You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.246
Former-commit-id: 0c7ce5b1a7851e13f22acfd379b7f9fb304e4833
This commit is contained in:
parent
a7724cd563
commit
279aa8f685
391
external/llvm/lib/IR/Dominators.cpp
vendored
Normal file
391
external/llvm/lib/IR/Dominators.cpp
vendored
Normal file
@ -0,0 +1,391 @@
|
||||
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements simple dominator construction algorithms for finding
|
||||
// forward dominators. Postdominators are available in libanalysis, but are not
|
||||
// included in libvmcore, because it's not needed. Forward dominators are
|
||||
// needed to support the Verifier pass.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/ADT/DepthFirstIterator.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/IR/CFG.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/GenericDomTreeConstruction.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
// Always verify dominfo if expensive checking is enabled.
|
||||
#ifdef EXPENSIVE_CHECKS
|
||||
bool llvm::VerifyDomInfo = true;
|
||||
#else
|
||||
bool llvm::VerifyDomInfo = false;
|
||||
#endif
|
||||
static cl::opt<bool, true>
|
||||
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
|
||||
cl::desc("Verify dominator info (time consuming)"));
|
||||
|
||||
bool BasicBlockEdge::isSingleEdge() const {
|
||||
const TerminatorInst *TI = Start->getTerminator();
|
||||
unsigned NumEdgesToEnd = 0;
|
||||
for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
|
||||
if (TI->getSuccessor(i) == End)
|
||||
++NumEdgesToEnd;
|
||||
if (NumEdgesToEnd >= 2)
|
||||
return false;
|
||||
}
|
||||
assert(NumEdgesToEnd == 1);
|
||||
return true;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTree Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Provide public access to DominatorTree information. Implementation details
|
||||
// can be found in Dominators.h, GenericDomTree.h, and
|
||||
// GenericDomTreeConstruction.h.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
template class llvm::DomTreeNodeBase<BasicBlock>;
|
||||
template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
|
||||
template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
|
||||
|
||||
template struct llvm::DomTreeBuilder::Update<BasicBlock *>;
|
||||
|
||||
template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
|
||||
DomTreeBuilder::BBDomTree &DT);
|
||||
template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
|
||||
DomTreeBuilder::BBPostDomTree &DT);
|
||||
|
||||
template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
|
||||
DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
|
||||
template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
|
||||
DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
|
||||
|
||||
template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
|
||||
DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
|
||||
template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
|
||||
DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
|
||||
|
||||
template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
|
||||
DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates);
|
||||
template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
|
||||
DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates);
|
||||
|
||||
template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
|
||||
const DomTreeBuilder::BBDomTree &DT);
|
||||
template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
|
||||
const DomTreeBuilder::BBPostDomTree &DT);
|
||||
|
||||
bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
|
||||
FunctionAnalysisManager::Invalidator &) {
|
||||
// Check whether the analysis, all analyses on functions, or the function's
|
||||
// CFG have been preserved.
|
||||
auto PAC = PA.getChecker<DominatorTreeAnalysis>();
|
||||
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
|
||||
PAC.preservedSet<CFGAnalyses>());
|
||||
}
|
||||
|
||||
// dominates - Return true if Def dominates a use in User. This performs
|
||||
// the special checks necessary if Def and User are in the same basic block.
|
||||
// Note that Def doesn't dominate a use in Def itself!
|
||||
bool DominatorTree::dominates(const Instruction *Def,
|
||||
const Instruction *User) const {
|
||||
const BasicBlock *UseBB = User->getParent();
|
||||
const BasicBlock *DefBB = Def->getParent();
|
||||
|
||||
// Any unreachable use is dominated, even if Def == User.
|
||||
if (!isReachableFromEntry(UseBB))
|
||||
return true;
|
||||
|
||||
// Unreachable definitions don't dominate anything.
|
||||
if (!isReachableFromEntry(DefBB))
|
||||
return false;
|
||||
|
||||
// An instruction doesn't dominate a use in itself.
|
||||
if (Def == User)
|
||||
return false;
|
||||
|
||||
// The value defined by an invoke dominates an instruction only if it
|
||||
// dominates every instruction in UseBB.
|
||||
// A PHI is dominated only if the instruction dominates every possible use in
|
||||
// the UseBB.
|
||||
if (isa<InvokeInst>(Def) || isa<PHINode>(User))
|
||||
return dominates(Def, UseBB);
|
||||
|
||||
if (DefBB != UseBB)
|
||||
return dominates(DefBB, UseBB);
|
||||
|
||||
// Loop through the basic block until we find Def or User.
|
||||
BasicBlock::const_iterator I = DefBB->begin();
|
||||
for (; &*I != Def && &*I != User; ++I)
|
||||
/*empty*/;
|
||||
|
||||
return &*I == Def;
|
||||
}
|
||||
|
||||
// true if Def would dominate a use in any instruction in UseBB.
|
||||
// note that dominates(Def, Def->getParent()) is false.
|
||||
bool DominatorTree::dominates(const Instruction *Def,
|
||||
const BasicBlock *UseBB) const {
|
||||
const BasicBlock *DefBB = Def->getParent();
|
||||
|
||||
// Any unreachable use is dominated, even if DefBB == UseBB.
|
||||
if (!isReachableFromEntry(UseBB))
|
||||
return true;
|
||||
|
||||
// Unreachable definitions don't dominate anything.
|
||||
if (!isReachableFromEntry(DefBB))
|
||||
return false;
|
||||
|
||||
if (DefBB == UseBB)
|
||||
return false;
|
||||
|
||||
// Invoke results are only usable in the normal destination, not in the
|
||||
// exceptional destination.
|
||||
if (const auto *II = dyn_cast<InvokeInst>(Def)) {
|
||||
BasicBlock *NormalDest = II->getNormalDest();
|
||||
BasicBlockEdge E(DefBB, NormalDest);
|
||||
return dominates(E, UseBB);
|
||||
}
|
||||
|
||||
return dominates(DefBB, UseBB);
|
||||
}
|
||||
|
||||
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
|
||||
const BasicBlock *UseBB) const {
|
||||
// If the BB the edge ends in doesn't dominate the use BB, then the
|
||||
// edge also doesn't.
|
||||
const BasicBlock *Start = BBE.getStart();
|
||||
const BasicBlock *End = BBE.getEnd();
|
||||
if (!dominates(End, UseBB))
|
||||
return false;
|
||||
|
||||
// Simple case: if the end BB has a single predecessor, the fact that it
|
||||
// dominates the use block implies that the edge also does.
|
||||
if (End->getSinglePredecessor())
|
||||
return true;
|
||||
|
||||
// The normal edge from the invoke is critical. Conceptually, what we would
|
||||
// like to do is split it and check if the new block dominates the use.
|
||||
// With X being the new block, the graph would look like:
|
||||
//
|
||||
// DefBB
|
||||
// /\ . .
|
||||
// / \ . .
|
||||
// / \ . .
|
||||
// / \ | |
|
||||
// A X B C
|
||||
// | \ | /
|
||||
// . \|/
|
||||
// . NormalDest
|
||||
// .
|
||||
//
|
||||
// Given the definition of dominance, NormalDest is dominated by X iff X
|
||||
// dominates all of NormalDest's predecessors (X, B, C in the example). X
|
||||
// trivially dominates itself, so we only have to find if it dominates the
|
||||
// other predecessors. Since the only way out of X is via NormalDest, X can
|
||||
// only properly dominate a node if NormalDest dominates that node too.
|
||||
int IsDuplicateEdge = 0;
|
||||
for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
|
||||
PI != E; ++PI) {
|
||||
const BasicBlock *BB = *PI;
|
||||
if (BB == Start) {
|
||||
// If there are multiple edges between Start and End, by definition they
|
||||
// can't dominate anything.
|
||||
if (IsDuplicateEdge++)
|
||||
return false;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!dominates(End, BB))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
|
||||
Instruction *UserInst = cast<Instruction>(U.getUser());
|
||||
// A PHI in the end of the edge is dominated by it.
|
||||
PHINode *PN = dyn_cast<PHINode>(UserInst);
|
||||
if (PN && PN->getParent() == BBE.getEnd() &&
|
||||
PN->getIncomingBlock(U) == BBE.getStart())
|
||||
return true;
|
||||
|
||||
// Otherwise use the edge-dominates-block query, which
|
||||
// handles the crazy critical edge cases properly.
|
||||
const BasicBlock *UseBB;
|
||||
if (PN)
|
||||
UseBB = PN->getIncomingBlock(U);
|
||||
else
|
||||
UseBB = UserInst->getParent();
|
||||
return dominates(BBE, UseBB);
|
||||
}
|
||||
|
||||
bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
|
||||
Instruction *UserInst = cast<Instruction>(U.getUser());
|
||||
const BasicBlock *DefBB = Def->getParent();
|
||||
|
||||
// Determine the block in which the use happens. PHI nodes use
|
||||
// their operands on edges; simulate this by thinking of the use
|
||||
// happening at the end of the predecessor block.
|
||||
const BasicBlock *UseBB;
|
||||
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
|
||||
UseBB = PN->getIncomingBlock(U);
|
||||
else
|
||||
UseBB = UserInst->getParent();
|
||||
|
||||
// Any unreachable use is dominated, even if Def == User.
|
||||
if (!isReachableFromEntry(UseBB))
|
||||
return true;
|
||||
|
||||
// Unreachable definitions don't dominate anything.
|
||||
if (!isReachableFromEntry(DefBB))
|
||||
return false;
|
||||
|
||||
// Invoke instructions define their return values on the edges to their normal
|
||||
// successors, so we have to handle them specially.
|
||||
// Among other things, this means they don't dominate anything in
|
||||
// their own block, except possibly a phi, so we don't need to
|
||||
// walk the block in any case.
|
||||
if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
|
||||
BasicBlock *NormalDest = II->getNormalDest();
|
||||
BasicBlockEdge E(DefBB, NormalDest);
|
||||
return dominates(E, U);
|
||||
}
|
||||
|
||||
// If the def and use are in different blocks, do a simple CFG dominator
|
||||
// tree query.
|
||||
if (DefBB != UseBB)
|
||||
return dominates(DefBB, UseBB);
|
||||
|
||||
// Ok, def and use are in the same block. If the def is an invoke, it
|
||||
// doesn't dominate anything in the block. If it's a PHI, it dominates
|
||||
// everything in the block.
|
||||
if (isa<PHINode>(UserInst))
|
||||
return true;
|
||||
|
||||
// Otherwise, just loop through the basic block until we find Def or User.
|
||||
BasicBlock::const_iterator I = DefBB->begin();
|
||||
for (; &*I != Def && &*I != UserInst; ++I)
|
||||
/*empty*/;
|
||||
|
||||
return &*I != UserInst;
|
||||
}
|
||||
|
||||
bool DominatorTree::isReachableFromEntry(const Use &U) const {
|
||||
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
||||
|
||||
// ConstantExprs aren't really reachable from the entry block, but they
|
||||
// don't need to be treated like unreachable code either.
|
||||
if (!I) return true;
|
||||
|
||||
// PHI nodes use their operands on their incoming edges.
|
||||
if (PHINode *PN = dyn_cast<PHINode>(I))
|
||||
return isReachableFromEntry(PN->getIncomingBlock(U));
|
||||
|
||||
// Everything else uses their operands in their own block.
|
||||
return isReachableFromEntry(I->getParent());
|
||||
}
|
||||
|
||||
void DominatorTree::verifyDomTree() const {
|
||||
// Perform the expensive checks only when VerifyDomInfo is set.
|
||||
if (VerifyDomInfo && !verify()) {
|
||||
errs() << "\n~~~~~~~~~~~\n\t\tDomTree verification failed!\n~~~~~~~~~~~\n";
|
||||
print(errs());
|
||||
abort();
|
||||
}
|
||||
|
||||
Function &F = *getRoot()->getParent();
|
||||
|
||||
DominatorTree OtherDT;
|
||||
OtherDT.recalculate(F);
|
||||
if (compare(OtherDT)) {
|
||||
errs() << "DominatorTree for function " << F.getName()
|
||||
<< " is not up to date!\nComputed:\n";
|
||||
print(errs());
|
||||
errs() << "\nActual:\n";
|
||||
OtherDT.print(errs());
|
||||
errs() << "\nCFG:\n";
|
||||
F.print(errs());
|
||||
errs().flush();
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTreeAnalysis and related pass implementations
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This implements the DominatorTreeAnalysis which is used with the new pass
|
||||
// manager. It also implements some methods from utility passes.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
DominatorTree DominatorTreeAnalysis::run(Function &F,
|
||||
FunctionAnalysisManager &) {
|
||||
DominatorTree DT;
|
||||
DT.recalculate(F);
|
||||
return DT;
|
||||
}
|
||||
|
||||
AnalysisKey DominatorTreeAnalysis::Key;
|
||||
|
||||
DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
|
||||
|
||||
PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
|
||||
FunctionAnalysisManager &AM) {
|
||||
OS << "DominatorTree for function: " << F.getName() << "\n";
|
||||
AM.getResult<DominatorTreeAnalysis>(F).print(OS);
|
||||
|
||||
return PreservedAnalyses::all();
|
||||
}
|
||||
|
||||
PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
|
||||
FunctionAnalysisManager &AM) {
|
||||
AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
|
||||
|
||||
return PreservedAnalyses::all();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTreeWrapperPass Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The implementation details of the wrapper pass that holds a DominatorTree
|
||||
// suitable for use with the legacy pass manager.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
char DominatorTreeWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
|
||||
"Dominator Tree Construction", true, true)
|
||||
|
||||
bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
|
||||
DT.recalculate(F);
|
||||
return false;
|
||||
}
|
||||
|
||||
void DominatorTreeWrapperPass::verifyAnalysis() const {
|
||||
if (VerifyDomInfo)
|
||||
DT.verifyDomTree();
|
||||
}
|
||||
|
||||
void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
|
||||
DT.print(OS);
|
||||
}
|
||||
|
Reference in New Issue
Block a user