You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.246
Former-commit-id: 0c7ce5b1a7851e13f22acfd379b7f9fb304e4833
This commit is contained in:
parent
a7724cd563
commit
279aa8f685
466
external/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp
vendored
Normal file
466
external/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp
vendored
Normal file
@ -0,0 +1,466 @@
|
||||
//===- BypassSlowDivision.cpp - Bypass slow division ----------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains an optimization for div and rem on architectures that
|
||||
// execute short instructions significantly faster than longer instructions.
|
||||
// For example, on Intel Atom 32-bit divides are slow enough that during
|
||||
// runtime it is profitable to check the value of the operands, and if they are
|
||||
// positive and less than 256 use an unsigned 8-bit divide.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/None.h"
|
||||
#include "llvm/ADT/Optional.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/DerivedTypes.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/Instruction.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/Type.h"
|
||||
#include "llvm/IR/Value.h"
|
||||
#include "llvm/Support/Casting.h"
|
||||
#include "llvm/Support/KnownBits.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "bypass-slow-division"
|
||||
|
||||
namespace {
|
||||
|
||||
struct QuotRemPair {
|
||||
Value *Quotient;
|
||||
Value *Remainder;
|
||||
|
||||
QuotRemPair(Value *InQuotient, Value *InRemainder)
|
||||
: Quotient(InQuotient), Remainder(InRemainder) {}
|
||||
};
|
||||
|
||||
/// A quotient and remainder, plus a BB from which they logically "originate".
|
||||
/// If you use Quotient or Remainder in a Phi node, you should use BB as its
|
||||
/// corresponding predecessor.
|
||||
struct QuotRemWithBB {
|
||||
BasicBlock *BB = nullptr;
|
||||
Value *Quotient = nullptr;
|
||||
Value *Remainder = nullptr;
|
||||
};
|
||||
|
||||
using DivCacheTy = DenseMap<DivRemMapKey, QuotRemPair>;
|
||||
using BypassWidthsTy = DenseMap<unsigned, unsigned>;
|
||||
using VisitedSetTy = SmallPtrSet<Instruction *, 4>;
|
||||
|
||||
enum ValueRange {
|
||||
/// Operand definitely fits into BypassType. No runtime checks are needed.
|
||||
VALRNG_KNOWN_SHORT,
|
||||
/// A runtime check is required, as value range is unknown.
|
||||
VALRNG_UNKNOWN,
|
||||
/// Operand is unlikely to fit into BypassType. The bypassing should be
|
||||
/// disabled.
|
||||
VALRNG_LIKELY_LONG
|
||||
};
|
||||
|
||||
class FastDivInsertionTask {
|
||||
bool IsValidTask = false;
|
||||
Instruction *SlowDivOrRem = nullptr;
|
||||
IntegerType *BypassType = nullptr;
|
||||
BasicBlock *MainBB = nullptr;
|
||||
|
||||
bool isHashLikeValue(Value *V, VisitedSetTy &Visited);
|
||||
ValueRange getValueRange(Value *Op, VisitedSetTy &Visited);
|
||||
QuotRemWithBB createSlowBB(BasicBlock *Successor);
|
||||
QuotRemWithBB createFastBB(BasicBlock *Successor);
|
||||
QuotRemPair createDivRemPhiNodes(QuotRemWithBB &LHS, QuotRemWithBB &RHS,
|
||||
BasicBlock *PhiBB);
|
||||
Value *insertOperandRuntimeCheck(Value *Op1, Value *Op2);
|
||||
Optional<QuotRemPair> insertFastDivAndRem();
|
||||
|
||||
bool isSignedOp() {
|
||||
return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
|
||||
SlowDivOrRem->getOpcode() == Instruction::SRem;
|
||||
}
|
||||
|
||||
bool isDivisionOp() {
|
||||
return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
|
||||
SlowDivOrRem->getOpcode() == Instruction::UDiv;
|
||||
}
|
||||
|
||||
Type *getSlowType() { return SlowDivOrRem->getType(); }
|
||||
|
||||
public:
|
||||
FastDivInsertionTask(Instruction *I, const BypassWidthsTy &BypassWidths);
|
||||
|
||||
Value *getReplacement(DivCacheTy &Cache);
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
FastDivInsertionTask::FastDivInsertionTask(Instruction *I,
|
||||
const BypassWidthsTy &BypassWidths) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::UDiv:
|
||||
case Instruction::SDiv:
|
||||
case Instruction::URem:
|
||||
case Instruction::SRem:
|
||||
SlowDivOrRem = I;
|
||||
break;
|
||||
default:
|
||||
// I is not a div/rem operation.
|
||||
return;
|
||||
}
|
||||
|
||||
// Skip division on vector types. Only optimize integer instructions.
|
||||
IntegerType *SlowType = dyn_cast<IntegerType>(SlowDivOrRem->getType());
|
||||
if (!SlowType)
|
||||
return;
|
||||
|
||||
// Skip if this bitwidth is not bypassed.
|
||||
auto BI = BypassWidths.find(SlowType->getBitWidth());
|
||||
if (BI == BypassWidths.end())
|
||||
return;
|
||||
|
||||
// Get type for div/rem instruction with bypass bitwidth.
|
||||
IntegerType *BT = IntegerType::get(I->getContext(), BI->second);
|
||||
BypassType = BT;
|
||||
|
||||
// The original basic block.
|
||||
MainBB = I->getParent();
|
||||
|
||||
// The instruction is indeed a slow div or rem operation.
|
||||
IsValidTask = true;
|
||||
}
|
||||
|
||||
/// Reuses previously-computed dividend or remainder from the current BB if
|
||||
/// operands and operation are identical. Otherwise calls insertFastDivAndRem to
|
||||
/// perform the optimization and caches the resulting dividend and remainder.
|
||||
/// If no replacement can be generated, nullptr is returned.
|
||||
Value *FastDivInsertionTask::getReplacement(DivCacheTy &Cache) {
|
||||
// First, make sure that the task is valid.
|
||||
if (!IsValidTask)
|
||||
return nullptr;
|
||||
|
||||
// Then, look for a value in Cache.
|
||||
Value *Dividend = SlowDivOrRem->getOperand(0);
|
||||
Value *Divisor = SlowDivOrRem->getOperand(1);
|
||||
DivRemMapKey Key(isSignedOp(), Dividend, Divisor);
|
||||
auto CacheI = Cache.find(Key);
|
||||
|
||||
if (CacheI == Cache.end()) {
|
||||
// If previous instance does not exist, try to insert fast div.
|
||||
Optional<QuotRemPair> OptResult = insertFastDivAndRem();
|
||||
// Bail out if insertFastDivAndRem has failed.
|
||||
if (!OptResult)
|
||||
return nullptr;
|
||||
CacheI = Cache.insert({Key, *OptResult}).first;
|
||||
}
|
||||
|
||||
QuotRemPair &Value = CacheI->second;
|
||||
return isDivisionOp() ? Value.Quotient : Value.Remainder;
|
||||
}
|
||||
|
||||
/// \brief Check if a value looks like a hash.
|
||||
///
|
||||
/// The routine is expected to detect values computed using the most common hash
|
||||
/// algorithms. Typically, hash computations end with one of the following
|
||||
/// instructions:
|
||||
///
|
||||
/// 1) MUL with a constant wider than BypassType
|
||||
/// 2) XOR instruction
|
||||
///
|
||||
/// And even if we are wrong and the value is not a hash, it is still quite
|
||||
/// unlikely that such values will fit into BypassType.
|
||||
///
|
||||
/// To detect string hash algorithms like FNV we have to look through PHI-nodes.
|
||||
/// It is implemented as a depth-first search for values that look neither long
|
||||
/// nor hash-like.
|
||||
bool FastDivInsertionTask::isHashLikeValue(Value *V, VisitedSetTy &Visited) {
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (!I)
|
||||
return false;
|
||||
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Xor:
|
||||
return true;
|
||||
case Instruction::Mul: {
|
||||
// After Constant Hoisting pass, long constants may be represented as
|
||||
// bitcast instructions. As a result, some constants may look like an
|
||||
// instruction at first, and an additional check is necessary to find out if
|
||||
// an operand is actually a constant.
|
||||
Value *Op1 = I->getOperand(1);
|
||||
ConstantInt *C = dyn_cast<ConstantInt>(Op1);
|
||||
if (!C && isa<BitCastInst>(Op1))
|
||||
C = dyn_cast<ConstantInt>(cast<BitCastInst>(Op1)->getOperand(0));
|
||||
return C && C->getValue().getMinSignedBits() > BypassType->getBitWidth();
|
||||
}
|
||||
case Instruction::PHI:
|
||||
// Stop IR traversal in case of a crazy input code. This limits recursion
|
||||
// depth.
|
||||
if (Visited.size() >= 16)
|
||||
return false;
|
||||
// Do not visit nodes that have been visited already. We return true because
|
||||
// it means that we couldn't find any value that doesn't look hash-like.
|
||||
if (Visited.find(I) != Visited.end())
|
||||
return true;
|
||||
Visited.insert(I);
|
||||
return llvm::all_of(cast<PHINode>(I)->incoming_values(), [&](Value *V) {
|
||||
// Ignore undef values as they probably don't affect the division
|
||||
// operands.
|
||||
return getValueRange(V, Visited) == VALRNG_LIKELY_LONG ||
|
||||
isa<UndefValue>(V);
|
||||
});
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// Check if an integer value fits into our bypass type.
|
||||
ValueRange FastDivInsertionTask::getValueRange(Value *V,
|
||||
VisitedSetTy &Visited) {
|
||||
unsigned ShortLen = BypassType->getBitWidth();
|
||||
unsigned LongLen = V->getType()->getIntegerBitWidth();
|
||||
|
||||
assert(LongLen > ShortLen && "Value type must be wider than BypassType");
|
||||
unsigned HiBits = LongLen - ShortLen;
|
||||
|
||||
const DataLayout &DL = SlowDivOrRem->getModule()->getDataLayout();
|
||||
KnownBits Known(LongLen);
|
||||
|
||||
computeKnownBits(V, Known, DL);
|
||||
|
||||
if (Known.countMinLeadingZeros() >= HiBits)
|
||||
return VALRNG_KNOWN_SHORT;
|
||||
|
||||
if (Known.countMaxLeadingZeros() < HiBits)
|
||||
return VALRNG_LIKELY_LONG;
|
||||
|
||||
// Long integer divisions are often used in hashtable implementations. It's
|
||||
// not worth bypassing such divisions because hash values are extremely
|
||||
// unlikely to have enough leading zeros. The call below tries to detect
|
||||
// values that are unlikely to fit BypassType (including hashes).
|
||||
if (isHashLikeValue(V, Visited))
|
||||
return VALRNG_LIKELY_LONG;
|
||||
|
||||
return VALRNG_UNKNOWN;
|
||||
}
|
||||
|
||||
/// Add new basic block for slow div and rem operations and put it before
|
||||
/// SuccessorBB.
|
||||
QuotRemWithBB FastDivInsertionTask::createSlowBB(BasicBlock *SuccessorBB) {
|
||||
QuotRemWithBB DivRemPair;
|
||||
DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
|
||||
MainBB->getParent(), SuccessorBB);
|
||||
IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());
|
||||
|
||||
Value *Dividend = SlowDivOrRem->getOperand(0);
|
||||
Value *Divisor = SlowDivOrRem->getOperand(1);
|
||||
|
||||
if (isSignedOp()) {
|
||||
DivRemPair.Quotient = Builder.CreateSDiv(Dividend, Divisor);
|
||||
DivRemPair.Remainder = Builder.CreateSRem(Dividend, Divisor);
|
||||
} else {
|
||||
DivRemPair.Quotient = Builder.CreateUDiv(Dividend, Divisor);
|
||||
DivRemPair.Remainder = Builder.CreateURem(Dividend, Divisor);
|
||||
}
|
||||
|
||||
Builder.CreateBr(SuccessorBB);
|
||||
return DivRemPair;
|
||||
}
|
||||
|
||||
/// Add new basic block for fast div and rem operations and put it before
|
||||
/// SuccessorBB.
|
||||
QuotRemWithBB FastDivInsertionTask::createFastBB(BasicBlock *SuccessorBB) {
|
||||
QuotRemWithBB DivRemPair;
|
||||
DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
|
||||
MainBB->getParent(), SuccessorBB);
|
||||
IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());
|
||||
|
||||
Value *Dividend = SlowDivOrRem->getOperand(0);
|
||||
Value *Divisor = SlowDivOrRem->getOperand(1);
|
||||
Value *ShortDivisorV =
|
||||
Builder.CreateCast(Instruction::Trunc, Divisor, BypassType);
|
||||
Value *ShortDividendV =
|
||||
Builder.CreateCast(Instruction::Trunc, Dividend, BypassType);
|
||||
|
||||
// udiv/urem because this optimization only handles positive numbers.
|
||||
Value *ShortQV = Builder.CreateUDiv(ShortDividendV, ShortDivisorV);
|
||||
Value *ShortRV = Builder.CreateURem(ShortDividendV, ShortDivisorV);
|
||||
DivRemPair.Quotient =
|
||||
Builder.CreateCast(Instruction::ZExt, ShortQV, getSlowType());
|
||||
DivRemPair.Remainder =
|
||||
Builder.CreateCast(Instruction::ZExt, ShortRV, getSlowType());
|
||||
Builder.CreateBr(SuccessorBB);
|
||||
|
||||
return DivRemPair;
|
||||
}
|
||||
|
||||
/// Creates Phi nodes for result of Div and Rem.
|
||||
QuotRemPair FastDivInsertionTask::createDivRemPhiNodes(QuotRemWithBB &LHS,
|
||||
QuotRemWithBB &RHS,
|
||||
BasicBlock *PhiBB) {
|
||||
IRBuilder<> Builder(PhiBB, PhiBB->begin());
|
||||
PHINode *QuoPhi = Builder.CreatePHI(getSlowType(), 2);
|
||||
QuoPhi->addIncoming(LHS.Quotient, LHS.BB);
|
||||
QuoPhi->addIncoming(RHS.Quotient, RHS.BB);
|
||||
PHINode *RemPhi = Builder.CreatePHI(getSlowType(), 2);
|
||||
RemPhi->addIncoming(LHS.Remainder, LHS.BB);
|
||||
RemPhi->addIncoming(RHS.Remainder, RHS.BB);
|
||||
return QuotRemPair(QuoPhi, RemPhi);
|
||||
}
|
||||
|
||||
/// Creates a runtime check to test whether both the divisor and dividend fit
|
||||
/// into BypassType. The check is inserted at the end of MainBB. True return
|
||||
/// value means that the operands fit. Either of the operands may be NULL if it
|
||||
/// doesn't need a runtime check.
|
||||
Value *FastDivInsertionTask::insertOperandRuntimeCheck(Value *Op1, Value *Op2) {
|
||||
assert((Op1 || Op2) && "Nothing to check");
|
||||
IRBuilder<> Builder(MainBB, MainBB->end());
|
||||
|
||||
Value *OrV;
|
||||
if (Op1 && Op2)
|
||||
OrV = Builder.CreateOr(Op1, Op2);
|
||||
else
|
||||
OrV = Op1 ? Op1 : Op2;
|
||||
|
||||
// BitMask is inverted to check if the operands are
|
||||
// larger than the bypass type
|
||||
uint64_t BitMask = ~BypassType->getBitMask();
|
||||
Value *AndV = Builder.CreateAnd(OrV, BitMask);
|
||||
|
||||
// Compare operand values
|
||||
Value *ZeroV = ConstantInt::getSigned(getSlowType(), 0);
|
||||
return Builder.CreateICmpEQ(AndV, ZeroV);
|
||||
}
|
||||
|
||||
/// Substitutes the div/rem instruction with code that checks the value of the
|
||||
/// operands and uses a shorter-faster div/rem instruction when possible.
|
||||
Optional<QuotRemPair> FastDivInsertionTask::insertFastDivAndRem() {
|
||||
Value *Dividend = SlowDivOrRem->getOperand(0);
|
||||
Value *Divisor = SlowDivOrRem->getOperand(1);
|
||||
|
||||
VisitedSetTy SetL;
|
||||
ValueRange DividendRange = getValueRange(Dividend, SetL);
|
||||
if (DividendRange == VALRNG_LIKELY_LONG)
|
||||
return None;
|
||||
|
||||
VisitedSetTy SetR;
|
||||
ValueRange DivisorRange = getValueRange(Divisor, SetR);
|
||||
if (DivisorRange == VALRNG_LIKELY_LONG)
|
||||
return None;
|
||||
|
||||
bool DividendShort = (DividendRange == VALRNG_KNOWN_SHORT);
|
||||
bool DivisorShort = (DivisorRange == VALRNG_KNOWN_SHORT);
|
||||
|
||||
if (DividendShort && DivisorShort) {
|
||||
// If both operands are known to be short then just replace the long
|
||||
// division with a short one in-place. Since we're not introducing control
|
||||
// flow in this case, narrowing the division is always a win, even if the
|
||||
// divisor is a constant (and will later get replaced by a multiplication).
|
||||
|
||||
IRBuilder<> Builder(SlowDivOrRem);
|
||||
Value *TruncDividend = Builder.CreateTrunc(Dividend, BypassType);
|
||||
Value *TruncDivisor = Builder.CreateTrunc(Divisor, BypassType);
|
||||
Value *TruncDiv = Builder.CreateUDiv(TruncDividend, TruncDivisor);
|
||||
Value *TruncRem = Builder.CreateURem(TruncDividend, TruncDivisor);
|
||||
Value *ExtDiv = Builder.CreateZExt(TruncDiv, getSlowType());
|
||||
Value *ExtRem = Builder.CreateZExt(TruncRem, getSlowType());
|
||||
return QuotRemPair(ExtDiv, ExtRem);
|
||||
}
|
||||
|
||||
if (isa<ConstantInt>(Divisor)) {
|
||||
// If the divisor is not a constant, DAGCombiner will convert it to a
|
||||
// multiplication by a magic constant. It isn't clear if it is worth
|
||||
// introducing control flow to get a narrower multiply.
|
||||
return None;
|
||||
}
|
||||
|
||||
if (DividendShort && !isSignedOp()) {
|
||||
// If the division is unsigned and Dividend is known to be short, then
|
||||
// either
|
||||
// 1) Divisor is less or equal to Dividend, and the result can be computed
|
||||
// with a short division.
|
||||
// 2) Divisor is greater than Dividend. In this case, no division is needed
|
||||
// at all: The quotient is 0 and the remainder is equal to Dividend.
|
||||
//
|
||||
// So instead of checking at runtime whether Divisor fits into BypassType,
|
||||
// we emit a runtime check to differentiate between these two cases. This
|
||||
// lets us entirely avoid a long div.
|
||||
|
||||
// Split the basic block before the div/rem.
|
||||
BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
|
||||
// Remove the unconditional branch from MainBB to SuccessorBB.
|
||||
MainBB->getInstList().back().eraseFromParent();
|
||||
QuotRemWithBB Long;
|
||||
Long.BB = MainBB;
|
||||
Long.Quotient = ConstantInt::get(getSlowType(), 0);
|
||||
Long.Remainder = Dividend;
|
||||
QuotRemWithBB Fast = createFastBB(SuccessorBB);
|
||||
QuotRemPair Result = createDivRemPhiNodes(Fast, Long, SuccessorBB);
|
||||
IRBuilder<> Builder(MainBB, MainBB->end());
|
||||
Value *CmpV = Builder.CreateICmpUGE(Dividend, Divisor);
|
||||
Builder.CreateCondBr(CmpV, Fast.BB, SuccessorBB);
|
||||
return Result;
|
||||
} else {
|
||||
// General case. Create both slow and fast div/rem pairs and choose one of
|
||||
// them at runtime.
|
||||
|
||||
// Split the basic block before the div/rem.
|
||||
BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
|
||||
// Remove the unconditional branch from MainBB to SuccessorBB.
|
||||
MainBB->getInstList().back().eraseFromParent();
|
||||
QuotRemWithBB Fast = createFastBB(SuccessorBB);
|
||||
QuotRemWithBB Slow = createSlowBB(SuccessorBB);
|
||||
QuotRemPair Result = createDivRemPhiNodes(Fast, Slow, SuccessorBB);
|
||||
Value *CmpV = insertOperandRuntimeCheck(DividendShort ? nullptr : Dividend,
|
||||
DivisorShort ? nullptr : Divisor);
|
||||
IRBuilder<> Builder(MainBB, MainBB->end());
|
||||
Builder.CreateCondBr(CmpV, Fast.BB, Slow.BB);
|
||||
return Result;
|
||||
}
|
||||
}
|
||||
|
||||
/// This optimization identifies DIV/REM instructions in a BB that can be
|
||||
/// profitably bypassed and carried out with a shorter, faster divide.
|
||||
bool llvm::bypassSlowDivision(BasicBlock *BB,
|
||||
const BypassWidthsTy &BypassWidths) {
|
||||
DivCacheTy PerBBDivCache;
|
||||
|
||||
bool MadeChange = false;
|
||||
Instruction* Next = &*BB->begin();
|
||||
while (Next != nullptr) {
|
||||
// We may add instructions immediately after I, but we want to skip over
|
||||
// them.
|
||||
Instruction* I = Next;
|
||||
Next = Next->getNextNode();
|
||||
|
||||
FastDivInsertionTask Task(I, BypassWidths);
|
||||
if (Value *Replacement = Task.getReplacement(PerBBDivCache)) {
|
||||
I->replaceAllUsesWith(Replacement);
|
||||
I->eraseFromParent();
|
||||
MadeChange = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Above we eagerly create divs and rems, as pairs, so that we can efficiently
|
||||
// create divrem machine instructions. Now erase any unused divs / rems so we
|
||||
// don't leave extra instructions sitting around.
|
||||
for (auto &KV : PerBBDivCache)
|
||||
for (Value *V : {KV.second.Quotient, KV.second.Remainder})
|
||||
RecursivelyDeleteTriviallyDeadInstructions(V);
|
||||
|
||||
return MadeChange;
|
||||
}
|
Reference in New Issue
Block a user