601 lines
17 KiB
C++
601 lines
17 KiB
C++
|
//===-- StringRef.cpp - Lightweight String References ---------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/ADT/StringRef.h"
|
||
|
#include "llvm/ADT/APFloat.h"
|
||
|
#include "llvm/ADT/APInt.h"
|
||
|
#include "llvm/ADT/Hashing.h"
|
||
|
#include "llvm/ADT/StringExtras.h"
|
||
|
#include "llvm/ADT/edit_distance.h"
|
||
|
#include <bitset>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
// MSVC emits references to this into the translation units which reference it.
|
||
|
#ifndef _MSC_VER
|
||
|
const size_t StringRef::npos;
|
||
|
#endif
|
||
|
|
||
|
// strncasecmp() is not available on non-POSIX systems, so define an
|
||
|
// alternative function here.
|
||
|
static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
|
||
|
for (size_t I = 0; I < Length; ++I) {
|
||
|
unsigned char LHC = toLower(LHS[I]);
|
||
|
unsigned char RHC = toLower(RHS[I]);
|
||
|
if (LHC != RHC)
|
||
|
return LHC < RHC ? -1 : 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/// compare_lower - Compare strings, ignoring case.
|
||
|
int StringRef::compare_lower(StringRef RHS) const {
|
||
|
if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
|
||
|
return Res;
|
||
|
if (Length == RHS.Length)
|
||
|
return 0;
|
||
|
return Length < RHS.Length ? -1 : 1;
|
||
|
}
|
||
|
|
||
|
/// Check if this string starts with the given \p Prefix, ignoring case.
|
||
|
bool StringRef::startswith_lower(StringRef Prefix) const {
|
||
|
return Length >= Prefix.Length &&
|
||
|
ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
|
||
|
}
|
||
|
|
||
|
/// Check if this string ends with the given \p Suffix, ignoring case.
|
||
|
bool StringRef::endswith_lower(StringRef Suffix) const {
|
||
|
return Length >= Suffix.Length &&
|
||
|
ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
|
||
|
}
|
||
|
|
||
|
size_t StringRef::find_lower(char C, size_t From) const {
|
||
|
char L = toLower(C);
|
||
|
return find_if([L](char D) { return toLower(D) == L; }, From);
|
||
|
}
|
||
|
|
||
|
/// compare_numeric - Compare strings, handle embedded numbers.
|
||
|
int StringRef::compare_numeric(StringRef RHS) const {
|
||
|
for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
|
||
|
// Check for sequences of digits.
|
||
|
if (isDigit(Data[I]) && isDigit(RHS.Data[I])) {
|
||
|
// The longer sequence of numbers is considered larger.
|
||
|
// This doesn't really handle prefixed zeros well.
|
||
|
size_t J;
|
||
|
for (J = I + 1; J != E + 1; ++J) {
|
||
|
bool ld = J < Length && isDigit(Data[J]);
|
||
|
bool rd = J < RHS.Length && isDigit(RHS.Data[J]);
|
||
|
if (ld != rd)
|
||
|
return rd ? -1 : 1;
|
||
|
if (!rd)
|
||
|
break;
|
||
|
}
|
||
|
// The two number sequences have the same length (J-I), just memcmp them.
|
||
|
if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
|
||
|
return Res < 0 ? -1 : 1;
|
||
|
// Identical number sequences, continue search after the numbers.
|
||
|
I = J - 1;
|
||
|
continue;
|
||
|
}
|
||
|
if (Data[I] != RHS.Data[I])
|
||
|
return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
|
||
|
}
|
||
|
if (Length == RHS.Length)
|
||
|
return 0;
|
||
|
return Length < RHS.Length ? -1 : 1;
|
||
|
}
|
||
|
|
||
|
// Compute the edit distance between the two given strings.
|
||
|
unsigned StringRef::edit_distance(llvm::StringRef Other,
|
||
|
bool AllowReplacements,
|
||
|
unsigned MaxEditDistance) const {
|
||
|
return llvm::ComputeEditDistance(
|
||
|
makeArrayRef(data(), size()),
|
||
|
makeArrayRef(Other.data(), Other.size()),
|
||
|
AllowReplacements, MaxEditDistance);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// String Operations
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
std::string StringRef::lower() const {
|
||
|
std::string Result(size(), char());
|
||
|
for (size_type i = 0, e = size(); i != e; ++i) {
|
||
|
Result[i] = toLower(Data[i]);
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
std::string StringRef::upper() const {
|
||
|
std::string Result(size(), char());
|
||
|
for (size_type i = 0, e = size(); i != e; ++i) {
|
||
|
Result[i] = toUpper(Data[i]);
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// String Searching
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
|
||
|
/// find - Search for the first string \arg Str in the string.
|
||
|
///
|
||
|
/// \return - The index of the first occurrence of \arg Str, or npos if not
|
||
|
/// found.
|
||
|
size_t StringRef::find(StringRef Str, size_t From) const {
|
||
|
if (From > Length)
|
||
|
return npos;
|
||
|
|
||
|
const char *Start = Data + From;
|
||
|
size_t Size = Length - From;
|
||
|
|
||
|
const char *Needle = Str.data();
|
||
|
size_t N = Str.size();
|
||
|
if (N == 0)
|
||
|
return From;
|
||
|
if (Size < N)
|
||
|
return npos;
|
||
|
if (N == 1) {
|
||
|
const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
|
||
|
return Ptr == nullptr ? npos : Ptr - Data;
|
||
|
}
|
||
|
|
||
|
const char *Stop = Start + (Size - N + 1);
|
||
|
|
||
|
// For short haystacks or unsupported needles fall back to the naive algorithm
|
||
|
if (Size < 16 || N > 255) {
|
||
|
do {
|
||
|
if (std::memcmp(Start, Needle, N) == 0)
|
||
|
return Start - Data;
|
||
|
++Start;
|
||
|
} while (Start < Stop);
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
// Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
|
||
|
uint8_t BadCharSkip[256];
|
||
|
std::memset(BadCharSkip, N, 256);
|
||
|
for (unsigned i = 0; i != N-1; ++i)
|
||
|
BadCharSkip[(uint8_t)Str[i]] = N-1-i;
|
||
|
|
||
|
do {
|
||
|
uint8_t Last = Start[N - 1];
|
||
|
if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
|
||
|
if (std::memcmp(Start, Needle, N - 1) == 0)
|
||
|
return Start - Data;
|
||
|
|
||
|
// Otherwise skip the appropriate number of bytes.
|
||
|
Start += BadCharSkip[Last];
|
||
|
} while (Start < Stop);
|
||
|
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
size_t StringRef::find_lower(StringRef Str, size_t From) const {
|
||
|
StringRef This = substr(From);
|
||
|
while (This.size() >= Str.size()) {
|
||
|
if (This.startswith_lower(Str))
|
||
|
return From;
|
||
|
This = This.drop_front();
|
||
|
++From;
|
||
|
}
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
size_t StringRef::rfind_lower(char C, size_t From) const {
|
||
|
From = std::min(From, Length);
|
||
|
size_t i = From;
|
||
|
while (i != 0) {
|
||
|
--i;
|
||
|
if (toLower(Data[i]) == toLower(C))
|
||
|
return i;
|
||
|
}
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// rfind - Search for the last string \arg Str in the string.
|
||
|
///
|
||
|
/// \return - The index of the last occurrence of \arg Str, or npos if not
|
||
|
/// found.
|
||
|
size_t StringRef::rfind(StringRef Str) const {
|
||
|
size_t N = Str.size();
|
||
|
if (N > Length)
|
||
|
return npos;
|
||
|
for (size_t i = Length - N + 1, e = 0; i != e;) {
|
||
|
--i;
|
||
|
if (substr(i, N).equals(Str))
|
||
|
return i;
|
||
|
}
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
size_t StringRef::rfind_lower(StringRef Str) const {
|
||
|
size_t N = Str.size();
|
||
|
if (N > Length)
|
||
|
return npos;
|
||
|
for (size_t i = Length - N + 1, e = 0; i != e;) {
|
||
|
--i;
|
||
|
if (substr(i, N).equals_lower(Str))
|
||
|
return i;
|
||
|
}
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// find_first_of - Find the first character in the string that is in \arg
|
||
|
/// Chars, or npos if not found.
|
||
|
///
|
||
|
/// Note: O(size() + Chars.size())
|
||
|
StringRef::size_type StringRef::find_first_of(StringRef Chars,
|
||
|
size_t From) const {
|
||
|
std::bitset<1 << CHAR_BIT> CharBits;
|
||
|
for (size_type i = 0; i != Chars.size(); ++i)
|
||
|
CharBits.set((unsigned char)Chars[i]);
|
||
|
|
||
|
for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
|
||
|
if (CharBits.test((unsigned char)Data[i]))
|
||
|
return i;
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// find_first_not_of - Find the first character in the string that is not
|
||
|
/// \arg C or npos if not found.
|
||
|
StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
|
||
|
for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
|
||
|
if (Data[i] != C)
|
||
|
return i;
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// find_first_not_of - Find the first character in the string that is not
|
||
|
/// in the string \arg Chars, or npos if not found.
|
||
|
///
|
||
|
/// Note: O(size() + Chars.size())
|
||
|
StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
|
||
|
size_t From) const {
|
||
|
std::bitset<1 << CHAR_BIT> CharBits;
|
||
|
for (size_type i = 0; i != Chars.size(); ++i)
|
||
|
CharBits.set((unsigned char)Chars[i]);
|
||
|
|
||
|
for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
|
||
|
if (!CharBits.test((unsigned char)Data[i]))
|
||
|
return i;
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// find_last_of - Find the last character in the string that is in \arg C,
|
||
|
/// or npos if not found.
|
||
|
///
|
||
|
/// Note: O(size() + Chars.size())
|
||
|
StringRef::size_type StringRef::find_last_of(StringRef Chars,
|
||
|
size_t From) const {
|
||
|
std::bitset<1 << CHAR_BIT> CharBits;
|
||
|
for (size_type i = 0; i != Chars.size(); ++i)
|
||
|
CharBits.set((unsigned char)Chars[i]);
|
||
|
|
||
|
for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
|
||
|
if (CharBits.test((unsigned char)Data[i]))
|
||
|
return i;
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// find_last_not_of - Find the last character in the string that is not
|
||
|
/// \arg C, or npos if not found.
|
||
|
StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
|
||
|
for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
|
||
|
if (Data[i] != C)
|
||
|
return i;
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
/// find_last_not_of - Find the last character in the string that is not in
|
||
|
/// \arg Chars, or npos if not found.
|
||
|
///
|
||
|
/// Note: O(size() + Chars.size())
|
||
|
StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
|
||
|
size_t From) const {
|
||
|
std::bitset<1 << CHAR_BIT> CharBits;
|
||
|
for (size_type i = 0, e = Chars.size(); i != e; ++i)
|
||
|
CharBits.set((unsigned char)Chars[i]);
|
||
|
|
||
|
for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
|
||
|
if (!CharBits.test((unsigned char)Data[i]))
|
||
|
return i;
|
||
|
return npos;
|
||
|
}
|
||
|
|
||
|
void StringRef::split(SmallVectorImpl<StringRef> &A,
|
||
|
StringRef Separator, int MaxSplit,
|
||
|
bool KeepEmpty) const {
|
||
|
StringRef S = *this;
|
||
|
|
||
|
// Count down from MaxSplit. When MaxSplit is -1, this will just split
|
||
|
// "forever". This doesn't support splitting more than 2^31 times
|
||
|
// intentionally; if we ever want that we can make MaxSplit a 64-bit integer
|
||
|
// but that seems unlikely to be useful.
|
||
|
while (MaxSplit-- != 0) {
|
||
|
size_t Idx = S.find(Separator);
|
||
|
if (Idx == npos)
|
||
|
break;
|
||
|
|
||
|
// Push this split.
|
||
|
if (KeepEmpty || Idx > 0)
|
||
|
A.push_back(S.slice(0, Idx));
|
||
|
|
||
|
// Jump forward.
|
||
|
S = S.slice(Idx + Separator.size(), npos);
|
||
|
}
|
||
|
|
||
|
// Push the tail.
|
||
|
if (KeepEmpty || !S.empty())
|
||
|
A.push_back(S);
|
||
|
}
|
||
|
|
||
|
void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
|
||
|
int MaxSplit, bool KeepEmpty) const {
|
||
|
StringRef S = *this;
|
||
|
|
||
|
// Count down from MaxSplit. When MaxSplit is -1, this will just split
|
||
|
// "forever". This doesn't support splitting more than 2^31 times
|
||
|
// intentionally; if we ever want that we can make MaxSplit a 64-bit integer
|
||
|
// but that seems unlikely to be useful.
|
||
|
while (MaxSplit-- != 0) {
|
||
|
size_t Idx = S.find(Separator);
|
||
|
if (Idx == npos)
|
||
|
break;
|
||
|
|
||
|
// Push this split.
|
||
|
if (KeepEmpty || Idx > 0)
|
||
|
A.push_back(S.slice(0, Idx));
|
||
|
|
||
|
// Jump forward.
|
||
|
S = S.slice(Idx + 1, npos);
|
||
|
}
|
||
|
|
||
|
// Push the tail.
|
||
|
if (KeepEmpty || !S.empty())
|
||
|
A.push_back(S);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Helpful Algorithms
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// count - Return the number of non-overlapped occurrences of \arg Str in
|
||
|
/// the string.
|
||
|
size_t StringRef::count(StringRef Str) const {
|
||
|
size_t Count = 0;
|
||
|
size_t N = Str.size();
|
||
|
if (N > Length)
|
||
|
return 0;
|
||
|
for (size_t i = 0, e = Length - N + 1; i != e; ++i)
|
||
|
if (substr(i, N).equals(Str))
|
||
|
++Count;
|
||
|
return Count;
|
||
|
}
|
||
|
|
||
|
static unsigned GetAutoSenseRadix(StringRef &Str) {
|
||
|
if (Str.empty())
|
||
|
return 10;
|
||
|
|
||
|
if (Str.startswith("0x") || Str.startswith("0X")) {
|
||
|
Str = Str.substr(2);
|
||
|
return 16;
|
||
|
}
|
||
|
|
||
|
if (Str.startswith("0b") || Str.startswith("0B")) {
|
||
|
Str = Str.substr(2);
|
||
|
return 2;
|
||
|
}
|
||
|
|
||
|
if (Str.startswith("0o")) {
|
||
|
Str = Str.substr(2);
|
||
|
return 8;
|
||
|
}
|
||
|
|
||
|
if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
|
||
|
Str = Str.substr(1);
|
||
|
return 8;
|
||
|
}
|
||
|
|
||
|
return 10;
|
||
|
}
|
||
|
|
||
|
bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
|
||
|
unsigned long long &Result) {
|
||
|
// Autosense radix if not specified.
|
||
|
if (Radix == 0)
|
||
|
Radix = GetAutoSenseRadix(Str);
|
||
|
|
||
|
// Empty strings (after the radix autosense) are invalid.
|
||
|
if (Str.empty()) return true;
|
||
|
|
||
|
// Parse all the bytes of the string given this radix. Watch for overflow.
|
||
|
StringRef Str2 = Str;
|
||
|
Result = 0;
|
||
|
while (!Str2.empty()) {
|
||
|
unsigned CharVal;
|
||
|
if (Str2[0] >= '0' && Str2[0] <= '9')
|
||
|
CharVal = Str2[0] - '0';
|
||
|
else if (Str2[0] >= 'a' && Str2[0] <= 'z')
|
||
|
CharVal = Str2[0] - 'a' + 10;
|
||
|
else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
|
||
|
CharVal = Str2[0] - 'A' + 10;
|
||
|
else
|
||
|
break;
|
||
|
|
||
|
// If the parsed value is larger than the integer radix, we cannot
|
||
|
// consume any more characters.
|
||
|
if (CharVal >= Radix)
|
||
|
break;
|
||
|
|
||
|
// Add in this character.
|
||
|
unsigned long long PrevResult = Result;
|
||
|
Result = Result * Radix + CharVal;
|
||
|
|
||
|
// Check for overflow by shifting back and seeing if bits were lost.
|
||
|
if (Result / Radix < PrevResult)
|
||
|
return true;
|
||
|
|
||
|
Str2 = Str2.substr(1);
|
||
|
}
|
||
|
|
||
|
// We consider the operation a failure if no characters were consumed
|
||
|
// successfully.
|
||
|
if (Str.size() == Str2.size())
|
||
|
return true;
|
||
|
|
||
|
Str = Str2;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
|
||
|
long long &Result) {
|
||
|
unsigned long long ULLVal;
|
||
|
|
||
|
// Handle positive strings first.
|
||
|
if (Str.empty() || Str.front() != '-') {
|
||
|
if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
|
||
|
// Check for value so large it overflows a signed value.
|
||
|
(long long)ULLVal < 0)
|
||
|
return true;
|
||
|
Result = ULLVal;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Get the positive part of the value.
|
||
|
StringRef Str2 = Str.drop_front(1);
|
||
|
if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
|
||
|
// Reject values so large they'd overflow as negative signed, but allow
|
||
|
// "-0". This negates the unsigned so that the negative isn't undefined
|
||
|
// on signed overflow.
|
||
|
(long long)-ULLVal > 0)
|
||
|
return true;
|
||
|
|
||
|
Str = Str2;
|
||
|
Result = -ULLVal;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// GetAsUnsignedInteger - Workhorse method that converts a integer character
|
||
|
/// sequence of radix up to 36 to an unsigned long long value.
|
||
|
bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
|
||
|
unsigned long long &Result) {
|
||
|
if (consumeUnsignedInteger(Str, Radix, Result))
|
||
|
return true;
|
||
|
|
||
|
// For getAsUnsignedInteger, we require the whole string to be consumed or
|
||
|
// else we consider it a failure.
|
||
|
return !Str.empty();
|
||
|
}
|
||
|
|
||
|
bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
|
||
|
long long &Result) {
|
||
|
if (consumeSignedInteger(Str, Radix, Result))
|
||
|
return true;
|
||
|
|
||
|
// For getAsSignedInteger, we require the whole string to be consumed or else
|
||
|
// we consider it a failure.
|
||
|
return !Str.empty();
|
||
|
}
|
||
|
|
||
|
bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
|
||
|
StringRef Str = *this;
|
||
|
|
||
|
// Autosense radix if not specified.
|
||
|
if (Radix == 0)
|
||
|
Radix = GetAutoSenseRadix(Str);
|
||
|
|
||
|
assert(Radix > 1 && Radix <= 36);
|
||
|
|
||
|
// Empty strings (after the radix autosense) are invalid.
|
||
|
if (Str.empty()) return true;
|
||
|
|
||
|
// Skip leading zeroes. This can be a significant improvement if
|
||
|
// it means we don't need > 64 bits.
|
||
|
while (!Str.empty() && Str.front() == '0')
|
||
|
Str = Str.substr(1);
|
||
|
|
||
|
// If it was nothing but zeroes....
|
||
|
if (Str.empty()) {
|
||
|
Result = APInt(64, 0);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// (Over-)estimate the required number of bits.
|
||
|
unsigned Log2Radix = 0;
|
||
|
while ((1U << Log2Radix) < Radix) Log2Radix++;
|
||
|
bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
|
||
|
|
||
|
unsigned BitWidth = Log2Radix * Str.size();
|
||
|
if (BitWidth < Result.getBitWidth())
|
||
|
BitWidth = Result.getBitWidth(); // don't shrink the result
|
||
|
else if (BitWidth > Result.getBitWidth())
|
||
|
Result = Result.zext(BitWidth);
|
||
|
|
||
|
APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
|
||
|
if (!IsPowerOf2Radix) {
|
||
|
// These must have the same bit-width as Result.
|
||
|
RadixAP = APInt(BitWidth, Radix);
|
||
|
CharAP = APInt(BitWidth, 0);
|
||
|
}
|
||
|
|
||
|
// Parse all the bytes of the string given this radix.
|
||
|
Result = 0;
|
||
|
while (!Str.empty()) {
|
||
|
unsigned CharVal;
|
||
|
if (Str[0] >= '0' && Str[0] <= '9')
|
||
|
CharVal = Str[0]-'0';
|
||
|
else if (Str[0] >= 'a' && Str[0] <= 'z')
|
||
|
CharVal = Str[0]-'a'+10;
|
||
|
else if (Str[0] >= 'A' && Str[0] <= 'Z')
|
||
|
CharVal = Str[0]-'A'+10;
|
||
|
else
|
||
|
return true;
|
||
|
|
||
|
// If the parsed value is larger than the integer radix, the string is
|
||
|
// invalid.
|
||
|
if (CharVal >= Radix)
|
||
|
return true;
|
||
|
|
||
|
// Add in this character.
|
||
|
if (IsPowerOf2Radix) {
|
||
|
Result <<= Log2Radix;
|
||
|
Result |= CharVal;
|
||
|
} else {
|
||
|
Result *= RadixAP;
|
||
|
CharAP = CharVal;
|
||
|
Result += CharAP;
|
||
|
}
|
||
|
|
||
|
Str = Str.substr(1);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
|
||
|
APFloat F(0.0);
|
||
|
APFloat::opStatus Status =
|
||
|
F.convertFromString(*this, APFloat::rmNearestTiesToEven);
|
||
|
if (Status != APFloat::opOK) {
|
||
|
if (!AllowInexact || !(Status & APFloat::opInexact))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Result = F.convertToDouble();
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Implementation of StringRef hashing.
|
||
|
hash_code llvm::hash_value(StringRef S) {
|
||
|
return hash_combine_range(S.begin(), S.end());
|
||
|
}
|