = __sanitizer_get_current_allocated_bytes();
array = Ident((char*)malloc(kMallocSize));
after_malloc = __sanitizer_get_current_allocated_bytes();
EXPECT_EQ(before_malloc + kMallocSize, after_malloc);
free(array);
after_free = __sanitizer_get_current_allocated_bytes();
EXPECT_EQ(before_malloc, after_free);
}
TEST(AddressSanitizerInterface, GetHeapSizeTest) {
// ASan allocator does not keep huge chunks in free list, but unmaps them.
// The chunk should be greater than the quarantine size,
// otherwise it will be stuck in quarantine instead of being unmaped.
static const size_t kLargeMallocSize = (1 << 28) + 1; // 256M
free(Ident(malloc(kLargeMallocSize))); // Drain quarantine.
size_t old_heap_size = __sanitizer_get_heap_size();
for (int i = 0; i < 3; i++) {
// fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
free(Ident(malloc(kLargeMallocSize)));
EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size());
}
}
static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357};
static const size_t kManyThreadsIterations = 250;
static const size_t kManyThreadsNumThreads =
(SANITIZER_WORDSIZE == 32) ? 40 : 200;
static void *ManyThreadsWithStatsWorker(void *arg) {
(void)arg;
for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
for (size_t size_index = 0; size_index < 4; size_index++) {
free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
}
}
// Just one large allocation.
free(Ident(malloc(1 << 20)));
return 0;
}
TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
size_t before_test, after_test, i;
pthread_t threads[kManyThreadsNumThreads];
before_test = __sanitizer_get_current_allocated_bytes();
for (i = 0; i < kManyThreadsNumThreads; i++) {
PTHREAD_CREATE(&threads[i], 0,
(void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
}
for (i = 0; i < kManyThreadsNumThreads; i++) {
PTHREAD_JOIN(threads[i], 0);
}
after_test = __sanitizer_get_current_allocated_bytes();
// ASan stats also reflect memory usage of internal ASan RTL structs,
// so we can't check for equality here.
EXPECT_LT(after_test, before_test + (1UL<<20));
}
static void DoDoubleFree() {
int *x = Ident(new int);
delete Ident(x);
delete Ident(x);
}
static void MyDeathCallback() {
fprintf(stderr, "MyDeathCallback\n");
fflush(0); // On Windows, stderr doesn't flush on crash.
}
TEST(AddressSanitizerInterface, DeathCallbackTest) {
__asan_set_death_callback(MyDeathCallback);
EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
__asan_set_death_callback(NULL);
}
#define GOOD_ACCESS(ptr, offset) \
EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset))
#define BAD_ACCESS(ptr, offset) \
EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset))
#if !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3
static const char* kUseAfterPoisonErrorMessage = "use-after-poison";
TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
char *array = Ident((char*)malloc(120));
// poison array[40..80)
__asan_poison_memory_region(array + 40, 40);
GOOD_ACCESS(array, 39);
GOOD_ACCESS(array, 80);
BAD_ACCESS(array, 40);
BAD_ACCESS(array, 60);
BAD_ACCESS(array, 79);
char value;
EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage);
__asan_unpoison_memory_region(array + 40, 40);
// access previously poisoned memory.
GOOD_ACCESS(array, 40);
GOOD_ACCESS(array, 79);
free(array);
}
TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
char *array = Ident((char*)malloc(120));
// Poison [0..40) and [80..120)
__asan_poison_memory_region(array, 40);
__asan_poison_memory_region(array + 80, 40);
BAD_ACCESS(array, 20);
GOOD_ACCESS(array, 60);
BAD_ACCESS(array, 100);
// Poison whole array - [0..120)
__asan_poison_memory_region(array, 120);
BAD_ACCESS(array, 60);
// Unpoison [24..96)
__asan_unpoison_memory_region(array + 24, 72);
BAD_ACCESS(array, 23);
GOOD_ACCESS(array, 24);
GOOD_ACCESS(array, 60);
GOOD_ACCESS(array, 95);
BAD_ACCESS(array, 96);
free(array);
}
#endif // !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3
TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
// Vector of capacity 20
char *vec = Ident((char*)malloc(20));
__asan_poison_memory_region(vec, 20);
for (size_t i = 0; i < 7; i++) {
// Simulate push_back.
__asan_unpoison_memory_region(vec + i, 1);
GOOD_ACCESS(vec, i);
BAD_ACCESS(vec, i + 1);
}
for (size_t i = 7; i > 0; i--) {
// Simulate pop_back.
__asan_poison_memory_region(vec + i - 1, 1);
BAD_ACCESS(vec, i - 1);
if (i > 1) GOOD_ACCESS(vec, i - 2);
}
free(vec);
}
#if !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3
// Make sure that each aligned block of size "2^granularity" doesn't have
// "true" value before "false" value.
static void MakeShadowValid(bool *shadow, int length, int granularity) {
bool can_be_poisoned = true;
for (int i = length - 1; i >= 0; i--) {
if (!shadow[i])
can_be_poisoned = false;
if (!can_be_poisoned)
shadow[i] = false;
if (i % (1 << granularity) == 0) {
can_be_poisoned = true;
}
}
}
TEST(AddressSanitizerInterface, PoisoningStressTest) {
const size_t kSize = 24;
bool expected[kSize];
char *arr = Ident((char*)malloc(kSize));
for (size_t l1 = 0; l1 < kSize; l1++) {
for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
for (size_t l2 = 0; l2 < kSize; l2++) {
for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
// Poison [l1, l1+s1), [l2, l2+s2) and check result.
__asan_unpoison_memory_region(arr, kSize);
__asan_poison_memory_region(arr + l1, s1);
__asan_poison_memory_region(arr + l2, s2);
memset(expected, false, kSize);
memset(expected + l1, true, s1);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
memset(expected + l2, true, s2);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
for (size_t i = 0; i < kSize; i++) {
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
}
// Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
__asan_poison_memory_region(arr, kSize);
__asan_unpoison_memory_region(arr + l1, s1);
__asan_unpoison_memory_region(arr + l2, s2);
memset(expected, true, kSize);
memset(expected + l1, false, s1);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
memset(expected + l2, false, s2);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
for (size_t i = 0; i < kSize; i++) {
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
}
}
}
}
}
free(arr);
}
#endif // !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3
TEST(AddressSanitizerInterface, GlobalRedzones) {
GOOD_ACCESS(glob1, 1 - 1);
GOOD_ACCESS(glob2, 2 - 1);
GOOD_ACCESS(glob3, 3 - 1);
GOOD_ACCESS(glob4, 4 - 1);
GOOD_ACCESS(glob5, 5 - 1);
GOOD_ACCESS(glob6, 6 - 1);
GOOD_ACCESS(glob7, 7 - 1);
GOOD_ACCESS(glob8, 8 - 1);
GOOD_ACCESS(glob9, 9 - 1);
GOOD_ACCESS(glob10, 10 - 1);
GOOD_ACCESS(glob11, 11 - 1);
GOOD_ACCESS(glob12, 12 - 1);
GOOD_ACCESS(glob13, 13 - 1);
GOOD_ACCESS(glob14, 14 - 1);
GOOD_ACCESS(glob15, 15 - 1);
GOOD_ACCESS(glob16, 16 - 1);
GOOD_ACCESS(glob17, 17 - 1);
GOOD_ACCESS(glob1000, 1000 - 1);
GOOD_ACCESS(glob10000, 10000 - 1);
GOOD_ACCESS(glob100000, 100000 - 1);
BAD_ACCESS(glob1, 1);
BAD_ACCESS(glob2, 2);
BAD_ACCESS(glob3, 3);
BAD_ACCESS(glob4, 4);
BAD_ACCESS(glob5, 5);
BAD_ACCESS(glob6, 6);
BAD_ACCESS(glob7, 7);
BAD_ACCESS(glob8, 8);
BAD_ACCESS(glob9, 9);
BAD_ACCESS(glob10, 10);
BAD_ACCESS(glob11, 11);
BAD_ACCESS(glob12, 12);
BAD_ACCESS(glob13, 13);
BAD_ACCESS(glob14, 14);
BAD_ACCESS(glob15, 15);
BAD_ACCESS(glob16, 16);
BAD_ACCESS(glob17, 17);
BAD_ACCESS(glob1000, 1000);
BAD_ACCESS(glob1000, 1100); // Redzone is at least 101 bytes.
BAD_ACCESS(glob10000, 10000);
BAD_ACCESS(glob10000, 11000); // Redzone is at least 1001 bytes.
BAD_ACCESS(glob100000, 100000);
BAD_ACCESS(glob100000, 110000); // Redzone is at least 10001 bytes.
}
TEST(AddressSanitizerInterface, PoisonedRegion) {
size_t rz = 16;
for (size_t size = 1; size <= 64; size++) {
char *p = new char[size];
for (size_t beg = 0; beg < size + rz; beg++) {
for (size_t end = beg; end < size + rz; end++) {
void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg);
if (beg == end) {
EXPECT_FALSE(first_poisoned);
} else if (beg < size && end <= size) {
EXPECT_FALSE(first_poisoned);
} else if (beg >= size) {
EXPECT_EQ(p + beg, first_poisoned);
} else {
EXPECT_GT(end, size);
EXPECT_EQ(p + size, first_poisoned);
}
}
}
delete [] p;
}
}
// This is a performance benchmark for manual runs.
// asan's memset interceptor calls mem_is_zero for the entire shadow region.
// the profile should look like this:
// 89.10% [.] __memset_sse2
// 10.50% [.] __sanitizer::mem_is_zero
// I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles
// than memset itself.
TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) {
size_t size = 1 << 20;
char *x = new char[size];
for (int i = 0; i < 100000; i++)
Ident(memset)(x, 0, size);
delete [] x;
}
// Same here, but we run memset with small sizes.
TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) {
size_t size = 32;
char *x = new char[size];
for (int i = 0; i < 100000000; i++)
Ident(memset)(x, 0, size);
delete [] x;
}
static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";
TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
char *array = Ident((char*)malloc(120));
__asan_unpoison_memory_region(array, 120);
// Try to unpoison not owned memory
EXPECT_DEATH(__asan_unpoison_memory_region(array, 121),
kInvalidUnpoisonMessage);
EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120),
kInvalidUnpoisonMessage);
__asan_poison_memory_region(array, 120);
// Try to poison not owned memory.
EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage);
EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120),
kInvalidPoisonMessage);
free(array);
}
TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
std::vector<char *> pointers;
std::vector<size_t> sizes;
const size_t kNumMallocs = 1 << 9;
for (size_t i = 0; i < kNumMallocs; i++) {
size_t size = i * 100 + 1;
pointers.push_back((char*)malloc(size));
sizes.push_back(size);
}
for (size_t i = 0; i < 4000000; i++) {
EXPECT_FALSE(__sanitizer_get_ownership(&pointers));
EXPECT_FALSE(__sanitizer_get_ownership((void*)0x1234));
size_t idx = i % kNumMallocs;
EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx]));
EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx]));
}
for (size_t i = 0, n = pointers.size(); i < n; i++)
free(pointers[i]);
}
TEST(AddressSanitizerInterface, HandleNoReturnTest) {
char array[40];
__asan_poison_memory_region(array, sizeof(array));
BAD_ACCESS(array, 20);
__asan_handle_no_return();
// It unpoisons the whole thread stack.
GOOD_ACCESS(array, 20);
}

View File

@@ -0,0 +1,37 @@
//===-- asan_internal_interface_test.cc -----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_interface_internal.h"
#include "asan_test_utils.h"
#include <vector>
TEST(AddressSanitizerInternalInterface, SetShadow) {
std::vector<char> buffer(17, 0xff);
__asan_set_shadow_00((uptr)buffer.data(), buffer.size());
EXPECT_EQ(std::vector<char>(buffer.size(), 0x00), buffer);
__asan_set_shadow_f1((uptr)buffer.data(), buffer.size());
EXPECT_EQ(std::vector<char>(buffer.size(), 0xf1), buffer);
__asan_set_shadow_f2((uptr)buffer.data(), buffer.size());
EXPECT_EQ(std::vector<char>(buffer.size(), 0xf2), buffer);
__asan_set_shadow_f3((uptr)buffer.data(), buffer.size());
EXPECT_EQ(std::vector<char>(buffer.size(), 0xf3), buffer);
__asan_set_shadow_f5((uptr)buffer.data(), buffer.size());
EXPECT_EQ(std::vector<char>(buffer.size(), 0xf5), buffer);
__asan_set_shadow_f8((uptr)buffer.data(), buffer.size());
EXPECT_EQ(std::vector<char>(buffer.size(), 0xf8), buffer);
}

View File

@@ -0,0 +1,236 @@
//===-- asan_test_mac.cc --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#include "asan_mac_test.h"
#include <malloc/malloc.h>
#include <AvailabilityMacros.h> // For MAC_OS_X_VERSION_*
#include <CoreFoundation/CFString.h>
TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
EXPECT_DEATH(
CFAllocatorDefaultDoubleFree(NULL),
"attempting double-free");
}
void CFAllocator_DoubleFreeOnPthread() {
pthread_t child;
PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
PTHREAD_JOIN(child, NULL); // Shouldn't be reached.
}
TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
}
namespace {
void *GLOB;
void *CFAllocatorAllocateToGlob(void *unused) {
GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
return NULL;
}
void *CFAllocatorDeallocateFromGlob(void *unused) {
char *p = (char*)GLOB;
p[100] = 'A'; // ASan should report an error here.
CFAllocatorDeallocate(NULL, GLOB);
return NULL;
}
void CFAllocator_PassMemoryToAnotherThread() {
pthread_t th1, th2;
PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
PTHREAD_JOIN(th1, NULL);
PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
PTHREAD_JOIN(th2, NULL);
}
TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
"heap-buffer-overflow");
}
} // namespace
// TODO(glider): figure out whether we still need these tests. Is it correct
// to intercept the non-default CFAllocators?
TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
EXPECT_DEATH(
CFAllocatorSystemDefaultDoubleFree(),
"attempting double-free");
}
// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
}
TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
}
// For libdispatch tests below we check that ASan got to the shadow byte
// legend, i.e. managed to print the thread stacks (this almost certainly
// means that the libdispatch task creation has been intercepted correctly).
TEST(AddressSanitizerMac, GCDDispatchAsync) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDDispatchSync) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDDispatchAfter) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDSourceEvent) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDSourceCancel) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte legend");
}
TEST(AddressSanitizerMac, GCDGroupAsync) {
// Make sure the whole ASan report is printed, i.e. that we don't die
// on a CHECK.
EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte legend");
}
void *MallocIntrospectionLockWorker(void *_) {
const int kNumPointers = 100;
int i;
void *pointers[kNumPointers];
for (i = 0; i < kNumPointers; i++) {
pointers[i] = malloc(i + 1);
}
for (i = 0; i < kNumPointers; i++) {
free(pointers[i]);
}
return NULL;
}
void *MallocIntrospectionLockForker(void *_) {
pid_t result = fork();
if (result == -1) {
perror("fork");
}
assert(result != -1);
if (result == 0) {
// Call malloc in the child process to make sure we won't deadlock.
void *ptr = malloc(42);
free(ptr);
exit(0);
} else {
// Return in the parent process.
return NULL;
}
}
TEST(AddressSanitizerMac, MallocIntrospectionLock) {
// Incorrect implementation of force_lock and force_unlock in our malloc zone
// will cause forked processes to deadlock.
// TODO(glider): need to detect that none of the child processes deadlocked.
const int kNumWorkers = 5, kNumIterations = 100;
int i, iter;
for (iter = 0; iter < kNumIterations; iter++) {
pthread_t workers[kNumWorkers], forker;
for (i = 0; i < kNumWorkers; i++) {
PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
}
PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
for (i = 0; i < kNumWorkers; i++) {
PTHREAD_JOIN(workers[i], 0);
}
PTHREAD_JOIN(forker, 0);
}
}
void *TSDAllocWorker(void *test_key) {
if (test_key) {
void *mem = malloc(10);
pthread_setspecific(*(pthread_key_t*)test_key, mem);
}
return NULL;
}
TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
pthread_t th;
pthread_key_t test_key;
pthread_key_create(&test_key, CallFreeOnWorkqueue);
PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
PTHREAD_JOIN(th, NULL);
pthread_key_delete(test_key);
}
// Test that CFStringCreateCopy does not copy constant strings.
TEST(AddressSanitizerMac, CFStringCreateCopy) {
CFStringRef str = CFSTR("Hello world!\n");
CFStringRef str2 = CFStringCreateCopy(0, str);
EXPECT_EQ(str, str2);
}
TEST(AddressSanitizerMac, NSObjectOOB) {
// Make sure that our allocators are used for NSObjects.
EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
}
// Make sure that correct pointer is passed to free() when deallocating a
// NSURL object.
// See https://github.com/google/sanitizers/issues/70.
TEST(AddressSanitizerMac, NSURLDeallocation) {
TestNSURLDeallocation();
}
// See https://github.com/google/sanitizers/issues/109.
TEST(AddressSanitizerMac, Mstats) {
malloc_statistics_t stats1, stats2;
malloc_zone_statistics(/*all zones*/NULL, &stats1);
const size_t kMallocSize = 100000;
void *alloc = Ident(malloc(kMallocSize));
malloc_zone_statistics(/*all zones*/NULL, &stats2);
EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
free(alloc);
// Even the default OSX allocator may not change the stats after free().
}

View File

@@ -0,0 +1,19 @@
extern "C" {
void *CFAllocatorDefaultDoubleFree(void *unused);
void CFAllocatorSystemDefaultDoubleFree();
void CFAllocatorMallocDoubleFree();
void CFAllocatorMallocZoneDoubleFree();
void CallFreeOnWorkqueue(void *mem);
void TestGCDDispatchAsync();
void TestGCDDispatchSync();
void TestGCDReuseWqthreadsAsync();
void TestGCDReuseWqthreadsSync();
void TestGCDDispatchAfter();
void TestGCDInTSDDestructor();
void TestGCDSourceEvent();
void TestGCDSourceCancel();
void TestGCDGroupAsync();
void TestOOBNSObjects();
void TestNSURLDeallocation();
void TestPassCFMemoryToAnotherThread();
}

View File

@@ -0,0 +1,241 @@
// Mac OS X 10.6 or higher only.
#include <dispatch/dispatch.h>
#include <pthread.h> // for pthread_yield_np()
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#import <CoreFoundation/CFBase.h>
#import <Foundation/NSObject.h>
#import <Foundation/NSURL.h>
// This is a (void*)(void*) function so it can be passed to pthread_create.
void *CFAllocatorDefaultDoubleFree(void *unused) {
void *mem = CFAllocatorAllocate(kCFAllocatorDefault, 5, 0);
CFAllocatorDeallocate(kCFAllocatorDefault, mem);
CFAllocatorDeallocate(kCFAllocatorDefault, mem);
return 0;
}
void CFAllocatorSystemDefaultDoubleFree() {
void *mem = CFAllocatorAllocate(kCFAllocatorSystemDefault, 5, 0);
CFAllocatorDeallocate(kCFAllocatorSystemDefault, mem);
CFAllocatorDeallocate(kCFAllocatorSystemDefault, mem);
}
void CFAllocatorMallocDoubleFree() {
void *mem = CFAllocatorAllocate(kCFAllocatorMalloc, 5, 0);
CFAllocatorDeallocate(kCFAllocatorMalloc, mem);
CFAllocatorDeallocate(kCFAllocatorMalloc, mem);
}
void CFAllocatorMallocZoneDoubleFree() {
void *mem = CFAllocatorAllocate(kCFAllocatorMallocZone, 5, 0);
CFAllocatorDeallocate(kCFAllocatorMallocZone, mem);
CFAllocatorDeallocate(kCFAllocatorMallocZone, mem);
}
__attribute__((noinline))
void access_memory(char *a) {
*a = 0;
}
// Test the +load instrumentation.
// Because the +load methods are invoked before anything else is initialized,
// it makes little sense to wrap the code below into a gTest test case.
// If AddressSanitizer doesn't instrument the +load method below correctly,
// everything will just crash.
char kStartupStr[] =
"If your test didn't crash, AddressSanitizer is instrumenting "
"the +load methods correctly.";
@interface LoadSomething : NSObject {
}
@end
@implementation LoadSomething
+(void) load {
for (size_t i = 0; i < strlen(kStartupStr); i++) {
access_memory(&kStartupStr[i]); // make sure no optimizations occur.
}
// Don't print anything here not to interfere with the death tests.
}
@end
void worker_do_alloc(int size) {
char * volatile mem = (char * volatile)malloc(size);
mem[0] = 0; // Ok
free(mem);
}
void worker_do_crash(int size) {
char * volatile mem = (char * volatile)malloc(size);
access_memory(&mem[size]); // BOOM
free(mem);
}
// Used by the GCD tests to avoid a race between the worker thread reporting a
// memory error and the main thread which may exit with exit code 0 before
// that.
void wait_forever() {
volatile bool infinite = true;
while (infinite) pthread_yield_np();
}
// Tests for the Grand Central Dispatch. See
// http://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
// for the reference.
void TestGCDDispatchAsync() {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_block_t block = ^{ worker_do_crash(1024); };
// dispatch_async() runs the task on a worker thread that does not go through
// pthread_create(). We need to verify that AddressSanitizer notices that the
// thread has started.
dispatch_async(queue, block);
wait_forever();
}
void TestGCDDispatchSync() {
dispatch_queue_t queue = dispatch_get_global_queue(2, 0);
dispatch_block_t block = ^{ worker_do_crash(1024); };
// dispatch_sync() runs the task on a worker thread that does not go through
// pthread_create(). We need to verify that AddressSanitizer notices that the
// thread has started.
dispatch_sync(queue, block);
wait_forever();
}
// libdispatch spawns a rather small number of threads and reuses them. We need
// to make sure AddressSanitizer handles the reusing correctly.
void TestGCDReuseWqthreadsAsync() {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_block_t block_alloc = ^{ worker_do_alloc(1024); };
dispatch_block_t block_crash = ^{ worker_do_crash(1024); };
for (int i = 0; i < 100; i++) {
dispatch_async(queue, block_alloc);
}
dispatch_async(queue, block_crash);
wait_forever();
}
// Try to trigger abnormal behaviour of dispatch_sync() being unhandled by us.
void TestGCDReuseWqthreadsSync() {
dispatch_queue_t queue[4];
queue[0] = dispatch_get_global_queue(2, 0);
queue[1] = dispatch_get_global_queue(0, 0);
queue[2] = dispatch_get_global_queue(-2, 0);
queue[3] = dispatch_queue_create("my_queue", NULL);
dispatch_block_t block_alloc = ^{ worker_do_alloc(1024); };
dispatch_block_t block_crash = ^{ worker_do_crash(1024); };
for (int i = 0; i < 1000; i++) {
dispatch_sync(queue[i % 4], block_alloc);
}
dispatch_sync(queue[3], block_crash);
wait_forever();
}
void TestGCDDispatchAfter() {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_block_t block_crash = ^{ worker_do_crash(1024); };
// Schedule the event one second from the current time.
dispatch_time_t milestone =
dispatch_time(DISPATCH_TIME_NOW, 1LL * NSEC_PER_SEC);
dispatch_after(milestone, queue, block_crash);
wait_forever();
}
void worker_do_deallocate(void *ptr) {
free(ptr);
}
void CallFreeOnWorkqueue(void *tsd) {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_block_t block_dealloc = ^{ worker_do_deallocate(tsd); };
dispatch_async(queue, block_dealloc);
// Do not wait for the worker to free the memory -- nobody is going to touch
// it.
}
void TestGCDSourceEvent() {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_source_t timer =
dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
// Schedule the timer one second from the current time.
dispatch_time_t milestone =
dispatch_time(DISPATCH_TIME_NOW, 1LL * NSEC_PER_SEC);
dispatch_source_set_timer(timer, milestone, DISPATCH_TIME_FOREVER, 0);
char * volatile mem = (char * volatile)malloc(10);
dispatch_source_set_event_handler(timer, ^{
access_memory(&mem[10]);
});
dispatch_resume(timer);
wait_forever();
}
void TestGCDSourceCancel() {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_source_t timer =
dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
// Schedule the timer one second from the current time.
dispatch_time_t milestone =
dispatch_time(DISPATCH_TIME_NOW, 1LL * NSEC_PER_SEC);
dispatch_source_set_timer(timer, milestone, DISPATCH_TIME_FOREVER, 0);
char * volatile mem = (char * volatile)malloc(10);
// Both dispatch_source_set_cancel_handler() and
// dispatch_source_set_event_handler() use dispatch_barrier_async_f().
// It's tricky to test dispatch_source_set_cancel_handler() separately,
// so we test both here.
dispatch_source_set_event_handler(timer, ^{
dispatch_source_cancel(timer);
});
dispatch_source_set_cancel_handler(timer, ^{
access_memory(&mem[10]);
});
dispatch_resume(timer);
wait_forever();
}
void TestGCDGroupAsync() {
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_t group = dispatch_group_create();
char * volatile mem = (char * volatile)malloc(10);
dispatch_group_async(group, queue, ^{
access_memory(&mem[10]);
});
dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
wait_forever();
}
@interface FixedArray : NSObject {
int items[10];
}
@end
@implementation FixedArray
-(int) access: (int)index {
return items[index];
}
@end
void TestOOBNSObjects() {
id anObject = [FixedArray new];
[anObject access:1];
[anObject access:11];
[anObject release];
}
void TestNSURLDeallocation() {
NSURL *base =
[[NSURL alloc] initWithString:@"file://localhost/Users/glider/Library/"];
volatile NSURL *u =
[[NSURL alloc] initWithString:@"Saved Application State"
relativeToURL:base];
[u release];
[base release];
}

View File

@@ -0,0 +1,242 @@
//===-- asan_mem_test.cc --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#include <vector>
template<typename T>
void MemSetOOBTestTemplate(size_t length) {
if (length == 0) return;
size_t size = Ident(sizeof(T) * length);
T *array = Ident((T*)malloc(size));
int element = Ident(42);
int zero = Ident(0);
void *(*MEMSET)(void *s, int c, size_t n) = Ident(memset);
// memset interval inside array
MEMSET(array, element, size);
MEMSET(array, element, size - 1);
MEMSET(array + length - 1, element, sizeof(T));
MEMSET(array, element, 1);
// memset 0 bytes
MEMSET(array - 10, element, zero);
MEMSET(array - 1, element, zero);
MEMSET(array, element, zero);
MEMSET(array + length, 0, zero);
MEMSET(array + length + 1, 0, zero);
// try to memset bytes to the right of array
EXPECT_DEATH(MEMSET(array, 0, size + 1),
RightOOBWriteMessage(0));
EXPECT_DEATH(MEMSET((char*)(array + length) - 1, element, 6),
RightOOBWriteMessage(0));
EXPECT_DEATH(MEMSET(array + 1, element, size + sizeof(T)),
RightOOBWriteMessage(0));
// whole interval is to the right
EXPECT_DEATH(MEMSET(array + length + 1, 0, 10),
RightOOBWriteMessage(sizeof(T)));
// try to memset bytes to the left of array
EXPECT_DEATH(MEMSET((char*)array - 1, element, size),
LeftOOBWriteMessage(1));
EXPECT_DEATH(MEMSET((char*)array - 5, 0, 6),
LeftOOBWriteMessage(5));
if (length >= 100) {
// Large OOB, we find it only if the redzone is large enough.
EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
LeftOOBWriteMessage(5 * sizeof(T)));
}
// whole interval is to the left
EXPECT_DEATH(MEMSET(array - 2, 0, sizeof(T)),
LeftOOBWriteMessage(2 * sizeof(T)));
// try to memset bytes both to the left & to the right
EXPECT_DEATH(MEMSET((char*)array - 2, element, size + 4),
LeftOOBWriteMessage(2));
free(array);
}
TEST(AddressSanitizer, MemSetOOBTest) {
MemSetOOBTestTemplate<char>(100);
MemSetOOBTestTemplate<int>(5);
MemSetOOBTestTemplate<double>(256);
// We can test arrays of structres/classes here, but what for?
}
// Try to allocate two arrays of 'size' bytes that are near each other.
// Strictly speaking we are not guaranteed to find such two pointers,
// but given the structure of asan's allocator we will.
static bool AllocateTwoAdjacentArrays(char **x1, char **x2, size_t size) {
std::vector<uintptr_t> v;
bool res = false;
for (size_t i = 0; i < 1000U && !res; i++) {
v.push_back(reinterpret_cast<uintptr_t>(new char[size]));
if (i == 0) continue;
sort(v.begin(), v.end());
for (size_t j = 1; j < v.size(); j++) {
assert(v[j] > v[j-1]);
if ((size_t)(v[j] - v[j-1]) < size * 2) {
*x2 = reinterpret_cast<char*>(v[j]);
*x1 = reinterpret_cast<char*>(v[j-1]);
res = true;
break;
}
}
}
for (size_t i = 0; i < v.size(); i++) {
char *p = reinterpret_cast<char *>(v[i]);
if (res && p == *x1) continue;
if (res && p == *x2) continue;
delete [] p;
}
return res;
}
TEST(AddressSanitizer, LargeOOBInMemset) {
for (size_t size = 200; size < 100000; size += size / 2) {
char *x1, *x2;
if (!Ident(AllocateTwoAdjacentArrays)(&x1, &x2, size))
continue;
// fprintf(stderr, " large oob memset: %p %p %zd\n", x1, x2, size);
// Do a memset on x1 with huge out-of-bound access that will end up in x2.
EXPECT_DEATH(Ident(memset)(x1, 0, size * 2),
"is located 0 bytes to the right");
delete [] x1;
delete [] x2;
return;
}
assert(0 && "Did not find two adjacent malloc-ed pointers");
}
// Same test for memcpy and memmove functions
template <typename T, class M>
void MemTransferOOBTestTemplate(size_t length) {
if (length == 0) return;
size_t size = Ident(sizeof(T) * length);
T *src = Ident((T*)malloc(size));
T *dest = Ident((T*)malloc(size));
int zero = Ident(0);
// valid transfer of bytes between arrays
M::transfer(dest, src, size);
M::transfer(dest + 1, src, size - sizeof(T));
M::transfer(dest, src + length - 1, sizeof(T));
M::transfer(dest, src, 1);
// transfer zero bytes
M::transfer(dest - 1, src, 0);
M::transfer(dest + length, src, zero);
M::transfer(dest, src - 1, zero);
M::transfer(dest, src, zero);
// try to change mem to the right of dest
EXPECT_DEATH(M::transfer(dest + 1, src, size),
RightOOBWriteMessage(0));
EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
RightOOBWriteMessage(0));
// try to change mem to the left of dest
EXPECT_DEATH(M::transfer(dest - 2, src, size),
LeftOOBWriteMessage(2 * sizeof(T)));
EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
LeftOOBWriteMessage(3));
// try to access mem to the right of src
EXPECT_DEATH(M::transfer(dest, src + 2, size),
RightOOBReadMessage(0));
EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
RightOOBReadMessage(0));
// try to access mem to the left of src
EXPECT_DEATH(M::transfer(dest, src - 1, size),
LeftOOBReadMessage(sizeof(T)));
EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
LeftOOBReadMessage(6));
// Generally we don't need to test cases where both accessing src and writing
// to dest address to poisoned memory.
T *big_src = Ident((T*)malloc(size * 2));
T *big_dest = Ident((T*)malloc(size * 2));
// try to change mem to both sides of dest
EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
LeftOOBWriteMessage(sizeof(T)));
// try to access mem to both sides of src
EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
LeftOOBReadMessage(2 * sizeof(T)));
free(src);
free(dest);
free(big_src);
free(big_dest);
}
class MemCpyWrapper {
public:
static void* transfer(void *to, const void *from, size_t size) {
return Ident(memcpy)(to, from, size);
}
};
TEST(AddressSanitizer, MemCpyOOBTest) {
MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
}
class MemMoveWrapper {
public:
static void* transfer(void *to, const void *from, size_t size) {
return Ident(memmove)(to, from, size);
}
};
TEST(AddressSanitizer, MemMoveOOBTest) {
MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
}
TEST(AddressSanitizer, MemCmpOOBTest) {
size_t size = Ident(100);
char *s1 = MallocAndMemsetString(size);
char *s2 = MallocAndMemsetString(size);
// Normal memcmp calls.
Ident(memcmp(s1, s2, size));
Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
Ident(memcmp(s1 - 1, s2 - 1, 0));
// One of arguments points to not allocated memory.
EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
// Hit unallocated memory and die.
EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
// Zero bytes are not terminators and don't prevent from OOB.
s1[size - 1] = '\0';
s2[size - 1] = '\0';
EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
// Even if the buffers differ in the first byte, we still assume that
// memcmp may access the whole buffer and thus reporting the overflow here:
s1[0] = 1;
s2[0] = 123;
EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
free(s1);
free(s2);
}

View File

@@ -0,0 +1,271 @@
//===-- asan_noinst_test.cc -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// This test file should be compiled w/o asan instrumentation.
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_test_utils.h"
#include <sanitizer/allocator_interface.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // for memset()
#include <algorithm>
#include <vector>
#include <limits>
using namespace __sanitizer;
// ATTENTION!
// Please don't call intercepted functions (including malloc() and friends)
// in this test. The static runtime library is linked explicitly (without
// -fsanitize=address), thus the interceptors do not work correctly on OS X.
// Make sure __asan_init is called before any test case is run.
struct AsanInitCaller {
AsanInitCaller() {
__asan_init();
}
};
static AsanInitCaller asan_init_caller;
TEST(AddressSanitizer, InternalSimpleDeathTest) {
EXPECT_DEATH(exit(1), "");
}
static void MallocStress(size_t n) {
u32 seed = my_rand();
BufferedStackTrace stack1;
stack1.trace_buffer[0] = 0xa123;
stack1.trace_buffer[1] = 0xa456;
stack1.size = 2;
BufferedStackTrace stack2;
stack2.trace_buffer[0] = 0xb123;
stack2.trace_buffer[1] = 0xb456;
stack2.size = 2;
BufferedStackTrace stack3;
stack3.trace_buffer[0] = 0xc123;
stack3.trace_buffer[1] = 0xc456;
stack3.size = 2;
std::vector<void *> vec;
for (size_t i = 0; i < n; i++) {
if ((i % 3) == 0) {
if (vec.empty()) continue;
size_t idx = my_rand_r(&seed) % vec.size();
void *ptr = vec[idx];
vec[idx] = vec.back();
vec.pop_back();
__asan::asan_free(ptr, &stack1, __asan::FROM_MALLOC);
} else {
size_t size = my_rand_r(&seed) % 1000 + 1;
switch ((my_rand_r(&seed) % 128)) {
case 0: size += 1024; break;
case 1: size += 2048; break;
case 2: size += 4096; break;
}
size_t alignment = 1 << (my_rand_r(&seed) % 10 + 1);
char *ptr = (char*)__asan::asan_memalign(alignment, size,
&stack2, __asan::FROM_MALLOC);
EXPECT_EQ(size, __asan::asan_malloc_usable_size(ptr, 0, 0));
vec.push_back(ptr);
ptr[0] = 0;
ptr[size-1] = 0;
ptr[size/2] = 0;
}
}
for (size_t i = 0; i < vec.size(); i++)
__asan::asan_free(vec[i], &stack3, __asan::FROM_MALLOC);
}
TEST(AddressSanitizer, NoInstMallocTest) {
MallocStress(ASAN_LOW_MEMORY ? 300000 : 1000000);
}
TEST(AddressSanitizer, ThreadedMallocStressTest) {
const int kNumThreads = 4;
const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
pthread_t t[kNumThreads];
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
(void*)kNumIterations);
}
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_JOIN(t[i], 0);
}
}
static void PrintShadow(const char *tag, uptr ptr, size_t size) {
fprintf(stderr, "%s shadow: %lx size % 3ld: ", tag, (long)ptr, (long)size);
uptr prev_shadow = 0;
for (sptr i = -32; i < (sptr)size + 32; i++) {
uptr shadow = __asan::MemToShadow(ptr + i);
if (i == 0 || i == (sptr)size)
fprintf(stderr, ".");
if (shadow != prev_shadow) {
prev_shadow = shadow;
fprintf(stderr, "%02x", (int)*(u8*)shadow);
}
}
fprintf(stderr, "\n");
}
TEST(AddressSanitizer, DISABLED_InternalPrintShadow) {
for (size_t size = 1; size <= 513; size++) {
char *ptr = new char[size];
PrintShadow("m", (uptr)ptr, size);
delete [] ptr;
PrintShadow("f", (uptr)ptr, size);
}
}
TEST(AddressSanitizer, QuarantineTest) {
BufferedStackTrace stack;
stack.trace_buffer[0] = 0x890;
stack.size = 1;
const int size = 1024;
void *p = __asan::asan_malloc(size, &stack);
__asan::asan_free(p, &stack, __asan::FROM_MALLOC);
size_t i;
size_t max_i = 1 << 30;
for (i = 0; i < max_i; i++) {
void *p1 = __asan::asan_malloc(size, &stack);
__asan::asan_free(p1, &stack, __asan::FROM_MALLOC);
if (p1 == p) break;
}
EXPECT_GE(i, 10000U);
EXPECT_LT(i, max_i);
}
void *ThreadedQuarantineTestWorker(void *unused) {
(void)unused;
u32 seed = my_rand();
BufferedStackTrace stack;
stack.trace_buffer[0] = 0x890;
stack.size = 1;
for (size_t i = 0; i < 1000; i++) {
void *p = __asan::asan_malloc(1 + (my_rand_r(&seed) % 4000), &stack);
__asan::asan_free(p, &stack, __asan::FROM_MALLOC);
}
return NULL;
}
// Check that the thread local allocators are flushed when threads are
// destroyed.
TEST(AddressSanitizer, ThreadedQuarantineTest) {
// Run the routine once to warm up ASAN internal structures to get more
// predictable incremental memory changes.
pthread_t t;
PTHREAD_CREATE(&t, NULL, ThreadedQuarantineTestWorker, 0);
PTHREAD_JOIN(t, 0);
const int n_threads = 3000;
size_t mmaped1 = __sanitizer_get_heap_size();
for (int i = 0; i < n_threads; i++) {
pthread_t t;
PTHREAD_CREATE(&t, NULL, ThreadedQuarantineTestWorker, 0);
PTHREAD_JOIN(t, 0);
size_t mmaped2 = __sanitizer_get_heap_size();
// Figure out why this much memory is required.
EXPECT_LT(mmaped2 - mmaped1, 320U * (1 << 20));
}
}
void *ThreadedOneSizeMallocStress(void *unused) {
(void)unused;
BufferedStackTrace stack;
stack.trace_buffer[0] = 0x890;
stack.size = 1;
const size_t kNumMallocs = 1000;
for (int iter = 0; iter < 1000; iter++) {
void *p[kNumMallocs];
for (size_t i = 0; i < kNumMallocs; i++) {
p[i] = __asan::asan_malloc(32, &stack);
}
for (size_t i = 0; i < kNumMallocs; i++) {
__asan::asan_free(p[i], &stack, __asan::FROM_MALLOC);
}
}
return NULL;
}
TEST(AddressSanitizer, ThreadedOneSizeMallocStressTest) {
const int kNumThreads = 4;
pthread_t t[kNumThreads];
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_CREATE(&t[i], 0, ThreadedOneSizeMallocStress, 0);
}
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_JOIN(t[i], 0);
}
}
TEST(AddressSanitizer, ShadowRegionIsPoisonedTest) {
using __asan::kHighMemEnd;
// Check that __asan_region_is_poisoned works for shadow regions.
uptr ptr = kLowShadowBeg + 200;
EXPECT_EQ(ptr, __asan_region_is_poisoned(ptr, 100));
ptr = kShadowGapBeg + 200;
EXPECT_EQ(ptr, __asan_region_is_poisoned(ptr, 100));
ptr = kHighShadowBeg + 200;
EXPECT_EQ(ptr, __asan_region_is_poisoned(ptr, 100));
}
// Test __asan_load1 & friends.
TEST(AddressSanitizer, LoadStoreCallbacks) {
typedef void (*CB)(uptr p);
CB cb[2][5] = {
{
__asan_load1, __asan_load2, __asan_load4, __asan_load8, __asan_load16,
}, {
__asan_store1, __asan_store2, __asan_store4, __asan_store8,
__asan_store16,
}
};
uptr buggy_ptr;
__asan_test_only_reported_buggy_pointer = &buggy_ptr;
BufferedStackTrace stack;
stack.trace_buffer[0] = 0x890;
stack.size = 1;
for (uptr len = 16; len <= 32; len++) {
char *ptr = (char*) __asan::asan_malloc(len, &stack);
uptr p = reinterpret_cast<uptr>(ptr);
for (uptr is_write = 0; is_write <= 1; is_write++) {
for (uptr size_log = 0; size_log <= 4; size_log++) {
uptr size = 1 << size_log;
CB call = cb[is_write][size_log];
// Iterate only size-aligned offsets.
for (uptr offset = 0; offset <= len; offset += size) {
buggy_ptr = 0;
call(p + offset);
if (offset + size <= len)
EXPECT_EQ(buggy_ptr, 0U);
else
EXPECT_EQ(buggy_ptr, p + offset);
}
}
}
__asan::asan_free(ptr, &stack, __asan::FROM_MALLOC);
}
__asan_test_only_reported_buggy_pointer = 0;
}

View File

@@ -0,0 +1,128 @@
//===-- asan_oob_test.cc --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
EXPECT_EQ(0U, ((uintptr_t)p % size));
if (size == 1) asan_write((uint8_t*)p);
else if (size == 2) asan_write((uint16_t*)p);
else if (size == 4) asan_write((uint32_t*)p);
else if (size == 8) asan_write((uint64_t*)p);
}
template<typename T>
NOINLINE void oob_test(int size, int off) {
char *p = (char*)malloc_aaa(size);
// fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
// sizeof(T), p, p + size, off);
asan_write((T*)(p + off));
free_aaa(p);
}
template<typename T>
void OOBTest() {
char expected_str[100];
for (int size = sizeof(T); size < 20; size += 5) {
for (int i = -5; i < 0; i++) {
const char *str =
"is located.*%d byte.*to the left";
sprintf(expected_str, str, abs(i));
EXPECT_DEATH(oob_test<T>(size, i), expected_str);
}
for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
oob_test<T>(size, i);
for (int i = size - sizeof(T) + 1; i <= (int)(size + 2 * sizeof(T)); i++) {
const char *str =
"is located.*%d byte.*to the right";
int off = i >= size ? (i - size) : 0;
// we don't catch unaligned partially OOB accesses.
if (i % sizeof(T)) continue;
sprintf(expected_str, str, off);
EXPECT_DEATH(oob_test<T>(size, i), expected_str);
}
}
EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
"is located.*1 byte.*to the left");
EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
"is located.*0 byte.*to the right");
}
// TODO(glider): the following tests are EXTREMELY slow on Darwin:
// AddressSanitizer.OOB_char (125503 ms)
// AddressSanitizer.OOB_int (126890 ms)
// AddressSanitizer.OOBRightTest (315605 ms)
// AddressSanitizer.SimpleStackTest (366559 ms)
TEST(AddressSanitizer, OOB_char) {
OOBTest<U1>();
}
TEST(AddressSanitizer, OOB_int) {
OOBTest<U4>();
}
TEST(AddressSanitizer, OOBRightTest) {
size_t max_access_size = SANITIZER_WORDSIZE == 64 ? 8 : 4;
for (size_t access_size = 1; access_size <= max_access_size;
access_size *= 2) {
for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
for (size_t offset = 0; offset <= 8; offset += access_size) {
void *p = malloc(alloc_size);
// allocated: [p, p + alloc_size)
// accessed: [p + offset, p + offset + access_size)
uint8_t *addr = (uint8_t*)p + offset;
if (offset + access_size <= alloc_size) {
asan_write_sized_aligned(addr, access_size);
} else {
int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
const char *str =
"is located.%d *byte.*to the right";
char expected_str[100];
sprintf(expected_str, str, outside_bytes);
EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
expected_str);
}
free(p);
}
}
}
}
TEST(AddressSanitizer, LargeOOBRightTest) {
size_t large_power_of_two = 1 << 19;
for (size_t i = 16; i <= 256; i *= 2) {
size_t size = large_power_of_two - i;
char *p = Ident(new char[size]);
EXPECT_DEATH(p[size] = 0, "is located 0 bytes to the right");
delete [] p;
}
}
TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
oob_test<U1>(10, -1);
}
TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
oob_test<U1>(kLargeMalloc, -1);
}
TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
oob_test<U1>(10, 10);
}
TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
oob_test<U1>(kLargeMalloc, kLargeMalloc);
}

View File

@@ -0,0 +1,32 @@
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
const int N = 1000;
void *x[N];
void *Thread1(void *unused) {
for (int i = 0; i < N; i++) {
fprintf(stderr, "%s %d\n", __func__, i);
free(x[i]);
}
return NULL;
}
void *Thread2(void *unused) {
for (int i = 0; i < N; i++) {
fprintf(stderr, "%s %d\n", __func__, i);
free(x[i]);
}
return NULL;
}
int main() {
for (int i = 0; i < N; i++)
x[i] = malloc(128);
pthread_t t[2];
pthread_create(&t[0], 0, Thread1, 0);
pthread_create(&t[1], 0, Thread2, 0);
pthread_join(t[0], 0);
pthread_join(t[1], 0);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,3 @@
# blacklisted functions for instrumented ASan unit test
fun:*IgnoreTest*
fun:*SomeOtherFunc*

View File

@@ -0,0 +1,50 @@
//===-- asan_test_config.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#if !defined(INCLUDED_FROM_ASAN_TEST_UTILS_H)
# error "This file should be included into asan_test_utils.h only"
#endif
#ifndef ASAN_TEST_CONFIG_H
#define ASAN_TEST_CONFIG_H
#include <string>
using std::string;
#ifndef ASAN_UAR
# error "please define ASAN_UAR"
#endif
#ifndef ASAN_HAS_EXCEPTIONS
# error "please define ASAN_HAS_EXCEPTIONS"
#endif
#ifndef ASAN_HAS_BLACKLIST
# error "please define ASAN_HAS_BLACKLIST"
#endif
#ifndef ASAN_NEEDS_SEGV
# if defined(_WIN32)
# define ASAN_NEEDS_SEGV 0
# else
# define ASAN_NEEDS_SEGV 1
# endif
#endif
#ifndef ASAN_AVOID_EXPENSIVE_TESTS
# define ASAN_AVOID_EXPENSIVE_TESTS 0
#endif
#define ASAN_PCRE_DOTALL ""
#endif // ASAN_TEST_CONFIG_H

View File

@@ -0,0 +1,56 @@
//===-- asan_test_main.cc -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#include "sanitizer_common/sanitizer_platform.h"
// Default ASAN_OPTIONS for the unit tests.
extern "C" const char* __asan_default_options() {
#if SANITIZER_MAC
// On Darwin, we default to `abort_on_error=1`, which would make tests run
// much slower. Let's override this and run lit tests with 'abort_on_error=0'
// and make sure we do not overwhelm the syslog while testing. Also, let's
// turn symbolization off to speed up testing, especially when not running
// with llvm-symbolizer but with atos.
return "symbolize=false:abort_on_error=0:log_to_syslog=0";
#elif SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
// On PowerPC and ARM Thumb, a couple tests involving pthread_exit fail due to
// leaks detected by LSan. Symbolized leak report is required to apply a
// suppression for this known problem.
return "";
#else
// Let's turn symbolization off to speed up testing (more than 3 times speedup
// observed).
return "symbolize=false";
#endif
}
namespace __sanitizer {
bool ReexecDisabled() {
#if __has_feature(address_sanitizer) && SANITIZER_MAC
// Allow re-exec in instrumented unit tests on Darwin. Technically, we only
// need this for 10.10 and below, where re-exec is required for the
// interceptors to work, but to avoid duplicating the version detection logic,
// let's just allow re-exec for all Darwin versions. On newer OS versions,
// returning 'false' doesn't do anything anyway, because we don't re-exec.
return false;
#else
return true;
#endif
}
} // namespace __sanitizer
int main(int argc, char **argv) {
testing::GTEST_FLAG(death_test_style) = "threadsafe";
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

Some files were not shown because too many files have changed in this diff Show More