1363 lines
49 KiB
C++
Raw Normal View History

//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>
#define DEBUG_TYPE "irtranslator"
using namespace llvm;
char IRTranslator::ID = 0;
INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
false, false)
static void reportTranslationError(MachineFunction &MF,
const TargetPassConfig &TPC,
OptimizationRemarkEmitter &ORE,
OptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
R << (" (in function: " + MF.getName() + ")").str();
if (TPC.isGlobalISelAbortEnabled())
report_fatal_error(R.getMsg());
else
ORE.emit(R);
}
IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}
void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
unsigned &ValReg = ValToVReg[&Val];
if (ValReg)
return ValReg;
// Fill ValRegsSequence with the sequence of registers
// we need to concat together to produce the value.
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
unsigned VReg =
MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL));
ValReg = VReg;
if (auto CV = dyn_cast<Constant>(&Val)) {
bool Success = translate(*CV, VReg);
if (!Success) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
MF->getFunction().getSubprogram(),
&MF->getFunction().getEntryBlock());
R << "unable to translate constant: " << ore::NV("Type", Val.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return VReg;
}
}
return VReg;
}
int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
if (FrameIndices.find(&AI) != FrameIndices.end())
return FrameIndices[&AI];
unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
unsigned Size =
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
// Always allocate at least one byte.
Size = std::max(Size, 1u);
unsigned Alignment = AI.getAlignment();
if (!Alignment)
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
int &FI = FrameIndices[&AI];
FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
return FI;
}
unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
unsigned Alignment = 0;
Type *ValTy = nullptr;
if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
Alignment = SI->getAlignment();
ValTy = SI->getValueOperand()->getType();
} else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
Alignment = LI->getAlignment();
ValTy = LI->getType();
} else {
OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
R << "unable to translate memop: " << ore::NV("Opcode", &I);
reportTranslationError(*MF, *TPC, *ORE, R);
return 1;
}
return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
}
MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
assert(MBB && "BasicBlock was not encountered before");
return *MBB;
}
void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
assert(NewPred && "new predecessor must be a real MachineBasicBlock");
MachinePreds[Edge].push_back(NewPred);
}
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
// FIXME: handle signed/unsigned wrapping flags.
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
unsigned Res = getOrCreateVReg(U);
MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
return true;
}
bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
// -0.0 - X --> G_FNEG
if (isa<Constant>(U.getOperand(0)) &&
U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(1)));
return true;
}
return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
}
bool IRTranslator::translateCompare(const User &U,
MachineIRBuilder &MIRBuilder) {
const CmpInst *CI = dyn_cast<CmpInst>(&U);
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
unsigned Res = getOrCreateVReg(U);
CmpInst::Predicate Pred =
CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
cast<ConstantExpr>(U).getPredicate());
if (CmpInst::isIntPredicate(Pred))
MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
else if (Pred == CmpInst::FCMP_FALSE)
MIRBuilder.buildCopy(
Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
else if (Pred == CmpInst::FCMP_TRUE)
MIRBuilder.buildCopy(
Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
else
MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
return true;
}
bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
const ReturnInst &RI = cast<ReturnInst>(U);
const Value *Ret = RI.getReturnValue();
if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
Ret = nullptr;
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
// of the block anyway.
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}
bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
const BranchInst &BrInst = cast<BranchInst>(U);
unsigned Succ = 0;
if (!BrInst.isUnconditional()) {
// We want a G_BRCOND to the true BB followed by an unconditional branch.
unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
MachineBasicBlock &TrueBB = getMBB(TrueTgt);
MIRBuilder.buildBrCond(Tst, TrueBB);
}
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
MachineBasicBlock &TgtBB = getMBB(BrTgt);
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
// If the unconditional target is the layout successor, fallthrough.
if (!CurBB.isLayoutSuccessor(&TgtBB))
MIRBuilder.buildBr(TgtBB);
// Link successors.
for (const BasicBlock *Succ : BrInst.successors())
CurBB.addSuccessor(&getMBB(*Succ));
return true;
}
bool IRTranslator::translateSwitch(const User &U,
MachineIRBuilder &MIRBuilder) {
// For now, just translate as a chain of conditional branches.
// FIXME: could we share most of the logic/code in
// SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
// At first sight, it seems most of the logic in there is independent of
// SelectionDAG-specifics and a lot of work went in to optimize switch
// lowering in there.
const SwitchInst &SwInst = cast<SwitchInst>(U);
const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
const BasicBlock *OrigBB = SwInst.getParent();
LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
for (auto &CaseIt : SwInst.cases()) {
const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
MIRBuilder.buildBrCond(Tst, TrueMBB);
CurMBB.addSuccessor(&TrueMBB);
addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
MachineBasicBlock *FalseMBB =
MF->CreateMachineBasicBlock(SwInst.getParent());
// Insert the comparison blocks one after the other.
MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
MIRBuilder.buildBr(*FalseMBB);
CurMBB.addSuccessor(FalseMBB);
MIRBuilder.setMBB(*FalseMBB);
}
// handle default case
const BasicBlock *DefaultBB = SwInst.getDefaultDest();
MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
MIRBuilder.buildBr(DefaultMBB);
MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
CurMBB.addSuccessor(&DefaultMBB);
addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
return true;
}
bool IRTranslator::translateIndirectBr(const User &U,
MachineIRBuilder &MIRBuilder) {
const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
MIRBuilder.buildBrIndirect(Tgt);
// Link successors.
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : BrInst.successors())
CurBB.addSuccessor(&getMBB(*Succ));
return true;
}
bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
const LoadInst &LI = cast<LoadInst>(U);
auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone;
Flags |= MachineMemOperand::MOLoad;
if (DL->getTypeStoreSize(LI.getType()) == 0)
return true;
unsigned Res = getOrCreateVReg(LI);
unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
MIRBuilder.buildLoad(
Res, Addr,
*MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
Flags, DL->getTypeStoreSize(LI.getType()),
getMemOpAlignment(LI), AAMDNodes(), nullptr,
LI.getSyncScopeID(), LI.getOrdering()));
return true;
}
bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
const StoreInst &SI = cast<StoreInst>(U);
auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone;
Flags |= MachineMemOperand::MOStore;
if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
return true;
unsigned Val = getOrCreateVReg(*SI.getValueOperand());
unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
MIRBuilder.buildStore(
Val, Addr,
*MF->getMachineMemOperand(
MachinePointerInfo(SI.getPointerOperand()), Flags,
DL->getTypeStoreSize(SI.getValueOperand()->getType()),
getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSyncScopeID(),
SI.getOrdering()));
return true;
}
bool IRTranslator::translateExtractValue(const User &U,
MachineIRBuilder &MIRBuilder) {
const Value *Src = U.getOperand(0);
Type *Int32Ty = Type::getInt32Ty(U.getContext());
SmallVector<Value *, 1> Indices;
// If Src is a single element ConstantStruct, translate extractvalue
// to that element to avoid inserting a cast instruction.
if (auto CS = dyn_cast<ConstantStruct>(Src))
if (CS->getNumOperands() == 1) {
unsigned Res = getOrCreateVReg(*CS->getOperand(0));
ValToVReg[&U] = Res;
return true;
}
// getIndexedOffsetInType is designed for GEPs, so the first index is the
// usual array element rather than looking into the actual aggregate.
Indices.push_back(ConstantInt::get(Int32Ty, 0));
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
for (auto Idx : EVI->indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
} else {
for (unsigned i = 1; i < U.getNumOperands(); ++i)
Indices.push_back(U.getOperand(i));
}
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
unsigned Res = getOrCreateVReg(U);
MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset);
return true;
}
bool IRTranslator::translateInsertValue(const User &U,
MachineIRBuilder &MIRBuilder) {
const Value *Src = U.getOperand(0);
Type *Int32Ty = Type::getInt32Ty(U.getContext());
SmallVector<Value *, 1> Indices;
// getIndexedOffsetInType is designed for GEPs, so the first index is the
// usual array element rather than looking into the actual aggregate.
Indices.push_back(ConstantInt::get(Int32Ty, 0));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
for (auto Idx : IVI->indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
} else {
for (unsigned i = 2; i < U.getNumOperands(); ++i)
Indices.push_back(U.getOperand(i));
}
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
unsigned Res = getOrCreateVReg(U);
unsigned Inserted = getOrCreateVReg(*U.getOperand(1));
MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), Inserted, Offset);
return true;
}
bool IRTranslator::translateSelect(const User &U,
MachineIRBuilder &MIRBuilder) {
unsigned Res = getOrCreateVReg(U);
unsigned Tst = getOrCreateVReg(*U.getOperand(0));
unsigned Op0 = getOrCreateVReg(*U.getOperand(1));
unsigned Op1 = getOrCreateVReg(*U.getOperand(2));
MIRBuilder.buildSelect(Res, Tst, Op0, Op1);
return true;
}
bool IRTranslator::translateBitCast(const User &U,
MachineIRBuilder &MIRBuilder) {
// If we're bitcasting to the source type, we can reuse the source vreg.
if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
getLLTForType(*U.getType(), *DL)) {
// Get the source vreg now, to avoid invalidating ValToVReg.
unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
unsigned &Reg = ValToVReg[&U];
// If we already assigned a vreg for this bitcast, we can't change that.
// Emit a copy to satisfy the users we already emitted.
if (Reg)
MIRBuilder.buildCopy(Reg, SrcReg);
else
Reg = SrcReg;
return true;
}
return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
}
bool IRTranslator::translateCast(unsigned Opcode, const User &U,
MachineIRBuilder &MIRBuilder) {
unsigned Op = getOrCreateVReg(*U.getOperand(0));
unsigned Res = getOrCreateVReg(U);
MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
return true;
}
bool IRTranslator::translateGetElementPtr(const User &U,
MachineIRBuilder &MIRBuilder) {
// FIXME: support vector GEPs.
if (U.getType()->isVectorTy())
return false;
Value &Op0 = *U.getOperand(0);
unsigned BaseReg = getOrCreateVReg(Op0);
Type *PtrIRTy = Op0.getType();
LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
int64_t Offset = 0;
for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
if (StructType *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
continue;
} else {
uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
// If this is a scalar constant or a splat vector of constants,
// handle it quickly.
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
Offset += ElementSize * CI->getSExtValue();
continue;
}
if (Offset != 0) {
unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
unsigned OffsetReg =
getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
BaseReg = NewBaseReg;
Offset = 0;
}
// N = N + Idx * ElementSize;
unsigned ElementSizeReg =
getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
unsigned IdxReg = getOrCreateVReg(*Idx);
if (MRI->getType(IdxReg) != OffsetTy) {
unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
IdxReg = NewIdxReg;
}
unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg);
unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
BaseReg = NewBaseReg;
}
}
if (Offset != 0) {
unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
return true;
}
MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
return true;
}
bool IRTranslator::translateMemfunc(const CallInst &CI,
MachineIRBuilder &MIRBuilder,
unsigned ID) {
LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
Type *DstTy = CI.getArgOperand(0)->getType();
if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
return false;
SmallVector<CallLowering::ArgInfo, 8> Args;
for (int i = 0; i < 3; ++i) {
const auto &Arg = CI.getArgOperand(i);
Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
}
const char *Callee;
switch (ID) {
case Intrinsic::memmove:
case Intrinsic::memcpy: {
Type *SrcTy = CI.getArgOperand(1)->getType();
if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
return false;
Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
break;
}
case Intrinsic::memset:
Callee = "memset";
break;
default:
return false;
}
return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
MachineOperand::CreateES(Callee),
CallLowering::ArgInfo(0, CI.getType()), Args);
}
void IRTranslator::getStackGuard(unsigned DstReg,
MachineIRBuilder &MIRBuilder) {
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
MIB.addDef(DstReg);
auto &TLI = *MF->getSubtarget().getTargetLowering();
Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
if (!Global)
return;
MachinePointerInfo MPInfo(Global);
MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
MachineMemOperand::MODereferenceable;
*MemRefs =
MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
DL->getPointerABIAlignment(0));
MIB.setMemRefs(MemRefs, MemRefs + 1);
}
bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
MachineIRBuilder &MIRBuilder) {
LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL);
LLT s1 = LLT::scalar(1);
unsigned Width = Ty.getSizeInBits();
unsigned Res = MRI->createGenericVirtualRegister(Ty);
unsigned Overflow = MRI->createGenericVirtualRegister(s1);
auto MIB = MIRBuilder.buildInstr(Op)
.addDef(Res)
.addDef(Overflow)
.addUse(getOrCreateVReg(*CI.getOperand(0)))
.addUse(getOrCreateVReg(*CI.getOperand(1)));
if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
unsigned Zero = getOrCreateVReg(
*Constant::getNullValue(Type::getInt1Ty(CI.getContext())));
MIB.addUse(Zero);
}
MIRBuilder.buildSequence(getOrCreateVReg(CI), {Res, Overflow}, {0, Width});
return true;
}
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
MachineIRBuilder &MIRBuilder) {
switch (ID) {
default:
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// Stack coloring is not enabled in O0 (which we care about now) so we can
// drop these. Make sure someone notices when we start compiling at higher
// opts though.
if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
return false;
return true;
case Intrinsic::dbg_declare: {
const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
assert(DI.getVariable() && "Missing variable");
const Value *Address = DI.getAddress();
if (!Address || isa<UndefValue>(Address)) {
DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
return true;
}
assert(DI.getVariable()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
auto AI = dyn_cast<AllocaInst>(Address);
if (AI && AI->isStaticAlloca()) {
// Static allocas are tracked at the MF level, no need for DBG_VALUE
// instructions (in fact, they get ignored if they *do* exist).
MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
getOrCreateFrameIndex(*AI), DI.getDebugLoc());
} else
MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address),
DI.getVariable(), DI.getExpression());
return true;
}
case Intrinsic::vaend:
// No target I know of cares about va_end. Certainly no in-tree target
// does. Simplest intrinsic ever!
return true;
case Intrinsic::vastart: {
auto &TLI = *MF->getSubtarget().getTargetLowering();
Value *Ptr = CI.getArgOperand(0);
unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
.addUse(getOrCreateVReg(*Ptr))
.addMemOperand(MF->getMachineMemOperand(
MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
return true;
}
case Intrinsic::dbg_value: {
// This form of DBG_VALUE is target-independent.
const DbgValueInst &DI = cast<DbgValueInst>(CI);
const Value *V = DI.getValue();
assert(DI.getVariable()->isValidLocationForIntrinsic(
MIRBuilder.getDebugLoc()) &&
"Expected inlined-at fields to agree");
if (!V) {
// Currently the optimizer can produce this; insert an undef to
// help debugging. Probably the optimizer should not do this.
MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
} else if (const auto *CI = dyn_cast<Constant>(V)) {
MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
} else {
unsigned Reg = getOrCreateVReg(*V);
// FIXME: This does not handle register-indirect values at offset 0. The
// direct/indirect thing shouldn't really be handled by something as
// implicit as reg+noreg vs reg+imm in the first palce, but it seems
// pretty baked in right now.
MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
}
return true;
}
case Intrinsic::uadd_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
case Intrinsic::sadd_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
case Intrinsic::usub_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
case Intrinsic::ssub_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
case Intrinsic::umul_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
case Intrinsic::smul_with_overflow:
return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
case Intrinsic::pow:
MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)))
.addUse(getOrCreateVReg(*CI.getArgOperand(1)));
return true;
case Intrinsic::exp:
MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)));
return true;
case Intrinsic::exp2:
MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)));
return true;
case Intrinsic::log:
MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)));
return true;
case Intrinsic::log2:
MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)));
return true;
case Intrinsic::fma:
MIRBuilder.buildInstr(TargetOpcode::G_FMA)
.addDef(getOrCreateVReg(CI))
.addUse(getOrCreateVReg(*CI.getArgOperand(0)))
.addUse(getOrCreateVReg(*CI.getArgOperand(1)))
.addUse(getOrCreateVReg(*CI.getArgOperand(2)));
return true;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
return translateMemfunc(CI, MIRBuilder, ID);
case Intrinsic::eh_typeid_for: {
GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
unsigned Reg = getOrCreateVReg(CI);
unsigned TypeID = MF->getTypeIDFor(GV);
MIRBuilder.buildConstant(Reg, TypeID);
return true;
}
case Intrinsic::objectsize: {
// If we don't know by now, we're never going to know.
const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
return true;
}
case Intrinsic::stackguard:
getStackGuard(getOrCreateVReg(CI), MIRBuilder);
return true;
case Intrinsic::stackprotector: {
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
getStackGuard(GuardVal, MIRBuilder);
AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
MIRBuilder.buildStore(
GuardVal, getOrCreateVReg(*Slot),
*MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF,
getOrCreateFrameIndex(*Slot)),
MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
PtrTy.getSizeInBits() / 8, 8));
return true;
}
}
return false;
}
bool IRTranslator::translateInlineAsm(const CallInst &CI,
MachineIRBuilder &MIRBuilder) {
const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
if (!IA.getConstraintString().empty())
return false;
unsigned ExtraInfo = 0;
if (IA.hasSideEffects())
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
if (IA.getDialect() == InlineAsm::AD_Intel)
ExtraInfo |= InlineAsm::Extra_AsmDialect;
MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
.addExternalSymbol(IA.getAsmString().c_str())
.addImm(ExtraInfo);
return true;
}
bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
const CallInst &CI = cast<CallInst>(U);
auto TII = MF->getTarget().getIntrinsicInfo();
const Function *F = CI.getCalledFunction();
// FIXME: support Windows dllimport function calls.
if (F && F->hasDLLImportStorageClass())
return false;
if (CI.isInlineAsm())
return translateInlineAsm(CI, MIRBuilder);
Intrinsic::ID ID = Intrinsic::not_intrinsic;
if (F && F->isIntrinsic()) {
ID = F->getIntrinsicID();
if (TII && ID == Intrinsic::not_intrinsic)
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
}
if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
SmallVector<unsigned, 8> Args;
for (auto &Arg: CI.arg_operands())
Args.push_back(getOrCreateVReg(*Arg));
MF->getFrameInfo().setHasCalls(true);
return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
return getOrCreateVReg(*CI.getCalledValue());
});
}
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
if (translateKnownIntrinsic(CI, ID, MIRBuilder))
return true;
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
MachineInstrBuilder MIB =
MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
for (auto &Arg : CI.arg_operands()) {
// Some intrinsics take metadata parameters. Reject them.
if (isa<MetadataAsValue>(Arg))
return false;
MIB.addUse(getOrCreateVReg(*Arg));
}
// Add a MachineMemOperand if it is a target mem intrinsic.
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
TargetLowering::IntrinsicInfo Info;
// TODO: Add a GlobalISel version of getTgtMemIntrinsic.
if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
uint64_t Size = Info.memVT.getStoreSize();
MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
Info.flags, Size, Info.align));
}
return true;
}
bool IRTranslator::translateInvoke(const User &U,
MachineIRBuilder &MIRBuilder) {
const InvokeInst &I = cast<InvokeInst>(U);
MCContext &Context = MF->getContext();
const BasicBlock *ReturnBB = I.getSuccessor(0);
const BasicBlock *EHPadBB = I.getSuccessor(1);
const Value *Callee = I.getCalledValue();
const Function *Fn = dyn_cast<Function>(Callee);
if (isa<InlineAsm>(Callee))
return false;
// FIXME: support invoking patchpoint and statepoint intrinsics.
if (Fn && Fn->isIntrinsic())
return false;
// FIXME: support whatever these are.
if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
return false;
// FIXME: support Windows exception handling.
if (!isa<LandingPadInst>(EHPadBB->front()))
return false;
// Emit the actual call, bracketed by EH_LABELs so that the MF knows about
// the region covered by the try.
MCSymbol *BeginSymbol = Context.createTempSymbol();
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I);
SmallVector<unsigned, 8> Args;
for (auto &Arg: I.arg_operands())
Args.push_back(getOrCreateVReg(*Arg));
if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
[&]() { return getOrCreateVReg(*I.getCalledValue()); }))
return false;
MCSymbol *EndSymbol = Context.createTempSymbol();
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
// FIXME: track probabilities.
MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
&ReturnMBB = getMBB(*ReturnBB);
MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
MIRBuilder.buildBr(ReturnMBB);
return true;
}
bool IRTranslator::translateLandingPad(const User &U,
MachineIRBuilder &MIRBuilder) {
const LandingPadInst &LP = cast<LandingPadInst>(U);
MachineBasicBlock &MBB = MIRBuilder.getMBB();
addLandingPadInfo(LP, MBB);
MBB.setIsEHPad();
// If there aren't registers to copy the values into (e.g., during SjLj
// exceptions), then don't bother.
auto &TLI = *MF->getSubtarget().getTargetLowering();
const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
return true;
// If landingpad's return type is token type, we don't create DAG nodes
// for its exception pointer and selector value. The extraction of exception
// pointer or selector value from token type landingpads is not currently
// supported.
if (LP.getType()->isTokenTy())
return true;
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
.addSym(MF->addLandingPad(&MBB));
LLT Ty = getLLTForType(*LP.getType(), *DL);
unsigned Undef = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildUndef(Undef);
SmallVector<LLT, 2> Tys;
for (Type *Ty : cast<StructType>(LP.getType())->elements())
Tys.push_back(getLLTForType(*Ty, *DL));
assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
// Mark exception register as live in.
unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
if (!ExceptionReg)
return false;
MBB.addLiveIn(ExceptionReg);
unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]),
Tmp = MRI->createGenericVirtualRegister(Ty);
MIRBuilder.buildCopy(VReg, ExceptionReg);
MIRBuilder.buildInsert(Tmp, Undef, VReg, 0);
unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
if (!SelectorReg)
return false;
MBB.addLiveIn(SelectorReg);
// N.b. the exception selector register always has pointer type and may not
// match the actual IR-level type in the landingpad so an extra cast is
// needed.
unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
MIRBuilder.buildCopy(PtrVReg, SelectorReg);
VReg = MRI->createGenericVirtualRegister(Tys[1]);
MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg);
MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg,
Tys[0].getSizeInBits());
return true;
}
bool IRTranslator::translateAlloca(const User &U,
MachineIRBuilder &MIRBuilder) {
auto &AI = cast<AllocaInst>(U);
if (AI.isStaticAlloca()) {
unsigned Res = getOrCreateVReg(AI);
int FI = getOrCreateFrameIndex(AI);
MIRBuilder.buildFrameIndex(Res, FI);
return true;
}
// Now we're in the harder dynamic case.
Type *Ty = AI.getAllocatedType();
unsigned Align =
std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
if (MRI->getType(NumElts) != IntPtrTy) {
unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
NumElts = ExtElts;
}
unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
unsigned TySize =
getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
MIRBuilder.buildMul(AllocSize, NumElts, TySize);
LLT PtrTy = getLLTForType(*AI.getType(), *DL);
auto &TLI = *MF->getSubtarget().getTargetLowering();
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildCopy(SPTmp, SPReg);
unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
// Handle alignment. We have to realign if the allocation granule was smaller
// than stack alignment, or the specific alloca requires more than stack
// alignment.
unsigned StackAlign =
MF->getSubtarget().getFrameLowering()->getStackAlignment();
Align = std::max(Align, StackAlign);
if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
// Round the size of the allocation up to the stack alignment size
// by add SA-1 to the size. This doesn't overflow because we're computing
// an address inside an alloca.
unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
AllocTmp = AlignedAlloc;
}
MIRBuilder.buildCopy(SPReg, AllocTmp);
MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
assert(MF->getFrameInfo().hasVarSizedObjects());
return true;
}
bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
// FIXME: We may need more info about the type. Because of how LLT works,
// we're completely discarding the i64/double distinction here (amongst
// others). Fortunately the ABIs I know of where that matters don't use va_arg
// anyway but that's not guaranteed.
MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(0)))
.addImm(DL->getABITypeAlignment(U.getType()));
return true;
}
bool IRTranslator::translateInsertElement(const User &U,
MachineIRBuilder &MIRBuilder) {
// If it is a <1 x Ty> vector, use the scalar as it is
// not a legal vector type in LLT.
if (U.getType()->getVectorNumElements() == 1) {
unsigned Elt = getOrCreateVReg(*U.getOperand(1));
ValToVReg[&U] = Elt;
return true;
}
unsigned Res = getOrCreateVReg(U);
unsigned Val = getOrCreateVReg(*U.getOperand(0));
unsigned Elt = getOrCreateVReg(*U.getOperand(1));
unsigned Idx = getOrCreateVReg(*U.getOperand(2));
MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
return true;
}
bool IRTranslator::translateExtractElement(const User &U,
MachineIRBuilder &MIRBuilder) {
// If it is a <1 x Ty> vector, use the scalar as it is
// not a legal vector type in LLT.
if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
unsigned Elt = getOrCreateVReg(*U.getOperand(0));
ValToVReg[&U] = Elt;
return true;
}
unsigned Res = getOrCreateVReg(U);
unsigned Val = getOrCreateVReg(*U.getOperand(0));
unsigned Idx = getOrCreateVReg(*U.getOperand(1));
MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
return true;
}
bool IRTranslator::translateShuffleVector(const User &U,
MachineIRBuilder &MIRBuilder) {
MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
.addDef(getOrCreateVReg(U))
.addUse(getOrCreateVReg(*U.getOperand(0)))
.addUse(getOrCreateVReg(*U.getOperand(1)))
.addUse(getOrCreateVReg(*U.getOperand(2)));
return true;
}
bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
const PHINode &PI = cast<PHINode>(U);
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
MIB.addDef(getOrCreateVReg(PI));
PendingPHIs.emplace_back(&PI, MIB.getInstr());
return true;
}
void IRTranslator::finishPendingPhis() {
for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
const PHINode *PI = Phi.first;
MachineInstrBuilder MIB(*MF, Phi.second);
// All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
// won't create extra control flow here, otherwise we need to find the
// dominating predecessor here (or perhaps force the weirder IRTranslators
// to provide a simple boundary).
SmallSet<const BasicBlock *, 4> HandledPreds;
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
auto IRPred = PI->getIncomingBlock(i);
if (HandledPreds.count(IRPred))
continue;
HandledPreds.insert(IRPred);
unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i));
for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
assert(Pred->isSuccessor(MIB->getParent()) &&
"incorrect CFG at MachineBasicBlock level");
MIB.addUse(ValReg);
MIB.addMBB(Pred);
}
}
}
}
bool IRTranslator::translate(const Instruction &Inst) {
CurBuilder.setDebugLoc(Inst.getDebugLoc());
switch(Inst.getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
#include "llvm/IR/Instruction.def"
default:
return false;
}
}
bool IRTranslator::translate(const Constant &C, unsigned Reg) {
if (auto CI = dyn_cast<ConstantInt>(&C))
EntryBuilder.buildConstant(Reg, *CI);
else if (auto CF = dyn_cast<ConstantFP>(&C))
EntryBuilder.buildFConstant(Reg, *CF);
else if (isa<UndefValue>(C))
EntryBuilder.buildUndef(Reg);
else if (isa<ConstantPointerNull>(C))
EntryBuilder.buildConstant(Reg, 0);
else if (auto GV = dyn_cast<GlobalValue>(&C))
EntryBuilder.buildGlobalValue(Reg, GV);
else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
if (!CAZ->getType()->isVectorTy())
return false;
// Return the scalar if it is a <1 x Ty> vector.
if (CAZ->getNumElements() == 1)
return translate(*CAZ->getElementValue(0u), Reg);
std::vector<unsigned> Ops;
for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
Constant &Elt = *CAZ->getElementValue(i);
Ops.push_back(getOrCreateVReg(Elt));
}
EntryBuilder.buildMerge(Reg, Ops);
} else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
// Return the scalar if it is a <1 x Ty> vector.
if (CV->getNumElements() == 1)
return translate(*CV->getElementAsConstant(0), Reg);
std::vector<unsigned> Ops;
for (unsigned i = 0; i < CV->getNumElements(); ++i) {
Constant &Elt = *CV->getElementAsConstant(i);
Ops.push_back(getOrCreateVReg(Elt));
}
EntryBuilder.buildMerge(Reg, Ops);
} else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
#include "llvm/IR/Instruction.def"
default:
return false;
}
} else if (auto CS = dyn_cast<ConstantStruct>(&C)) {
// Return the element if it is a single element ConstantStruct.
if (CS->getNumOperands() == 1) {
unsigned EltReg = getOrCreateVReg(*CS->getOperand(0));
EntryBuilder.buildCast(Reg, EltReg);
return true;
}
SmallVector<unsigned, 4> Ops;
SmallVector<uint64_t, 4> Indices;
uint64_t Offset = 0;
for (unsigned i = 0; i < CS->getNumOperands(); ++i) {
unsigned OpReg = getOrCreateVReg(*CS->getOperand(i));
Ops.push_back(OpReg);
Indices.push_back(Offset);
Offset += MRI->getType(OpReg).getSizeInBits();
}
EntryBuilder.buildSequence(Reg, Ops, Indices);
} else if (auto CV = dyn_cast<ConstantVector>(&C)) {
if (CV->getNumOperands() == 1)
return translate(*CV->getOperand(0), Reg);
SmallVector<unsigned, 4> Ops;
for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
}
EntryBuilder.buildMerge(Reg, Ops);
} else
return false;
return true;
}
void IRTranslator::finalizeFunction() {
// Release the memory used by the different maps we
// needed during the translation.
PendingPHIs.clear();
ValToVReg.clear();
FrameIndices.clear();
MachinePreds.clear();
// MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
// to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
// destroying it twice (in ~IRTranslator() and ~LLVMContext())
EntryBuilder = MachineIRBuilder();
CurBuilder = MachineIRBuilder();
}
bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
MF = &CurMF;
const Function &F = MF->getFunction();
if (F.empty())
return false;
CLI = MF->getSubtarget().getCallLowering();
CurBuilder.setMF(*MF);
EntryBuilder.setMF(*MF);
MRI = &MF->getRegInfo();
DL = &F.getParent()->getDataLayout();
TPC = &getAnalysis<TargetPassConfig>();
ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
assert(PendingPHIs.empty() && "stale PHIs");
if (!DL->isLittleEndian()) {
// Currently we don't properly handle big endian code.
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to translate in big endian mode";
reportTranslationError(*MF, *TPC, *ORE, R);
}
// Release the per-function state when we return, whether we succeeded or not.
auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
// Setup a separate basic-block for the arguments and constants
MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
MF->push_back(EntryBB);
EntryBuilder.setMBB(*EntryBB);
// Create all blocks, in IR order, to preserve the layout.
for (const BasicBlock &BB: F) {
auto *&MBB = BBToMBB[&BB];
MBB = MF->CreateMachineBasicBlock(&BB);
MF->push_back(MBB);
if (BB.hasAddressTaken())
MBB->setHasAddressTaken();
}
// Make our arguments/constants entry block fallthrough to the IR entry block.
EntryBB->addSuccessor(&getMBB(F.front()));
// Lower the actual args into this basic block.
SmallVector<unsigned, 8> VRegArgs;
for (const Argument &Arg: F.args()) {
if (DL->getTypeStoreSize(Arg.getType()) == 0)
continue; // Don't handle zero sized types.
VRegArgs.push_back(getOrCreateVReg(Arg));
}
if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
F.getSubprogram(), &F.getEntryBlock());
R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
// And translate the function!
for (const BasicBlock &BB: F) {
MachineBasicBlock &MBB = getMBB(BB);
// Set the insertion point of all the following translations to
// the end of this basic block.
CurBuilder.setMBB(MBB);
for (const Instruction &Inst: BB) {
if (translate(Inst))
continue;
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
Inst.getDebugLoc(), &BB);
R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
std::string InstStrStorage;
raw_string_ostream InstStr(InstStrStorage);
InstStr << Inst;
R << ": '" << InstStr.str() << "'";
}
reportTranslationError(*MF, *TPC, *ORE, R);
return false;
}
}
finishPendingPhis();
// Merge the argument lowering and constants block with its single
// successor, the LLVM-IR entry block. We want the basic block to
// be maximal.
assert(EntryBB->succ_size() == 1 &&
"Custom BB used for lowering should have only one successor");
// Get the successor of the current entry block.
MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
assert(NewEntryBB.pred_size() == 1 &&
"LLVM-IR entry block has a predecessor!?");
// Move all the instruction from the current entry block to the
// new entry block.
NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
EntryBB->end());
// Update the live-in information for the new entry block.
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
NewEntryBB.addLiveIn(LiveIn);
NewEntryBB.sortUniqueLiveIns();
// Get rid of the now empty basic block.
EntryBB->removeSuccessor(&NewEntryBB);
MF->remove(EntryBB);
MF->DeleteMachineBasicBlock(EntryBB);
assert(&MF->front() == &NewEntryBB &&
"New entry wasn't next in the list of basic block!");
return false;
}