You've already forked linux-packaging-mono
Imported Upstream version 5.18.0.234
Former-commit-id: 8071ec1a8c5eaa9be24b41745add19297608001f
This commit is contained in:
parent
f32dbaf0b2
commit
212f6bafcb
373
external/llvm/lib/Transforms/Scalar/LoopSink.cpp
vendored
373
external/llvm/lib/Transforms/Scalar/LoopSink.cpp
vendored
@ -1,373 +0,0 @@
|
||||
//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass does the inverse transformation of what LICM does.
|
||||
// It traverses all of the instructions in the loop's preheader and sinks
|
||||
// them to the loop body where frequency is lower than the loop's preheader.
|
||||
// This pass is a reverse-transformation of LICM. It differs from the Sink
|
||||
// pass in the following ways:
|
||||
//
|
||||
// * It only handles sinking of instructions from the loop's preheader to the
|
||||
// loop's body
|
||||
// * It uses alias set tracker to get more accurate alias info
|
||||
// * It uses block frequency info to find the optimal sinking locations
|
||||
//
|
||||
// Overall algorithm:
|
||||
//
|
||||
// For I in Preheader:
|
||||
// InsertBBs = BBs that uses I
|
||||
// For BB in sorted(LoopBBs):
|
||||
// DomBBs = BBs in InsertBBs that are dominated by BB
|
||||
// if freq(DomBBs) > freq(BB)
|
||||
// InsertBBs = UseBBs - DomBBs + BB
|
||||
// For BB in InsertBBs:
|
||||
// Insert I at BB's beginning
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Scalar/LoopSink.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/AliasSetTracker.h"
|
||||
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
||||
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
||||
#include "llvm/Analysis/Loads.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Metadata.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "loopsink"
|
||||
|
||||
STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
|
||||
STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
|
||||
|
||||
static cl::opt<unsigned> SinkFrequencyPercentThreshold(
|
||||
"sink-freq-percent-threshold", cl::Hidden, cl::init(90),
|
||||
cl::desc("Do not sink instructions that require cloning unless they "
|
||||
"execute less than this percent of the time."));
|
||||
|
||||
static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
|
||||
"max-uses-for-sinking", cl::Hidden, cl::init(30),
|
||||
cl::desc("Do not sink instructions that have too many uses."));
|
||||
|
||||
/// Return adjusted total frequency of \p BBs.
|
||||
///
|
||||
/// * If there is only one BB, sinking instruction will not introduce code
|
||||
/// size increase. Thus there is no need to adjust the frequency.
|
||||
/// * If there are more than one BB, sinking would lead to code size increase.
|
||||
/// In this case, we add some "tax" to the total frequency to make it harder
|
||||
/// to sink. E.g.
|
||||
/// Freq(Preheader) = 100
|
||||
/// Freq(BBs) = sum(50, 49) = 99
|
||||
/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
|
||||
/// BBs as the difference is too small to justify the code size increase.
|
||||
/// To model this, The adjusted Freq(BBs) will be:
|
||||
/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
|
||||
static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
|
||||
BlockFrequencyInfo &BFI) {
|
||||
BlockFrequency T = 0;
|
||||
for (BasicBlock *B : BBs)
|
||||
T += BFI.getBlockFreq(B);
|
||||
if (BBs.size() > 1)
|
||||
T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
|
||||
return T;
|
||||
}
|
||||
|
||||
/// Return a set of basic blocks to insert sinked instructions.
|
||||
///
|
||||
/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
|
||||
///
|
||||
/// * Inside the loop \p L
|
||||
/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
|
||||
/// that domintates the UseBB
|
||||
/// * Has minimum total frequency that is no greater than preheader frequency
|
||||
///
|
||||
/// The purpose of the function is to find the optimal sinking points to
|
||||
/// minimize execution cost, which is defined as "sum of frequency of
|
||||
/// BBsToSinkInto".
|
||||
/// As a result, the returned BBsToSinkInto needs to have minimum total
|
||||
/// frequency.
|
||||
/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
|
||||
/// frequency, the optimal solution is not sinking (return empty set).
|
||||
///
|
||||
/// \p ColdLoopBBs is used to help find the optimal sinking locations.
|
||||
/// It stores a list of BBs that is:
|
||||
///
|
||||
/// * Inside the loop \p L
|
||||
/// * Has a frequency no larger than the loop's preheader
|
||||
/// * Sorted by BB frequency
|
||||
///
|
||||
/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
|
||||
/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
|
||||
/// caller.
|
||||
static SmallPtrSet<BasicBlock *, 2>
|
||||
findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
|
||||
const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
|
||||
DominatorTree &DT, BlockFrequencyInfo &BFI) {
|
||||
SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
|
||||
if (UseBBs.size() == 0)
|
||||
return BBsToSinkInto;
|
||||
|
||||
BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
|
||||
SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
|
||||
|
||||
// For every iteration:
|
||||
// * Pick the ColdestBB from ColdLoopBBs
|
||||
// * Find the set BBsDominatedByColdestBB that satisfy:
|
||||
// - BBsDominatedByColdestBB is a subset of BBsToSinkInto
|
||||
// - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
|
||||
// * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
|
||||
// BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
|
||||
// BBsToSinkInto
|
||||
for (BasicBlock *ColdestBB : ColdLoopBBs) {
|
||||
BBsDominatedByColdestBB.clear();
|
||||
for (BasicBlock *SinkedBB : BBsToSinkInto)
|
||||
if (DT.dominates(ColdestBB, SinkedBB))
|
||||
BBsDominatedByColdestBB.insert(SinkedBB);
|
||||
if (BBsDominatedByColdestBB.size() == 0)
|
||||
continue;
|
||||
if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
|
||||
BFI.getBlockFreq(ColdestBB)) {
|
||||
for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
|
||||
BBsToSinkInto.erase(DominatedBB);
|
||||
}
|
||||
BBsToSinkInto.insert(ColdestBB);
|
||||
}
|
||||
}
|
||||
|
||||
// If the total frequency of BBsToSinkInto is larger than preheader frequency,
|
||||
// do not sink.
|
||||
if (adjustedSumFreq(BBsToSinkInto, BFI) >
|
||||
BFI.getBlockFreq(L.getLoopPreheader()))
|
||||
BBsToSinkInto.clear();
|
||||
return BBsToSinkInto;
|
||||
}
|
||||
|
||||
// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
|
||||
// sinking is successful.
|
||||
// \p LoopBlockNumber is used to sort the insertion blocks to ensure
|
||||
// determinism.
|
||||
static bool sinkInstruction(Loop &L, Instruction &I,
|
||||
const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
|
||||
const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
|
||||
LoopInfo &LI, DominatorTree &DT,
|
||||
BlockFrequencyInfo &BFI) {
|
||||
// Compute the set of blocks in loop L which contain a use of I.
|
||||
SmallPtrSet<BasicBlock *, 2> BBs;
|
||||
for (auto &U : I.uses()) {
|
||||
Instruction *UI = cast<Instruction>(U.getUser());
|
||||
// We cannot sink I to PHI-uses.
|
||||
if (dyn_cast<PHINode>(UI))
|
||||
return false;
|
||||
// We cannot sink I if it has uses outside of the loop.
|
||||
if (!L.contains(LI.getLoopFor(UI->getParent())))
|
||||
return false;
|
||||
BBs.insert(UI->getParent());
|
||||
}
|
||||
|
||||
// findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
|
||||
// BBs.size() to avoid expensive computation.
|
||||
// FIXME: Handle code size growth for min_size and opt_size.
|
||||
if (BBs.size() > MaxNumberOfUseBBsForSinking)
|
||||
return false;
|
||||
|
||||
// Find the set of BBs that we should insert a copy of I.
|
||||
SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
|
||||
findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
|
||||
if (BBsToSinkInto.empty())
|
||||
return false;
|
||||
|
||||
// Copy the final BBs into a vector and sort them using the total ordering
|
||||
// of the loop block numbers as iterating the set doesn't give a useful
|
||||
// order. No need to stable sort as the block numbers are a total ordering.
|
||||
SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
|
||||
SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
|
||||
BBsToSinkInto.end());
|
||||
std::sort(SortedBBsToSinkInto.begin(), SortedBBsToSinkInto.end(),
|
||||
[&](BasicBlock *A, BasicBlock *B) {
|
||||
return *LoopBlockNumber.find(A) < *LoopBlockNumber.find(B);
|
||||
});
|
||||
|
||||
BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
|
||||
// FIXME: Optimize the efficiency for cloned value replacement. The current
|
||||
// implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
|
||||
for (BasicBlock *N : SortedBBsToSinkInto) {
|
||||
if (N == MoveBB)
|
||||
continue;
|
||||
// Clone I and replace its uses.
|
||||
Instruction *IC = I.clone();
|
||||
IC->setName(I.getName());
|
||||
IC->insertBefore(&*N->getFirstInsertionPt());
|
||||
// Replaces uses of I with IC in N
|
||||
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
|
||||
Use &U = *UI++;
|
||||
auto *I = cast<Instruction>(U.getUser());
|
||||
if (I->getParent() == N)
|
||||
U.set(IC);
|
||||
}
|
||||
// Replaces uses of I with IC in blocks dominated by N
|
||||
replaceDominatedUsesWith(&I, IC, DT, N);
|
||||
DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
|
||||
<< '\n');
|
||||
NumLoopSunkCloned++;
|
||||
}
|
||||
DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
|
||||
NumLoopSunk++;
|
||||
I.moveBefore(&*MoveBB->getFirstInsertionPt());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Sinks instructions from loop's preheader to the loop body if the
|
||||
/// sum frequency of inserted copy is smaller than preheader's frequency.
|
||||
static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
|
||||
DominatorTree &DT,
|
||||
BlockFrequencyInfo &BFI,
|
||||
ScalarEvolution *SE) {
|
||||
BasicBlock *Preheader = L.getLoopPreheader();
|
||||
if (!Preheader)
|
||||
return false;
|
||||
|
||||
// Enable LoopSink only when runtime profile is available.
|
||||
// With static profile, the sinking decision may be sub-optimal.
|
||||
if (!Preheader->getParent()->hasProfileData())
|
||||
return false;
|
||||
|
||||
const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
|
||||
// If there are no basic blocks with lower frequency than the preheader then
|
||||
// we can avoid the detailed analysis as we will never find profitable sinking
|
||||
// opportunities.
|
||||
if (all_of(L.blocks(), [&](const BasicBlock *BB) {
|
||||
return BFI.getBlockFreq(BB) > PreheaderFreq;
|
||||
}))
|
||||
return false;
|
||||
|
||||
bool Changed = false;
|
||||
AliasSetTracker CurAST(AA);
|
||||
|
||||
// Compute alias set.
|
||||
for (BasicBlock *BB : L.blocks())
|
||||
CurAST.add(*BB);
|
||||
|
||||
// Sort loop's basic blocks by frequency
|
||||
SmallVector<BasicBlock *, 10> ColdLoopBBs;
|
||||
SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
|
||||
int i = 0;
|
||||
for (BasicBlock *B : L.blocks())
|
||||
if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
|
||||
ColdLoopBBs.push_back(B);
|
||||
LoopBlockNumber[B] = ++i;
|
||||
}
|
||||
std::stable_sort(ColdLoopBBs.begin(), ColdLoopBBs.end(),
|
||||
[&](BasicBlock *A, BasicBlock *B) {
|
||||
return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
|
||||
});
|
||||
|
||||
// Traverse preheader's instructions in reverse order becaue if A depends
|
||||
// on B (A appears after B), A needs to be sinked first before B can be
|
||||
// sinked.
|
||||
for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
|
||||
Instruction *I = &*II++;
|
||||
// No need to check for instruction's operands are loop invariant.
|
||||
assert(L.hasLoopInvariantOperands(I) &&
|
||||
"Insts in a loop's preheader should have loop invariant operands!");
|
||||
if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr))
|
||||
continue;
|
||||
if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
|
||||
Changed = true;
|
||||
}
|
||||
|
||||
if (Changed && SE)
|
||||
SE->forgetLoopDispositions(&L);
|
||||
return Changed;
|
||||
}
|
||||
|
||||
PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
|
||||
LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
|
||||
// Nothing to do if there are no loops.
|
||||
if (LI.empty())
|
||||
return PreservedAnalyses::all();
|
||||
|
||||
AAResults &AA = FAM.getResult<AAManager>(F);
|
||||
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
||||
BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
|
||||
|
||||
// We want to do a postorder walk over the loops. Since loops are a tree this
|
||||
// is equivalent to a reversed preorder walk and preorder is easy to compute
|
||||
// without recursion. Since we reverse the preorder, we will visit siblings
|
||||
// in reverse program order. This isn't expected to matter at all but is more
|
||||
// consistent with sinking algorithms which generally work bottom-up.
|
||||
SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
|
||||
|
||||
bool Changed = false;
|
||||
do {
|
||||
Loop &L = *PreorderLoops.pop_back_val();
|
||||
|
||||
// Note that we don't pass SCEV here because it is only used to invalidate
|
||||
// loops in SCEV and we don't preserve (or request) SCEV at all making that
|
||||
// unnecessary.
|
||||
Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
|
||||
/*ScalarEvolution*/ nullptr);
|
||||
} while (!PreorderLoops.empty());
|
||||
|
||||
if (!Changed)
|
||||
return PreservedAnalyses::all();
|
||||
|
||||
PreservedAnalyses PA;
|
||||
PA.preserveSet<CFGAnalyses>();
|
||||
return PA;
|
||||
}
|
||||
|
||||
namespace {
|
||||
struct LegacyLoopSinkPass : public LoopPass {
|
||||
static char ID;
|
||||
LegacyLoopSinkPass() : LoopPass(ID) {
|
||||
initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
||||
if (skipLoop(L))
|
||||
return false;
|
||||
|
||||
auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
|
||||
return sinkLoopInvariantInstructions(
|
||||
*L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
|
||||
getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
|
||||
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
|
||||
getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
|
||||
SE ? &SE->getSE() : nullptr);
|
||||
}
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.setPreservesCFG();
|
||||
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
||||
getLoopAnalysisUsage(AU);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
char LegacyLoopSinkPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
|
||||
false)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
|
||||
|
||||
Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
|
Reference in New Issue
Block a user