You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.234
Former-commit-id: 8071ec1a8c5eaa9be24b41745add19297608001f
This commit is contained in:
parent
f32dbaf0b2
commit
212f6bafcb
121
external/llvm/unittests/ADT/SCCIteratorTest.cpp
vendored
121
external/llvm/unittests/ADT/SCCIteratorTest.cpp
vendored
@ -1,121 +0,0 @@
|
||||
//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/ADT/SCCIterator.h"
|
||||
#include "TestGraph.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include <limits.h>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace llvm {
|
||||
|
||||
TEST(SCCIteratorTest, AllSmallGraphs) {
|
||||
// Test SCC computation against every graph with NUM_NODES nodes or less.
|
||||
// Since SCC considers every node to have an implicit self-edge, we only
|
||||
// create graphs for which every node has a self-edge.
|
||||
#define NUM_NODES 4
|
||||
#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
|
||||
typedef Graph<NUM_NODES> GT;
|
||||
|
||||
/// Enumerate all graphs using NUM_GRAPHS bits.
|
||||
static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
|
||||
for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
|
||||
++GraphDescriptor) {
|
||||
GT G;
|
||||
|
||||
// Add edges as specified by the descriptor.
|
||||
unsigned DescriptorCopy = GraphDescriptor;
|
||||
for (unsigned i = 0; i != NUM_NODES; ++i)
|
||||
for (unsigned j = 0; j != NUM_NODES; ++j) {
|
||||
// Always add a self-edge.
|
||||
if (i == j) {
|
||||
G.AddEdge(i, j);
|
||||
continue;
|
||||
}
|
||||
if (DescriptorCopy & 1)
|
||||
G.AddEdge(i, j);
|
||||
DescriptorCopy >>= 1;
|
||||
}
|
||||
|
||||
// Test the SCC logic on this graph.
|
||||
|
||||
/// NodesInSomeSCC - Those nodes which are in some SCC.
|
||||
GT::NodeSubset NodesInSomeSCC;
|
||||
|
||||
for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
|
||||
const std::vector<GT::NodeType *> &SCC = *I;
|
||||
|
||||
// Get the nodes in this SCC as a NodeSubset rather than a vector.
|
||||
GT::NodeSubset NodesInThisSCC;
|
||||
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
|
||||
NodesInThisSCC.AddNode(SCC[i]->first);
|
||||
|
||||
// There should be at least one node in every SCC.
|
||||
EXPECT_FALSE(NodesInThisSCC.isEmpty());
|
||||
|
||||
// Check that every node in the SCC is reachable from every other node in
|
||||
// the SCC.
|
||||
for (unsigned i = 0; i != NUM_NODES; ++i)
|
||||
if (NodesInThisSCC.count(i)) {
|
||||
EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
|
||||
}
|
||||
|
||||
// OK, now that we now that every node in the SCC is reachable from every
|
||||
// other, this means that the set of nodes reachable from any node in the
|
||||
// SCC is the same as the set of nodes reachable from every node in the
|
||||
// SCC. Check that for every node N not in the SCC but reachable from the
|
||||
// SCC, no element of the SCC is reachable from N.
|
||||
for (unsigned i = 0; i != NUM_NODES; ++i)
|
||||
if (NodesInThisSCC.count(i)) {
|
||||
GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
|
||||
GT::NodeSubset ReachableButNotInSCC =
|
||||
NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
|
||||
|
||||
for (unsigned j = 0; j != NUM_NODES; ++j)
|
||||
if (ReachableButNotInSCC.count(j)) {
|
||||
EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
|
||||
}
|
||||
|
||||
// The result must be the same for all other nodes in this SCC, so
|
||||
// there is no point in checking them.
|
||||
break;
|
||||
}
|
||||
|
||||
// This is indeed a SCC: a maximal set of nodes for which each node is
|
||||
// reachable from every other.
|
||||
|
||||
// Check that we didn't already see this SCC.
|
||||
EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
|
||||
|
||||
NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
|
||||
|
||||
// Check a property that is specific to the LLVM SCC iterator and
|
||||
// guaranteed by it: if a node in SCC S1 has an edge to a node in
|
||||
// SCC S2, then S1 is visited *after* S2. This means that the set
|
||||
// of nodes reachable from this SCC must be contained either in the
|
||||
// union of this SCC and all previously visited SCC's.
|
||||
|
||||
for (unsigned i = 0; i != NUM_NODES; ++i)
|
||||
if (NodesInThisSCC.count(i)) {
|
||||
GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
|
||||
EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
|
||||
// The result must be the same for all other nodes in this SCC, so
|
||||
// there is no point in checking them.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Finally, check that the nodes in some SCC are exactly those that are
|
||||
// reachable from the initial node.
|
||||
EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user