1208 lines
45 KiB
C++
1208 lines
45 KiB
C++
|
//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This pass hoists expressions from branches to a common dominator. It uses
|
||
|
// GVN (global value numbering) to discover expressions computing the same
|
||
|
// values. The primary goals of code-hoisting are:
|
||
|
// 1. To reduce the code size.
|
||
|
// 2. In some cases reduce critical path (by exposing more ILP).
|
||
|
//
|
||
|
// The algorithm factors out the reachability of values such that multiple
|
||
|
// queries to find reachability of values are fast. This is based on finding the
|
||
|
// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
|
||
|
// are basically the dominance-frontiers in the inverse graph. So we introduce a
|
||
|
// data structure (CHI nodes) to keep track of values flowing out of a basic
|
||
|
// block. We only do this for values with multiple occurrences in the function
|
||
|
// as they are the potential hoistable candidates. This approach allows us to
|
||
|
// hoist instructions to a basic block with more than two successors, as well as
|
||
|
// deal with infinite loops in a trivial way.
|
||
|
//
|
||
|
// Limitations: This pass does not hoist fully redundant expressions because
|
||
|
// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
|
||
|
// and after gvn-pre because gvn-pre creates opportunities for more instructions
|
||
|
// to be hoisted.
|
||
|
//
|
||
|
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
|
||
|
// is disabled in the following cases.
|
||
|
// 1. Scalars across calls.
|
||
|
// 2. geps when corresponding load/store cannot be hoisted.
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/DenseSet.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/ADT/iterator_range.h"
|
||
|
#include "llvm/Analysis/AliasAnalysis.h"
|
||
|
#include "llvm/Analysis/GlobalsModRef.h"
|
||
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
||
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
||
|
#include "llvm/Analysis/MemorySSA.h"
|
||
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
||
|
#include "llvm/Analysis/PostDominators.h"
|
||
|
#include "llvm/Analysis/ValueTracking.h"
|
||
|
#include "llvm/IR/Argument.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/CFG.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/InstrTypes.h"
|
||
|
#include "llvm/IR/Instruction.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/IR/Intrinsics.h"
|
||
|
#include "llvm/IR/LLVMContext.h"
|
||
|
#include "llvm/IR/PassManager.h"
|
||
|
#include "llvm/IR/Use.h"
|
||
|
#include "llvm/IR/User.h"
|
||
|
#include "llvm/IR/Value.h"
|
||
|
#include "llvm/Pass.h"
|
||
|
#include "llvm/Support/Casting.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include "llvm/Transforms/Scalar.h"
|
||
|
#include "llvm/Transforms/Scalar/GVN.h"
|
||
|
#include "llvm/Transforms/Utils/Local.h"
|
||
|
#include <algorithm>
|
||
|
#include <cassert>
|
||
|
#include <iterator>
|
||
|
#include <memory>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "gvn-hoist"
|
||
|
|
||
|
STATISTIC(NumHoisted, "Number of instructions hoisted");
|
||
|
STATISTIC(NumRemoved, "Number of instructions removed");
|
||
|
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
|
||
|
STATISTIC(NumLoadsRemoved, "Number of loads removed");
|
||
|
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
|
||
|
STATISTIC(NumStoresRemoved, "Number of stores removed");
|
||
|
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
|
||
|
STATISTIC(NumCallsRemoved, "Number of calls removed");
|
||
|
|
||
|
static cl::opt<int>
|
||
|
MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
|
||
|
cl::desc("Max number of instructions to hoist "
|
||
|
"(default unlimited = -1)"));
|
||
|
|
||
|
static cl::opt<int> MaxNumberOfBBSInPath(
|
||
|
"gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
|
||
|
cl::desc("Max number of basic blocks on the path between "
|
||
|
"hoisting locations (default = 4, unlimited = -1)"));
|
||
|
|
||
|
static cl::opt<int> MaxDepthInBB(
|
||
|
"gvn-hoist-max-depth", cl::Hidden, cl::init(100),
|
||
|
cl::desc("Hoist instructions from the beginning of the BB up to the "
|
||
|
"maximum specified depth (default = 100, unlimited = -1)"));
|
||
|
|
||
|
static cl::opt<int>
|
||
|
MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
|
||
|
cl::desc("Maximum length of dependent chains to hoist "
|
||
|
"(default = 10, unlimited = -1)"));
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
|
||
|
using SmallVecInsn = SmallVector<Instruction *, 4>;
|
||
|
using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
|
||
|
|
||
|
// Each element of a hoisting list contains the basic block where to hoist and
|
||
|
// a list of instructions to be hoisted.
|
||
|
using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
|
||
|
|
||
|
using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
|
||
|
|
||
|
// A map from a pair of VNs to all the instructions with those VNs.
|
||
|
using VNType = std::pair<unsigned, unsigned>;
|
||
|
|
||
|
using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
|
||
|
|
||
|
// CHI keeps information about values flowing out of a basic block. It is
|
||
|
// similar to PHI but in the inverse graph, and used for outgoing values on each
|
||
|
// edge. For conciseness, it is computed only for instructions with multiple
|
||
|
// occurrences in the CFG because they are the only hoistable candidates.
|
||
|
// A (CHI[{V, B, I1}, {V, C, I2}]
|
||
|
// / \
|
||
|
// / \
|
||
|
// B(I1) C (I2)
|
||
|
// The Value number for both I1 and I2 is V, the CHI node will save the
|
||
|
// instruction as well as the edge where the value is flowing to.
|
||
|
struct CHIArg {
|
||
|
VNType VN;
|
||
|
|
||
|
// Edge destination (shows the direction of flow), may not be where the I is.
|
||
|
BasicBlock *Dest;
|
||
|
|
||
|
// The instruction (VN) which uses the values flowing out of CHI.
|
||
|
Instruction *I;
|
||
|
|
||
|
bool operator==(const CHIArg &A) { return VN == A.VN; }
|
||
|
bool operator!=(const CHIArg &A) { return !(*this == A); }
|
||
|
};
|
||
|
|
||
|
using CHIIt = SmallVectorImpl<CHIArg>::iterator;
|
||
|
using CHIArgs = iterator_range<CHIIt>;
|
||
|
using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
|
||
|
using InValuesType =
|
||
|
DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
|
||
|
|
||
|
// An invalid value number Used when inserting a single value number into
|
||
|
// VNtoInsns.
|
||
|
enum : unsigned { InvalidVN = ~2U };
|
||
|
|
||
|
// Records all scalar instructions candidate for code hoisting.
|
||
|
class InsnInfo {
|
||
|
VNtoInsns VNtoScalars;
|
||
|
|
||
|
public:
|
||
|
// Inserts I and its value number in VNtoScalars.
|
||
|
void insert(Instruction *I, GVN::ValueTable &VN) {
|
||
|
// Scalar instruction.
|
||
|
unsigned V = VN.lookupOrAdd(I);
|
||
|
VNtoScalars[{V, InvalidVN}].push_back(I);
|
||
|
}
|
||
|
|
||
|
const VNtoInsns &getVNTable() const { return VNtoScalars; }
|
||
|
};
|
||
|
|
||
|
// Records all load instructions candidate for code hoisting.
|
||
|
class LoadInfo {
|
||
|
VNtoInsns VNtoLoads;
|
||
|
|
||
|
public:
|
||
|
// Insert Load and the value number of its memory address in VNtoLoads.
|
||
|
void insert(LoadInst *Load, GVN::ValueTable &VN) {
|
||
|
if (Load->isSimple()) {
|
||
|
unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
|
||
|
VNtoLoads[{V, InvalidVN}].push_back(Load);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const VNtoInsns &getVNTable() const { return VNtoLoads; }
|
||
|
};
|
||
|
|
||
|
// Records all store instructions candidate for code hoisting.
|
||
|
class StoreInfo {
|
||
|
VNtoInsns VNtoStores;
|
||
|
|
||
|
public:
|
||
|
// Insert the Store and a hash number of the store address and the stored
|
||
|
// value in VNtoStores.
|
||
|
void insert(StoreInst *Store, GVN::ValueTable &VN) {
|
||
|
if (!Store->isSimple())
|
||
|
return;
|
||
|
// Hash the store address and the stored value.
|
||
|
Value *Ptr = Store->getPointerOperand();
|
||
|
Value *Val = Store->getValueOperand();
|
||
|
VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
|
||
|
}
|
||
|
|
||
|
const VNtoInsns &getVNTable() const { return VNtoStores; }
|
||
|
};
|
||
|
|
||
|
// Records all call instructions candidate for code hoisting.
|
||
|
class CallInfo {
|
||
|
VNtoInsns VNtoCallsScalars;
|
||
|
VNtoInsns VNtoCallsLoads;
|
||
|
VNtoInsns VNtoCallsStores;
|
||
|
|
||
|
public:
|
||
|
// Insert Call and its value numbering in one of the VNtoCalls* containers.
|
||
|
void insert(CallInst *Call, GVN::ValueTable &VN) {
|
||
|
// A call that doesNotAccessMemory is handled as a Scalar,
|
||
|
// onlyReadsMemory will be handled as a Load instruction,
|
||
|
// all other calls will be handled as stores.
|
||
|
unsigned V = VN.lookupOrAdd(Call);
|
||
|
auto Entry = std::make_pair(V, InvalidVN);
|
||
|
|
||
|
if (Call->doesNotAccessMemory())
|
||
|
VNtoCallsScalars[Entry].push_back(Call);
|
||
|
else if (Call->onlyReadsMemory())
|
||
|
VNtoCallsLoads[Entry].push_back(Call);
|
||
|
else
|
||
|
VNtoCallsStores[Entry].push_back(Call);
|
||
|
}
|
||
|
|
||
|
const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
|
||
|
const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
|
||
|
const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
|
||
|
};
|
||
|
|
||
|
static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
|
||
|
static const unsigned KnownIDs[] = {
|
||
|
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
||
|
LLVMContext::MD_noalias, LLVMContext::MD_range,
|
||
|
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
|
||
|
LLVMContext::MD_invariant_group};
|
||
|
combineMetadata(ReplInst, I, KnownIDs);
|
||
|
}
|
||
|
|
||
|
// This pass hoists common computations across branches sharing common
|
||
|
// dominator. The primary goal is to reduce the code size, and in some
|
||
|
// cases reduce critical path (by exposing more ILP).
|
||
|
class GVNHoist {
|
||
|
public:
|
||
|
GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
|
||
|
MemoryDependenceResults *MD, MemorySSA *MSSA)
|
||
|
: DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
|
||
|
MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
|
||
|
|
||
|
bool run(Function &F) {
|
||
|
NumFuncArgs = F.arg_size();
|
||
|
VN.setDomTree(DT);
|
||
|
VN.setAliasAnalysis(AA);
|
||
|
VN.setMemDep(MD);
|
||
|
bool Res = false;
|
||
|
// Perform DFS Numbering of instructions.
|
||
|
unsigned BBI = 0;
|
||
|
for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
|
||
|
DFSNumber[BB] = ++BBI;
|
||
|
unsigned I = 0;
|
||
|
for (auto &Inst : *BB)
|
||
|
DFSNumber[&Inst] = ++I;
|
||
|
}
|
||
|
|
||
|
int ChainLength = 0;
|
||
|
|
||
|
// FIXME: use lazy evaluation of VN to avoid the fix-point computation.
|
||
|
while (true) {
|
||
|
if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
|
||
|
return Res;
|
||
|
|
||
|
auto HoistStat = hoistExpressions(F);
|
||
|
if (HoistStat.first + HoistStat.second == 0)
|
||
|
return Res;
|
||
|
|
||
|
if (HoistStat.second > 0)
|
||
|
// To address a limitation of the current GVN, we need to rerun the
|
||
|
// hoisting after we hoisted loads or stores in order to be able to
|
||
|
// hoist all scalars dependent on the hoisted ld/st.
|
||
|
VN.clear();
|
||
|
|
||
|
Res = true;
|
||
|
}
|
||
|
|
||
|
return Res;
|
||
|
}
|
||
|
|
||
|
// Copied from NewGVN.cpp
|
||
|
// This function provides global ranking of operations so that we can place
|
||
|
// them in a canonical order. Note that rank alone is not necessarily enough
|
||
|
// for a complete ordering, as constants all have the same rank. However,
|
||
|
// generally, we will simplify an operation with all constants so that it
|
||
|
// doesn't matter what order they appear in.
|
||
|
unsigned int rank(const Value *V) const {
|
||
|
// Prefer constants to undef to anything else
|
||
|
// Undef is a constant, have to check it first.
|
||
|
// Prefer smaller constants to constantexprs
|
||
|
if (isa<ConstantExpr>(V))
|
||
|
return 2;
|
||
|
if (isa<UndefValue>(V))
|
||
|
return 1;
|
||
|
if (isa<Constant>(V))
|
||
|
return 0;
|
||
|
else if (auto *A = dyn_cast<Argument>(V))
|
||
|
return 3 + A->getArgNo();
|
||
|
|
||
|
// Need to shift the instruction DFS by number of arguments + 3 to account
|
||
|
// for the constant and argument ranking above.
|
||
|
auto Result = DFSNumber.lookup(V);
|
||
|
if (Result > 0)
|
||
|
return 4 + NumFuncArgs + Result;
|
||
|
// Unreachable or something else, just return a really large number.
|
||
|
return ~0;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
GVN::ValueTable VN;
|
||
|
DominatorTree *DT;
|
||
|
PostDominatorTree *PDT;
|
||
|
AliasAnalysis *AA;
|
||
|
MemoryDependenceResults *MD;
|
||
|
MemorySSA *MSSA;
|
||
|
std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
|
||
|
DenseMap<const Value *, unsigned> DFSNumber;
|
||
|
BBSideEffectsSet BBSideEffects;
|
||
|
DenseSet<const BasicBlock *> HoistBarrier;
|
||
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
||
|
unsigned NumFuncArgs;
|
||
|
const bool HoistingGeps = false;
|
||
|
|
||
|
enum InsKind { Unknown, Scalar, Load, Store };
|
||
|
|
||
|
// Return true when there are exception handling in BB.
|
||
|
bool hasEH(const BasicBlock *BB) {
|
||
|
auto It = BBSideEffects.find(BB);
|
||
|
if (It != BBSideEffects.end())
|
||
|
return It->second;
|
||
|
|
||
|
if (BB->isEHPad() || BB->hasAddressTaken()) {
|
||
|
BBSideEffects[BB] = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (BB->getTerminator()->mayThrow()) {
|
||
|
BBSideEffects[BB] = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
BBSideEffects[BB] = false;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Return true when a successor of BB dominates A.
|
||
|
bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
|
||
|
for (const BasicBlock *Succ : BB->getTerminator()->successors())
|
||
|
if (DT->dominates(Succ, A))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Return true when I1 appears before I2 in the instructions of BB.
|
||
|
bool firstInBB(const Instruction *I1, const Instruction *I2) {
|
||
|
assert(I1->getParent() == I2->getParent());
|
||
|
unsigned I1DFS = DFSNumber.lookup(I1);
|
||
|
unsigned I2DFS = DFSNumber.lookup(I2);
|
||
|
assert(I1DFS && I2DFS);
|
||
|
return I1DFS < I2DFS;
|
||
|
}
|
||
|
|
||
|
// Return true when there are memory uses of Def in BB.
|
||
|
bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
|
||
|
const BasicBlock *BB) {
|
||
|
const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
|
||
|
if (!Acc)
|
||
|
return false;
|
||
|
|
||
|
Instruction *OldPt = Def->getMemoryInst();
|
||
|
const BasicBlock *OldBB = OldPt->getParent();
|
||
|
const BasicBlock *NewBB = NewPt->getParent();
|
||
|
bool ReachedNewPt = false;
|
||
|
|
||
|
for (const MemoryAccess &MA : *Acc)
|
||
|
if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
|
||
|
Instruction *Insn = MU->getMemoryInst();
|
||
|
|
||
|
// Do not check whether MU aliases Def when MU occurs after OldPt.
|
||
|
if (BB == OldBB && firstInBB(OldPt, Insn))
|
||
|
break;
|
||
|
|
||
|
// Do not check whether MU aliases Def when MU occurs before NewPt.
|
||
|
if (BB == NewBB) {
|
||
|
if (!ReachedNewPt) {
|
||
|
if (firstInBB(Insn, NewPt))
|
||
|
continue;
|
||
|
ReachedNewPt = true;
|
||
|
}
|
||
|
}
|
||
|
if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
|
||
|
int &NBBsOnAllPaths) {
|
||
|
// Stop walk once the limit is reached.
|
||
|
if (NBBsOnAllPaths == 0)
|
||
|
return true;
|
||
|
|
||
|
// Impossible to hoist with exceptions on the path.
|
||
|
if (hasEH(BB))
|
||
|
return true;
|
||
|
|
||
|
// No such instruction after HoistBarrier in a basic block was
|
||
|
// selected for hoisting so instructions selected within basic block with
|
||
|
// a hoist barrier can be hoisted.
|
||
|
if ((BB != SrcBB) && HoistBarrier.count(BB))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Return true when there are exception handling or loads of memory Def
|
||
|
// between Def and NewPt. This function is only called for stores: Def is
|
||
|
// the MemoryDef of the store to be hoisted.
|
||
|
|
||
|
// Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
|
||
|
// return true when the counter NBBsOnAllPaths reaces 0, except when it is
|
||
|
// initialized to -1 which is unlimited.
|
||
|
bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
|
||
|
int &NBBsOnAllPaths) {
|
||
|
const BasicBlock *NewBB = NewPt->getParent();
|
||
|
const BasicBlock *OldBB = Def->getBlock();
|
||
|
assert(DT->dominates(NewBB, OldBB) && "invalid path");
|
||
|
assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
|
||
|
"def does not dominate new hoisting point");
|
||
|
|
||
|
// Walk all basic blocks reachable in depth-first iteration on the inverse
|
||
|
// CFG from OldBB to NewBB. These blocks are all the blocks that may be
|
||
|
// executed between the execution of NewBB and OldBB. Hoisting an expression
|
||
|
// from OldBB into NewBB has to be safe on all execution paths.
|
||
|
for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
|
||
|
const BasicBlock *BB = *I;
|
||
|
if (BB == NewBB) {
|
||
|
// Stop traversal when reaching HoistPt.
|
||
|
I.skipChildren();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
|
||
|
return true;
|
||
|
|
||
|
// Check that we do not move a store past loads.
|
||
|
if (hasMemoryUse(NewPt, Def, BB))
|
||
|
return true;
|
||
|
|
||
|
// -1 is unlimited number of blocks on all paths.
|
||
|
if (NBBsOnAllPaths != -1)
|
||
|
--NBBsOnAllPaths;
|
||
|
|
||
|
++I;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Return true when there are exception handling between HoistPt and BB.
|
||
|
// Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
|
||
|
// return true when the counter NBBsOnAllPaths reaches 0, except when it is
|
||
|
// initialized to -1 which is unlimited.
|
||
|
bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
|
||
|
int &NBBsOnAllPaths) {
|
||
|
assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
|
||
|
|
||
|
// Walk all basic blocks reachable in depth-first iteration on
|
||
|
// the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
|
||
|
// blocks that may be executed between the execution of NewHoistPt and
|
||
|
// BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
|
||
|
// on all execution paths.
|
||
|
for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
|
||
|
const BasicBlock *BB = *I;
|
||
|
if (BB == HoistPt) {
|
||
|
// Stop traversal when reaching NewHoistPt.
|
||
|
I.skipChildren();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
|
||
|
return true;
|
||
|
|
||
|
// -1 is unlimited number of blocks on all paths.
|
||
|
if (NBBsOnAllPaths != -1)
|
||
|
--NBBsOnAllPaths;
|
||
|
|
||
|
++I;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Return true when it is safe to hoist a memory load or store U from OldPt
|
||
|
// to NewPt.
|
||
|
bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
|
||
|
MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
|
||
|
// In place hoisting is safe.
|
||
|
if (NewPt == OldPt)
|
||
|
return true;
|
||
|
|
||
|
const BasicBlock *NewBB = NewPt->getParent();
|
||
|
const BasicBlock *OldBB = OldPt->getParent();
|
||
|
const BasicBlock *UBB = U->getBlock();
|
||
|
|
||
|
// Check for dependences on the Memory SSA.
|
||
|
MemoryAccess *D = U->getDefiningAccess();
|
||
|
BasicBlock *DBB = D->getBlock();
|
||
|
if (DT->properlyDominates(NewBB, DBB))
|
||
|
// Cannot move the load or store to NewBB above its definition in DBB.
|
||
|
return false;
|
||
|
|
||
|
if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
|
||
|
if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
|
||
|
if (firstInBB(NewPt, UD->getMemoryInst()))
|
||
|
// Cannot move the load or store to NewPt above its definition in D.
|
||
|
return false;
|
||
|
|
||
|
// Check for unsafe hoistings due to side effects.
|
||
|
if (K == InsKind::Store) {
|
||
|
if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
|
||
|
return false;
|
||
|
} else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
|
||
|
return false;
|
||
|
|
||
|
if (UBB == NewBB) {
|
||
|
if (DT->properlyDominates(DBB, NewBB))
|
||
|
return true;
|
||
|
assert(UBB == DBB);
|
||
|
assert(MSSA->locallyDominates(D, U));
|
||
|
}
|
||
|
|
||
|
// No side effects: it is safe to hoist.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Return true when it is safe to hoist scalar instructions from all blocks in
|
||
|
// WL to HoistBB.
|
||
|
bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
|
||
|
int &NBBsOnAllPaths) {
|
||
|
return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
|
||
|
}
|
||
|
|
||
|
// In the inverse CFG, the dominance frontier of basic block (BB) is the
|
||
|
// point where ANTIC needs to be computed for instructions which are going
|
||
|
// to be hoisted. Since this point does not change during gvn-hoist,
|
||
|
// we compute it only once (on demand).
|
||
|
// The ides is inspired from:
|
||
|
// "Partial Redundancy Elimination in SSA Form"
|
||
|
// ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
|
||
|
// They use similar idea in the forward graph to to find fully redundant and
|
||
|
// partially redundant expressions, here it is used in the inverse graph to
|
||
|
// find fully anticipable instructions at merge point (post-dominator in
|
||
|
// the inverse CFG).
|
||
|
// Returns the edge via which an instruction in BB will get the values from.
|
||
|
|
||
|
// Returns true when the values are flowing out to each edge.
|
||
|
bool valueAnticipable(CHIArgs C, TerminatorInst *TI) const {
|
||
|
if (TI->getNumSuccessors() > (unsigned)std::distance(C.begin(), C.end()))
|
||
|
return false; // Not enough args in this CHI.
|
||
|
|
||
|
for (auto CHI : C) {
|
||
|
BasicBlock *Dest = CHI.Dest;
|
||
|
// Find if all the edges have values flowing out of BB.
|
||
|
bool Found = llvm::any_of(TI->successors(), [Dest](const BasicBlock *BB) {
|
||
|
return BB == Dest; });
|
||
|
if (!Found)
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Check if it is safe to hoist values tracked by CHI in the range
|
||
|
// [Begin, End) and accumulate them in Safe.
|
||
|
void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
|
||
|
SmallVectorImpl<CHIArg> &Safe) {
|
||
|
int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
|
||
|
for (auto CHI : C) {
|
||
|
Instruction *Insn = CHI.I;
|
||
|
if (!Insn) // No instruction was inserted in this CHI.
|
||
|
continue;
|
||
|
if (K == InsKind::Scalar) {
|
||
|
if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
|
||
|
Safe.push_back(CHI);
|
||
|
} else {
|
||
|
MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
|
||
|
if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
|
||
|
Safe.push_back(CHI);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
|
||
|
|
||
|
// Push all the VNs corresponding to BB into RenameStack.
|
||
|
void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
|
||
|
RenameStackType &RenameStack) {
|
||
|
auto it1 = ValueBBs.find(BB);
|
||
|
if (it1 != ValueBBs.end()) {
|
||
|
// Iterate in reverse order to keep lower ranked values on the top.
|
||
|
for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
|
||
|
// Get the value of instruction I
|
||
|
DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
|
||
|
RenameStack[VI.first].push_back(VI.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
|
||
|
RenameStackType &RenameStack) {
|
||
|
// For each *predecessor* (because Post-DOM) of BB check if it has a CHI
|
||
|
for (auto Pred : predecessors(BB)) {
|
||
|
auto P = CHIBBs.find(Pred);
|
||
|
if (P == CHIBBs.end()) {
|
||
|
continue;
|
||
|
}
|
||
|
DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
|
||
|
// A CHI is found (BB -> Pred is an edge in the CFG)
|
||
|
// Pop the stack until Top(V) = Ve.
|
||
|
auto &VCHI = P->second;
|
||
|
for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
|
||
|
CHIArg &C = *It;
|
||
|
if (!C.Dest) {
|
||
|
auto si = RenameStack.find(C.VN);
|
||
|
// The Basic Block where CHI is must dominate the value we want to
|
||
|
// track in a CHI. In the PDom walk, there can be values in the
|
||
|
// stack which are not control dependent e.g., nested loop.
|
||
|
if (si != RenameStack.end() && si->second.size() &&
|
||
|
DT->properlyDominates(Pred, si->second.back()->getParent())) {
|
||
|
C.Dest = BB; // Assign the edge
|
||
|
C.I = si->second.pop_back_val(); // Assign the argument
|
||
|
DEBUG(dbgs() << "\nCHI Inserted in BB: " << C.Dest->getName()
|
||
|
<< *C.I << ", VN: " << C.VN.first << ", "
|
||
|
<< C.VN.second);
|
||
|
}
|
||
|
// Move to next CHI of a different value
|
||
|
It = std::find_if(It, VCHI.end(),
|
||
|
[It](CHIArg &A) { return A != *It; });
|
||
|
} else
|
||
|
++It;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Walk the post-dominator tree top-down and use a stack for each value to
|
||
|
// store the last value you see. When you hit a CHI from a given edge, the
|
||
|
// value to use as the argument is at the top of the stack, add the value to
|
||
|
// CHI and pop.
|
||
|
void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
|
||
|
auto Root = PDT->getNode(nullptr);
|
||
|
if (!Root)
|
||
|
return;
|
||
|
// Depth first walk on PDom tree to fill the CHIargs at each PDF.
|
||
|
RenameStackType RenameStack;
|
||
|
for (auto Node : depth_first(Root)) {
|
||
|
BasicBlock *BB = Node->getBlock();
|
||
|
if (!BB)
|
||
|
continue;
|
||
|
|
||
|
// Collect all values in BB and push to stack.
|
||
|
fillRenameStack(BB, ValueBBs, RenameStack);
|
||
|
|
||
|
// Fill outgoing values in each CHI corresponding to BB.
|
||
|
fillChiArgs(BB, CHIBBs, RenameStack);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Walk all the CHI-nodes to find ones which have a empty-entry and remove
|
||
|
// them Then collect all the instructions which are safe to hoist and see if
|
||
|
// they form a list of anticipable values. OutValues contains CHIs
|
||
|
// corresponding to each basic block.
|
||
|
void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
|
||
|
HoistingPointList &HPL) {
|
||
|
auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
|
||
|
|
||
|
// CHIArgs now have the outgoing values, so check for anticipability and
|
||
|
// accumulate hoistable candidates in HPL.
|
||
|
for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
|
||
|
BasicBlock *BB = A.first;
|
||
|
SmallVectorImpl<CHIArg> &CHIs = A.second;
|
||
|
// Vector of PHIs contains PHIs for different instructions.
|
||
|
// Sort the args according to their VNs, such that identical
|
||
|
// instructions are together.
|
||
|
std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN);
|
||
|
auto TI = BB->getTerminator();
|
||
|
auto B = CHIs.begin();
|
||
|
// [PreIt, PHIIt) form a range of CHIs which have identical VNs.
|
||
|
auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
|
||
|
[B](CHIArg &A) { return A != *B; });
|
||
|
auto PrevIt = CHIs.begin();
|
||
|
while (PrevIt != PHIIt) {
|
||
|
// Collect values which satisfy safety checks.
|
||
|
SmallVector<CHIArg, 2> Safe;
|
||
|
// We check for safety first because there might be multiple values in
|
||
|
// the same path, some of which are not safe to be hoisted, but overall
|
||
|
// each edge has at least one value which can be hoisted, making the
|
||
|
// value anticipable along that path.
|
||
|
checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
|
||
|
|
||
|
// List of safe values should be anticipable at TI.
|
||
|
if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
|
||
|
HPL.push_back({BB, SmallVecInsn()});
|
||
|
SmallVecInsn &V = HPL.back().second;
|
||
|
for (auto B : Safe)
|
||
|
V.push_back(B.I);
|
||
|
}
|
||
|
|
||
|
// Check other VNs
|
||
|
PrevIt = PHIIt;
|
||
|
PHIIt = std::find_if(PrevIt, CHIs.end(),
|
||
|
[PrevIt](CHIArg &A) { return A != *PrevIt; });
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute insertion points for each values which can be fully anticipated at
|
||
|
// a dominator. HPL contains all such values.
|
||
|
void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
|
||
|
InsKind K) {
|
||
|
// Sort VNs based on their rankings
|
||
|
std::vector<VNType> Ranks;
|
||
|
for (const auto &Entry : Map) {
|
||
|
Ranks.push_back(Entry.first);
|
||
|
}
|
||
|
|
||
|
// TODO: Remove fully-redundant expressions.
|
||
|
// Get instruction from the Map, assume that all the Instructions
|
||
|
// with same VNs have same rank (this is an approximation).
|
||
|
std::sort(Ranks.begin(), Ranks.end(),
|
||
|
[this, &Map](const VNType &r1, const VNType &r2) {
|
||
|
return (rank(*Map.lookup(r1).begin()) <
|
||
|
rank(*Map.lookup(r2).begin()));
|
||
|
});
|
||
|
|
||
|
// - Sort VNs according to their rank, and start with lowest ranked VN
|
||
|
// - Take a VN and for each instruction with same VN
|
||
|
// - Find the dominance frontier in the inverse graph (PDF)
|
||
|
// - Insert the chi-node at PDF
|
||
|
// - Remove the chi-nodes with missing entries
|
||
|
// - Remove values from CHI-nodes which do not truly flow out, e.g.,
|
||
|
// modified along the path.
|
||
|
// - Collect the remaining values that are still anticipable
|
||
|
SmallVector<BasicBlock *, 2> IDFBlocks;
|
||
|
ReverseIDFCalculator IDFs(*PDT);
|
||
|
OutValuesType OutValue;
|
||
|
InValuesType InValue;
|
||
|
for (const auto &R : Ranks) {
|
||
|
const SmallVecInsn &V = Map.lookup(R);
|
||
|
if (V.size() < 2)
|
||
|
continue;
|
||
|
const VNType &VN = R;
|
||
|
SmallPtrSet<BasicBlock *, 2> VNBlocks;
|
||
|
for (auto &I : V) {
|
||
|
BasicBlock *BBI = I->getParent();
|
||
|
if (!hasEH(BBI))
|
||
|
VNBlocks.insert(BBI);
|
||
|
}
|
||
|
// Compute the Post Dominance Frontiers of each basic block
|
||
|
// The dominance frontier of a live block X in the reverse
|
||
|
// control graph is the set of blocks upon which X is control
|
||
|
// dependent. The following sequence computes the set of blocks
|
||
|
// which currently have dead terminators that are control
|
||
|
// dependence sources of a block which is in NewLiveBlocks.
|
||
|
IDFs.setDefiningBlocks(VNBlocks);
|
||
|
IDFs.calculate(IDFBlocks);
|
||
|
|
||
|
// Make a map of BB vs instructions to be hoisted.
|
||
|
for (unsigned i = 0; i < V.size(); ++i) {
|
||
|
InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
|
||
|
}
|
||
|
// Insert empty CHI node for this VN. This is used to factor out
|
||
|
// basic blocks where the ANTIC can potentially change.
|
||
|
for (auto IDFB : IDFBlocks) { // TODO: Prune out useless CHI insertions.
|
||
|
for (unsigned i = 0; i < V.size(); ++i) {
|
||
|
CHIArg C = {VN, nullptr, nullptr};
|
||
|
// Ignore spurious PDFs.
|
||
|
if (DT->properlyDominates(IDFB, V[i]->getParent())) {
|
||
|
OutValue[IDFB].push_back(C);
|
||
|
DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
|
||
|
<< ", for Insn: " << *V[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Insert CHI args at each PDF to iterate on factored graph of
|
||
|
// control dependence.
|
||
|
insertCHI(InValue, OutValue);
|
||
|
// Using the CHI args inserted at each PDF, find fully anticipable values.
|
||
|
findHoistableCandidates(OutValue, K, HPL);
|
||
|
}
|
||
|
|
||
|
// Return true when all operands of Instr are available at insertion point
|
||
|
// HoistPt. When limiting the number of hoisted expressions, one could hoist
|
||
|
// a load without hoisting its access function. So before hoisting any
|
||
|
// expression, make sure that all its operands are available at insert point.
|
||
|
bool allOperandsAvailable(const Instruction *I,
|
||
|
const BasicBlock *HoistPt) const {
|
||
|
for (const Use &Op : I->operands())
|
||
|
if (const auto *Inst = dyn_cast<Instruction>(&Op))
|
||
|
if (!DT->dominates(Inst->getParent(), HoistPt))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Same as allOperandsAvailable with recursive check for GEP operands.
|
||
|
bool allGepOperandsAvailable(const Instruction *I,
|
||
|
const BasicBlock *HoistPt) const {
|
||
|
for (const Use &Op : I->operands())
|
||
|
if (const auto *Inst = dyn_cast<Instruction>(&Op))
|
||
|
if (!DT->dominates(Inst->getParent(), HoistPt)) {
|
||
|
if (const GetElementPtrInst *GepOp =
|
||
|
dyn_cast<GetElementPtrInst>(Inst)) {
|
||
|
if (!allGepOperandsAvailable(GepOp, HoistPt))
|
||
|
return false;
|
||
|
// Gep is available if all operands of GepOp are available.
|
||
|
} else {
|
||
|
// Gep is not available if it has operands other than GEPs that are
|
||
|
// defined in blocks not dominating HoistPt.
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Make all operands of the GEP available.
|
||
|
void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
|
||
|
const SmallVecInsn &InstructionsToHoist,
|
||
|
Instruction *Gep) const {
|
||
|
assert(allGepOperandsAvailable(Gep, HoistPt) &&
|
||
|
"GEP operands not available");
|
||
|
|
||
|
Instruction *ClonedGep = Gep->clone();
|
||
|
for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
|
||
|
if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
|
||
|
// Check whether the operand is already available.
|
||
|
if (DT->dominates(Op->getParent(), HoistPt))
|
||
|
continue;
|
||
|
|
||
|
// As a GEP can refer to other GEPs, recursively make all the operands
|
||
|
// of this GEP available at HoistPt.
|
||
|
if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
|
||
|
makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
|
||
|
}
|
||
|
|
||
|
// Copy Gep and replace its uses in Repl with ClonedGep.
|
||
|
ClonedGep->insertBefore(HoistPt->getTerminator());
|
||
|
|
||
|
// Conservatively discard any optimization hints, they may differ on the
|
||
|
// other paths.
|
||
|
ClonedGep->dropUnknownNonDebugMetadata();
|
||
|
|
||
|
// If we have optimization hints which agree with each other along different
|
||
|
// paths, preserve them.
|
||
|
for (const Instruction *OtherInst : InstructionsToHoist) {
|
||
|
const GetElementPtrInst *OtherGep;
|
||
|
if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
|
||
|
OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
|
||
|
else
|
||
|
OtherGep = cast<GetElementPtrInst>(
|
||
|
cast<StoreInst>(OtherInst)->getPointerOperand());
|
||
|
ClonedGep->andIRFlags(OtherGep);
|
||
|
}
|
||
|
|
||
|
// Replace uses of Gep with ClonedGep in Repl.
|
||
|
Repl->replaceUsesOfWith(Gep, ClonedGep);
|
||
|
}
|
||
|
|
||
|
void updateAlignment(Instruction *I, Instruction *Repl) {
|
||
|
if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
|
||
|
ReplacementLoad->setAlignment(
|
||
|
std::min(ReplacementLoad->getAlignment(),
|
||
|
cast<LoadInst>(I)->getAlignment()));
|
||
|
++NumLoadsRemoved;
|
||
|
} else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
|
||
|
ReplacementStore->setAlignment(
|
||
|
std::min(ReplacementStore->getAlignment(),
|
||
|
cast<StoreInst>(I)->getAlignment()));
|
||
|
++NumStoresRemoved;
|
||
|
} else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
|
||
|
ReplacementAlloca->setAlignment(
|
||
|
std::max(ReplacementAlloca->getAlignment(),
|
||
|
cast<AllocaInst>(I)->getAlignment()));
|
||
|
} else if (isa<CallInst>(Repl)) {
|
||
|
++NumCallsRemoved;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Remove all the instructions in Candidates and replace their usage with Repl.
|
||
|
// Returns the number of instructions removed.
|
||
|
unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
|
||
|
MemoryUseOrDef *NewMemAcc) {
|
||
|
unsigned NR = 0;
|
||
|
for (Instruction *I : Candidates) {
|
||
|
if (I != Repl) {
|
||
|
++NR;
|
||
|
updateAlignment(I, Repl);
|
||
|
if (NewMemAcc) {
|
||
|
// Update the uses of the old MSSA access with NewMemAcc.
|
||
|
MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
|
||
|
OldMA->replaceAllUsesWith(NewMemAcc);
|
||
|
MSSAUpdater->removeMemoryAccess(OldMA);
|
||
|
}
|
||
|
|
||
|
Repl->andIRFlags(I);
|
||
|
combineKnownMetadata(Repl, I);
|
||
|
I->replaceAllUsesWith(Repl);
|
||
|
// Also invalidate the Alias Analysis cache.
|
||
|
MD->removeInstruction(I);
|
||
|
I->eraseFromParent();
|
||
|
}
|
||
|
}
|
||
|
return NR;
|
||
|
}
|
||
|
|
||
|
// Replace all Memory PHI usage with NewMemAcc.
|
||
|
void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
|
||
|
SmallPtrSet<MemoryPhi *, 4> UsePhis;
|
||
|
for (User *U : NewMemAcc->users())
|
||
|
if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
|
||
|
UsePhis.insert(Phi);
|
||
|
|
||
|
for (MemoryPhi *Phi : UsePhis) {
|
||
|
auto In = Phi->incoming_values();
|
||
|
if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
|
||
|
Phi->replaceAllUsesWith(NewMemAcc);
|
||
|
MSSAUpdater->removeMemoryAccess(Phi);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Remove all other instructions and replace them with Repl.
|
||
|
unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
|
||
|
BasicBlock *DestBB, bool MoveAccess) {
|
||
|
MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
|
||
|
if (MoveAccess && NewMemAcc) {
|
||
|
// The definition of this ld/st will not change: ld/st hoisting is
|
||
|
// legal when the ld/st is not moved past its current definition.
|
||
|
MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
|
||
|
}
|
||
|
|
||
|
// Replace all other instructions with Repl with memory access NewMemAcc.
|
||
|
unsigned NR = rauw(Candidates, Repl, NewMemAcc);
|
||
|
|
||
|
// Remove MemorySSA phi nodes with the same arguments.
|
||
|
if (NewMemAcc)
|
||
|
raMPHIuw(NewMemAcc);
|
||
|
return NR;
|
||
|
}
|
||
|
|
||
|
// In the case Repl is a load or a store, we make all their GEPs
|
||
|
// available: GEPs are not hoisted by default to avoid the address
|
||
|
// computations to be hoisted without the associated load or store.
|
||
|
bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
|
||
|
const SmallVecInsn &InstructionsToHoist) const {
|
||
|
// Check whether the GEP of a ld/st can be synthesized at HoistPt.
|
||
|
GetElementPtrInst *Gep = nullptr;
|
||
|
Instruction *Val = nullptr;
|
||
|
if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
|
||
|
Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
|
||
|
} else if (auto *St = dyn_cast<StoreInst>(Repl)) {
|
||
|
Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
|
||
|
Val = dyn_cast<Instruction>(St->getValueOperand());
|
||
|
// Check that the stored value is available.
|
||
|
if (Val) {
|
||
|
if (isa<GetElementPtrInst>(Val)) {
|
||
|
// Check whether we can compute the GEP at HoistPt.
|
||
|
if (!allGepOperandsAvailable(Val, HoistPt))
|
||
|
return false;
|
||
|
} else if (!DT->dominates(Val->getParent(), HoistPt))
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check whether we can compute the Gep at HoistPt.
|
||
|
if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
|
||
|
return false;
|
||
|
|
||
|
makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
|
||
|
|
||
|
if (Val && isa<GetElementPtrInst>(Val))
|
||
|
makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
|
||
|
unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
|
||
|
for (const HoistingPointInfo &HP : HPL) {
|
||
|
// Find out whether we already have one of the instructions in HoistPt,
|
||
|
// in which case we do not have to move it.
|
||
|
BasicBlock *DestBB = HP.first;
|
||
|
const SmallVecInsn &InstructionsToHoist = HP.second;
|
||
|
Instruction *Repl = nullptr;
|
||
|
for (Instruction *I : InstructionsToHoist)
|
||
|
if (I->getParent() == DestBB)
|
||
|
// If there are two instructions in HoistPt to be hoisted in place:
|
||
|
// update Repl to be the first one, such that we can rename the uses
|
||
|
// of the second based on the first.
|
||
|
if (!Repl || firstInBB(I, Repl))
|
||
|
Repl = I;
|
||
|
|
||
|
// Keep track of whether we moved the instruction so we know whether we
|
||
|
// should move the MemoryAccess.
|
||
|
bool MoveAccess = true;
|
||
|
if (Repl) {
|
||
|
// Repl is already in HoistPt: it remains in place.
|
||
|
assert(allOperandsAvailable(Repl, DestBB) &&
|
||
|
"instruction depends on operands that are not available");
|
||
|
MoveAccess = false;
|
||
|
} else {
|
||
|
// When we do not find Repl in HoistPt, select the first in the list
|
||
|
// and move it to HoistPt.
|
||
|
Repl = InstructionsToHoist.front();
|
||
|
|
||
|
// We can move Repl in HoistPt only when all operands are available.
|
||
|
// The order in which hoistings are done may influence the availability
|
||
|
// of operands.
|
||
|
if (!allOperandsAvailable(Repl, DestBB)) {
|
||
|
// When HoistingGeps there is nothing more we can do to make the
|
||
|
// operands available: just continue.
|
||
|
if (HoistingGeps)
|
||
|
continue;
|
||
|
|
||
|
// When not HoistingGeps we need to copy the GEPs.
|
||
|
if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Move the instruction at the end of HoistPt.
|
||
|
Instruction *Last = DestBB->getTerminator();
|
||
|
MD->removeInstruction(Repl);
|
||
|
Repl->moveBefore(Last);
|
||
|
|
||
|
DFSNumber[Repl] = DFSNumber[Last]++;
|
||
|
}
|
||
|
|
||
|
NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
|
||
|
|
||
|
if (isa<LoadInst>(Repl))
|
||
|
++NL;
|
||
|
else if (isa<StoreInst>(Repl))
|
||
|
++NS;
|
||
|
else if (isa<CallInst>(Repl))
|
||
|
++NC;
|
||
|
else // Scalar
|
||
|
++NI;
|
||
|
}
|
||
|
|
||
|
NumHoisted += NL + NS + NC + NI;
|
||
|
NumRemoved += NR;
|
||
|
NumLoadsHoisted += NL;
|
||
|
NumStoresHoisted += NS;
|
||
|
NumCallsHoisted += NC;
|
||
|
return {NI, NL + NC + NS};
|
||
|
}
|
||
|
|
||
|
// Hoist all expressions. Returns Number of scalars hoisted
|
||
|
// and number of non-scalars hoisted.
|
||
|
std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
|
||
|
InsnInfo II;
|
||
|
LoadInfo LI;
|
||
|
StoreInfo SI;
|
||
|
CallInfo CI;
|
||
|
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
|
||
|
int InstructionNb = 0;
|
||
|
for (Instruction &I1 : *BB) {
|
||
|
// If I1 cannot guarantee progress, subsequent instructions
|
||
|
// in BB cannot be hoisted anyways.
|
||
|
if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
|
||
|
HoistBarrier.insert(BB);
|
||
|
break;
|
||
|
}
|
||
|
// Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
|
||
|
// deeper may increase the register pressure and compilation time.
|
||
|
if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
|
||
|
break;
|
||
|
|
||
|
// Do not value number terminator instructions.
|
||
|
if (isa<TerminatorInst>(&I1))
|
||
|
break;
|
||
|
|
||
|
if (auto *Load = dyn_cast<LoadInst>(&I1))
|
||
|
LI.insert(Load, VN);
|
||
|
else if (auto *Store = dyn_cast<StoreInst>(&I1))
|
||
|
SI.insert(Store, VN);
|
||
|
else if (auto *Call = dyn_cast<CallInst>(&I1)) {
|
||
|
if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
|
||
|
if (isa<DbgInfoIntrinsic>(Intr) ||
|
||
|
Intr->getIntrinsicID() == Intrinsic::assume ||
|
||
|
Intr->getIntrinsicID() == Intrinsic::sideeffect)
|
||
|
continue;
|
||
|
}
|
||
|
if (Call->mayHaveSideEffects())
|
||
|
break;
|
||
|
|
||
|
if (Call->isConvergent())
|
||
|
break;
|
||
|
|
||
|
CI.insert(Call, VN);
|
||
|
} else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
|
||
|
// Do not hoist scalars past calls that may write to memory because
|
||
|
// that could result in spills later. geps are handled separately.
|
||
|
// TODO: We can relax this for targets like AArch64 as they have more
|
||
|
// registers than X86.
|
||
|
II.insert(&I1, VN);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
HoistingPointList HPL;
|
||
|
computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
|
||
|
computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
|
||
|
computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
|
||
|
computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
|
||
|
computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
|
||
|
computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
|
||
|
return hoist(HPL);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class GVNHoistLegacyPass : public FunctionPass {
|
||
|
public:
|
||
|
static char ID;
|
||
|
|
||
|
GVNHoistLegacyPass() : FunctionPass(ID) {
|
||
|
initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
|
||
|
}
|
||
|
|
||
|
bool runOnFunction(Function &F) override {
|
||
|
if (skipFunction(F))
|
||
|
return false;
|
||
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
||
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
||
|
auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
|
||
|
auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
|
||
|
|
||
|
GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
|
||
|
return G.run(F);
|
||
|
}
|
||
|
|
||
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||
|
AU.addRequired<DominatorTreeWrapperPass>();
|
||
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
||
|
AU.addRequired<AAResultsWrapperPass>();
|
||
|
AU.addRequired<MemoryDependenceWrapperPass>();
|
||
|
AU.addRequired<MemorySSAWrapperPass>();
|
||
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
||
|
AU.addPreserved<MemorySSAWrapperPass>();
|
||
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
|
||
|
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
||
|
PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
|
||
|
AliasAnalysis &AA = AM.getResult<AAManager>(F);
|
||
|
MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
|
||
|
MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
|
||
|
GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
|
||
|
if (!G.run(F))
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
PreservedAnalyses PA;
|
||
|
PA.preserve<DominatorTreeAnalysis>();
|
||
|
PA.preserve<MemorySSAAnalysis>();
|
||
|
PA.preserve<GlobalsAA>();
|
||
|
return PA;
|
||
|
}
|
||
|
|
||
|
char GVNHoistLegacyPass::ID = 0;
|
||
|
|
||
|
INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
|
||
|
"Early GVN Hoisting of Expressions", false, false)
|
||
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
||
|
INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
|
||
|
"Early GVN Hoisting of Expressions", false, false)
|
||
|
|
||
|
FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
|