Imported Upstream version 5.20.0.180

Former-commit-id: ff953ca879339fe1e1211f7220f563e1342e66cb
This commit is contained in:
Xamarin Public Jenkins (auto-signing)
2019-02-04 20:11:37 +00:00
parent 0e2d47d1c8
commit 0510252385
3360 changed files with 83827 additions and 39243 deletions

View File

@@ -1,19 +1,21 @@
Intro to .NET Native and CoreRT
===============================
Intro to CoreRT
===============
Native compilation is a great scenario addition to .NET Core apps on Windows, OS X and Linux. We've seen significant startup and throughput benefits of native compilation for Windows UWP apps, using .NET Native. Today, many native apps and tools benefit from being compiled by a C++ compiler, and not as much by being written in C++. .NET Native brings much of the performance and all of the deployment benefits of native compilation, while retaining your ability to write in your favorite .NET programming language.
Native (AOT) compilation is a great scenario addition to .NET Core apps on Windows, OS X and Linux. We've seen significant startup and throughput benefits of native compilation for Windows UWP apps, using .NET Native. Today, many native apps and tools benefit from being compiled by a C++ compiler, and not as much by being written in C++. CoreRT brings much of the performance and all of the deployment benefits of native compilation, while retaining your ability to write in your favorite .NET programming language.
Architecture
============
[.NET Native](https://msdn.microsoft.com/library/dn584397.aspx) is a native toolchain that compiles [CIL byte code](https://en.wikipedia.org/wiki/Common_Intermediate_Language) to machine code (e.g. X64 instructions). By default, .NET Native (for .NET Core, as opposed to UWP) uses RyuJIT as an ahead-of-time (AOT) compiler, the same one that CoreCLR uses as a just-in-time (JIT) compiler. It can also be used with other compilers, such as [LLILC](https://github.com/dotnet/llilc), UTC for UWP apps and [IL to CPP](https://github.com/dotnet/corert/tree/master/src/ILCompiler.CppCodeGen/src/CppCodeGen) (an IL to textual C++ compiler we have built as a reference prototype).
[CoreRT](https://github.com/dotnet/corert) is a native toolchain that compiles [CIL byte code](https://en.wikipedia.org/wiki/Common_Intermediate_Language) to machine code (e.g. X64 instructions). By default, CoreRT uses RyuJIT as an ahead-of-time (AOT) compiler, the same one that CoreCLR uses as a just-in-time (JIT) compiler. CoreRT can also be used with other compilers, such as [LLILC](https://github.com/dotnet/llilc), and [IL to CPP](https://github.com/dotnet/corert/tree/master/src/ILCompiler.CppCodeGen/src/CppCodeGen) (an IL to textual C++ compiler we have built as a reference prototype). [.NET Native](https://docs.microsoft.com/en-us/dotnet/framework/net-native/index) uses CoreRT in conjunction with the UTC compiler to provide native compilation for UWP apps.
[CoreRT](https://github.com/dotnet/corert) is the .NET Core runtime that is optimized for AOT scenarios, which .NET Native targets. This is a refactored and layered runtime. The base is a small native execution engine that provides services such as garbage collection(GC). This is the same GC used in CoreCLR. Many other parts of the traditional .NET runtime, such as the [type system](https://github.com/dotnet/corert/tree/master/src/Common/src/TypeSystem), are implemented in C#. We've always wanted to implement runtime functionality in C#. We now have the infrastructure to do that. In addition, library implementations that were built deep into CoreCLR, have also been cleanly refactored and implemented as C# libraries.
CoreRT is a refactored and layered .Net Core runtime. The base is a small native execution engine that provides services such as garbage collection(GC). This is the same GC used in CoreCLR. Many other parts of the traditional .NET runtime, such as the [type system](https://github.com/dotnet/corert/tree/master/src/Common/src/TypeSystem), are implemented in C#. We've always wanted to implement runtime functionality in C#. We now have the infrastructure to do that. In addition, library implementations that were built deep into CoreCLR, have also been cleanly refactored and implemented as C# libraries.
For more information about the architecture, see http://mattwarren.org/2018/06/07/CoreRT-.NET-Runtime-for-AOT/ .
Experience
==========
.NET Native offers great benefits that are critical for many apps.
CoreRT offers great benefits that are critical for many apps.
- The native compiler generates a *SINGLE FILE*, including the app, managed dependencies and CoreRT.
- Native compiled apps startup faster since they execute already compiled code. They don't need to generate machine code at runtime nor load a JIT compiler.