807 lines
38 KiB
C#
Raw Normal View History

//----------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//----------------------------------------------------------------
namespace System
{
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Runtime;
using System.ServiceModel;
class UriTemplateTrieNode
{
int depth; // relative segment depth (root = 0)
UriTemplatePathPartiallyEquivalentSet endOfPath; // matches the non-existent segment at the end of a slash-terminated path
AscendingSortedCompoundSegmentsCollection<UriTemplatePathPartiallyEquivalentSet> finalCompoundSegment; // matches e.g. "{var}.{var}"
Dictionary<UriTemplateLiteralPathSegment, UriTemplatePathPartiallyEquivalentSet> finalLiteralSegment; // matches e.g. "segmentThatDoesntEndInSlash"
UriTemplatePathPartiallyEquivalentSet finalVariableSegment; // matches e.g. "{var}"
AscendingSortedCompoundSegmentsCollection<UriTemplateTrieLocation> nextCompoundSegment; // all are AfterLiteral; matches e.g. "{var}.{var}/"
Dictionary<UriTemplateLiteralPathSegment, UriTemplateTrieLocation> nextLiteralSegment; // all are BeforeLiteral; matches e.g. "path/"
UriTemplateTrieLocation nextVariableSegment; // is BeforeLiteral; matches e.g. "{var}/"
UriTemplateTrieLocation onFailure; // points to parent, at 'after me'
UriTemplatePathPartiallyEquivalentSet star; // matches any "extra/path/segments" at the end
UriTemplateTrieNode(int depth)
{
this.depth = depth;
this.nextLiteralSegment = null;
this.nextCompoundSegment = null;
this.finalLiteralSegment = null;
this.finalCompoundSegment = null;
this.finalVariableSegment = new UriTemplatePathPartiallyEquivalentSet(depth + 1);
this.star = new UriTemplatePathPartiallyEquivalentSet(depth);
this.endOfPath = new UriTemplatePathPartiallyEquivalentSet(depth);
}
public static UriTemplateTrieNode Make(IEnumerable<KeyValuePair<UriTemplate, object>> keyValuePairs,
bool allowDuplicateEquivalentUriTemplates)
{
// given a UTT at MakeReadOnly time, build the trie
// note that root.onFailure == null;
UriTemplateTrieNode root = new UriTemplateTrieNode(0);
foreach (KeyValuePair<UriTemplate, object> kvp in keyValuePairs)
{
Add(root, kvp);
}
Validate(root, allowDuplicateEquivalentUriTemplates);
return root;
}
public bool Match(UriTemplateLiteralPathSegment[] wireData, ICollection<UriTemplateTableMatchCandidate> candidates)
{
UriTemplateTrieLocation currentLocation = new UriTemplateTrieLocation(this, UriTemplateTrieIntraNodeLocation.BeforeLiteral);
return GetMatch(currentLocation, wireData, candidates);
}
static void Add(UriTemplateTrieNode root, KeyValuePair<UriTemplate, object> kvp)
{
// Currently UTT doesn't support teplates with ignoreTrailingSlash == true; thus we
// don't care about supporting it in the trie as well.
UriTemplateTrieNode current = root;
UriTemplate ut = kvp.Key;
bool needProcessingOnFinalNode = ((ut.segments.Count == 0) || ut.HasWildcard ||
ut.segments[ut.segments.Count - 1].EndsWithSlash);
for (int i = 0; i < ut.segments.Count; ++i)
{
if (i >= ut.firstOptionalSegment)
{
current.endOfPath.Items.Add(kvp);
}
UriTemplatePathSegment ps = ut.segments[i];
if (!ps.EndsWithSlash)
{
Fx.Assert(i == ut.segments.Count - 1, "only the last segment can !EndsWithSlash");
Fx.Assert(!ut.HasWildcard, "path star cannot have !EndsWithSlash");
switch (ps.Nature)
{
case UriTemplatePartType.Literal:
current.AddFinalLiteralSegment(ps as UriTemplateLiteralPathSegment, kvp);
break;
case UriTemplatePartType.Compound:
current.AddFinalCompoundSegment(ps as UriTemplateCompoundPathSegment, kvp);
break;
case UriTemplatePartType.Variable:
current.finalVariableSegment.Items.Add(kvp);
break;
default:
Fx.Assert("Invalid value as PathSegment.Nature");
break;
}
}
else
{
Fx.Assert(ps.EndsWithSlash, "ps.EndsWithSlash");
switch (ps.Nature)
{
case UriTemplatePartType.Literal:
current = current.AddNextLiteralSegment(ps as UriTemplateLiteralPathSegment);
break;
case UriTemplatePartType.Compound:
current = current.AddNextCompoundSegment(ps as UriTemplateCompoundPathSegment);
break;
case UriTemplatePartType.Variable:
current = current.AddNextVariableSegment();
break;
default:
Fx.Assert("Invalid value as PathSegment.Nature");
break;
}
}
}
if (needProcessingOnFinalNode)
{
// if the last segment ended in a slash, there is still more to do
if (ut.HasWildcard)
{
// e.g. "path1/path2/*"
current.star.Items.Add(kvp);
}
else
{
// e.g. "path1/path2/"
current.endOfPath.Items.Add(kvp);
}
}
}
static bool CheckMultipleMatches(IList<IList<UriTemplateTrieLocation>> locationsSet, UriTemplateLiteralPathSegment[] wireData,
ICollection<UriTemplateTableMatchCandidate> candidates)
{
bool result = false;
for (int i = 0; ((i < locationsSet.Count) && !result); i++)
{
for (int j = 0; j < locationsSet[i].Count; j++)
{
if (GetMatch(locationsSet[i][j], wireData, candidates))
{
result = true;
}
}
}
return result;
}
static bool GetMatch(UriTemplateTrieLocation location, UriTemplateLiteralPathSegment[] wireData,
ICollection<UriTemplateTableMatchCandidate> candidates)
{
int initialDepth = location.node.depth;
SingleLocationOrLocationsSet nextStep;
UriTemplatePathPartiallyEquivalentSet answer;
do
{
if (TryMatch(wireData, location, out answer, out nextStep))
{
if (answer != null)
{
for (int i = 0; i < answer.Items.Count; i++)
{
candidates.Add(new UriTemplateTableMatchCandidate(answer.Items[i].Key, answer.SegmentsCount,
answer.Items[i].Value));
}
}
return true;
}
if (nextStep.IsSingle)
{
location = nextStep.SingleLocation;
}
else
{
Fx.Assert(nextStep.LocationsSet != null, "This should be set to a valid value by TryMatch");
if (CheckMultipleMatches(nextStep.LocationsSet, wireData, candidates))
{
return true;
}
location = GetFailureLocationFromLocationsSet(nextStep.LocationsSet);
}
} while ((location != null) && (location.node.depth >= initialDepth));
// we walked the whole trie down and found nothing
return false;
}
static bool TryMatch(UriTemplateLiteralPathSegment[] wireUriSegments, UriTemplateTrieLocation currentLocation,
out UriTemplatePathPartiallyEquivalentSet success, out SingleLocationOrLocationsSet nextStep)
{
// if returns true, success is set to answer
// if returns false, nextStep is set to next place to look
success = null;
nextStep = new SingleLocationOrLocationsSet();
if (wireUriSegments.Length <= currentLocation.node.depth)
{
Fx.Assert(wireUriSegments.Length == 0 || wireUriSegments[wireUriSegments.Length - 1].EndsWithSlash,
"we should not have traversed this deep into the trie unless the wire path ended in a slash");
if (currentLocation.node.endOfPath.Items.Count != 0)
{
// exact match of e.g. "path1/path2/"
success = currentLocation.node.endOfPath;
return true;
}
else if (currentLocation.node.star.Items.Count != 0)
{
// inexact match of e.g. WIRE("path1/path2/") against TEMPLATE("path1/path2/*")
success = currentLocation.node.star;
return true;
}
else
{
nextStep = new SingleLocationOrLocationsSet(currentLocation.node.onFailure);
return false;
}
}
else
{
UriTemplateLiteralPathSegment curWireSeg = wireUriSegments[currentLocation.node.depth];
bool considerLiteral = false;
bool considerCompound = false;
bool considerVariable = false;
bool considerStar = false;
switch (currentLocation.locationWithin)
{
case UriTemplateTrieIntraNodeLocation.BeforeLiteral:
considerLiteral = true;
considerCompound = true;
considerVariable = true;
considerStar = true;
break;
case UriTemplateTrieIntraNodeLocation.AfterLiteral:
considerLiteral = false;
considerCompound = true;
considerVariable = true;
considerStar = true;
break;
case UriTemplateTrieIntraNodeLocation.AfterCompound:
considerLiteral = false;
considerCompound = false;
considerVariable = true;
considerStar = true;
break;
case UriTemplateTrieIntraNodeLocation.AfterVariable:
considerLiteral = false;
considerCompound = false;
considerVariable = false;
considerStar = true;
break;
default:
Fx.Assert("bad kind");
break;
}
if (curWireSeg.EndsWithSlash)
{
IList<IList<UriTemplateTrieLocation>> compoundLocationsSet;
if (considerLiteral && currentLocation.node.nextLiteralSegment != null &&
currentLocation.node.nextLiteralSegment.ContainsKey(curWireSeg))
{
nextStep = new SingleLocationOrLocationsSet(currentLocation.node.nextLiteralSegment[curWireSeg]);
return false;
}
else if (considerCompound && currentLocation.node.nextCompoundSegment != null &&
AscendingSortedCompoundSegmentsCollection<UriTemplateTrieLocation>.Lookup(currentLocation.node.nextCompoundSegment, curWireSeg, out compoundLocationsSet))
{
nextStep = new SingleLocationOrLocationsSet(compoundLocationsSet);
return false;
}
else if (considerVariable && currentLocation.node.nextVariableSegment != null &&
!curWireSeg.IsNullOrEmpty())
{
nextStep = new SingleLocationOrLocationsSet(currentLocation.node.nextVariableSegment);
return false;
}
else if (considerStar && currentLocation.node.star.Items.Count != 0)
{
// matches e.g. WIRE("path1/path2/path3") and TEMPLATE("path1/*")
success = currentLocation.node.star;
return true;
}
else
{
nextStep = new SingleLocationOrLocationsSet(currentLocation.node.onFailure);
return false;
}
}
else
{
IList<IList<UriTemplatePathPartiallyEquivalentSet>> compoundPathEquivalentSets;
Fx.Assert(!curWireSeg.EndsWithSlash, "!curWireSeg.EndsWithSlash");
Fx.Assert(!curWireSeg.IsNullOrEmpty(), "!curWireSeg.IsNullOrEmpty()");
if (considerLiteral && currentLocation.node.finalLiteralSegment != null &&
currentLocation.node.finalLiteralSegment.ContainsKey(curWireSeg))
{
// matches e.g. WIRE("path1/path2") and TEMPLATE("path1/path2")
success = currentLocation.node.finalLiteralSegment[curWireSeg];
return true;
}
else if (considerCompound && currentLocation.node.finalCompoundSegment != null &&
AscendingSortedCompoundSegmentsCollection<UriTemplatePathPartiallyEquivalentSet>.Lookup(currentLocation.node.finalCompoundSegment, curWireSeg, out compoundPathEquivalentSets))
{
// matches e.g. WIRE("path1/path2") and TEMPLATE("path1/p{var}th2")
// we should take only the highest order match!
Fx.Assert(compoundPathEquivalentSets.Count >= 1, "Lookup is expected to return false otherwise");
Fx.Assert(compoundPathEquivalentSets[0].Count > 0, "Find shouldn't return empty sublists");
if (compoundPathEquivalentSets[0].Count == 1)
{
success = compoundPathEquivalentSets[0][0];
}
else
{
success = new UriTemplatePathPartiallyEquivalentSet(currentLocation.node.depth + 1);
for (int i = 0; i < compoundPathEquivalentSets[0].Count; i++)
{
success.Items.AddRange(compoundPathEquivalentSets[0][i].Items);
}
}
return true;
}
else if (considerVariable && currentLocation.node.finalVariableSegment.Items.Count != 0)
{
// matches e.g. WIRE("path1/path2") and TEMPLATE("path1/{var}")
success = currentLocation.node.finalVariableSegment;
return true;
}
else if (considerStar && currentLocation.node.star.Items.Count != 0)
{
// matches e.g. WIRE("path1/path2") and TEMPLATE("path1/*")
success = currentLocation.node.star;
return true;
}
else
{
nextStep = new SingleLocationOrLocationsSet(currentLocation.node.onFailure);
return false;
}
}
}
}
static UriTemplateTrieLocation GetFailureLocationFromLocationsSet(IList<IList<UriTemplateTrieLocation>> locationsSet)
{
Fx.Assert(locationsSet != null, "Shouldn't be called on null set");
Fx.Assert(locationsSet.Count > 0, "Shouldn't be called on empty set");
Fx.Assert(locationsSet[0] != null, "Shouldn't be called on a set with null sub-lists");
Fx.Assert(locationsSet[0].Count > 0, "Shouldn't be called on a set with empty sub-lists");
return locationsSet[0][0].node.onFailure;
}
static void Validate(UriTemplateTrieNode root, bool allowDuplicateEquivalentUriTemplates)
{
// walk the entire tree, and ensure that each PathEquivalentSet is ok (no ambiguous queries),
// verify thst compound segments didn't add potentialy multiple matchs;
// also Assert various data-structure invariants
Queue<UriTemplateTrieNode> nodesQueue = new Queue<UriTemplateTrieNode>();
UriTemplateTrieNode current = root;
while (true)
{
// validate all the PathEquivalentSets that live in this node
Validate(current.endOfPath, allowDuplicateEquivalentUriTemplates);
Validate(current.finalVariableSegment, allowDuplicateEquivalentUriTemplates);
Validate(current.star, allowDuplicateEquivalentUriTemplates);
if (current.finalLiteralSegment != null)
{
foreach (KeyValuePair<UriTemplateLiteralPathSegment, UriTemplatePathPartiallyEquivalentSet> kvp in current.finalLiteralSegment)
{
Validate(kvp.Value, allowDuplicateEquivalentUriTemplates);
}
}
if (current.finalCompoundSegment != null)
{
IList<IList<UriTemplatePathPartiallyEquivalentSet>> pesLists = current.finalCompoundSegment.Values;
for (int i = 0; i < pesLists.Count; i++)
{
if (!allowDuplicateEquivalentUriTemplates && (pesLists[i].Count > 1))
{
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new InvalidOperationException(SR.GetString(
SR.UTTDuplicate, pesLists[i][0].Items[0].Key.ToString(), pesLists[i][1].Items[0].Key.ToString())));
}
for (int j = 0; j < pesLists[i].Count; j++)
{
Validate(pesLists[i][j], allowDuplicateEquivalentUriTemplates);
}
}
}
// deal with children of this node
if (current.nextLiteralSegment != null)
{
foreach (KeyValuePair<UriTemplateLiteralPathSegment, UriTemplateTrieLocation> kvp in current.nextLiteralSegment)
{
Fx.Assert(kvp.Value.locationWithin == UriTemplateTrieIntraNodeLocation.BeforeLiteral, "forward-pointers should always point to a BeforeLiteral location");
Fx.Assert(kvp.Value.node.depth == current.depth + 1, "kvp.Value.node.depth == current.depth + 1");
Fx.Assert(kvp.Value.node.onFailure.node == current, "back pointer should point back to here");
Fx.Assert(kvp.Value.node.onFailure.locationWithin == UriTemplateTrieIntraNodeLocation.AfterLiteral, "back-pointer should be AfterLiteral");
nodesQueue.Enqueue(kvp.Value.node);
}
}
if (current.nextCompoundSegment != null)
{
IList<IList<UriTemplateTrieLocation>> locations = current.nextCompoundSegment.Values;
for (int i = 0; i < locations.Count; i++)
{
if (!allowDuplicateEquivalentUriTemplates && (locations[i].Count > 1))
{
// In the future we might ease up the restrictions and verify if there is realy
// a potential multiple match here; for now we are throwing.
UriTemplate firstTemplate = FindAnyUriTemplate(locations[i][0].node);
UriTemplate secondTemplate = FindAnyUriTemplate(locations[i][1].node);
throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new InvalidOperationException(SR.GetString(
SR.UTTDuplicate, firstTemplate.ToString(), secondTemplate.ToString())));
}
for (int j = 0; j < locations[i].Count; j++)
{
UriTemplateTrieLocation location = locations[i][j];
Fx.Assert(location.locationWithin == UriTemplateTrieIntraNodeLocation.BeforeLiteral, "forward-pointers should always point to a BeforeLiteral location");
Fx.Assert(location.node.depth == current.depth + 1, "kvp.Value.node.depth == current.depth + 1");
Fx.Assert(location.node.onFailure.node == current, "back pointer should point back to here");
Fx.Assert(location.node.onFailure.locationWithin == UriTemplateTrieIntraNodeLocation.AfterCompound, "back-pointer should be AfterCompound");
nodesQueue.Enqueue(location.node);
}
}
}
if (current.nextVariableSegment != null)
{
Fx.Assert(current.nextVariableSegment.locationWithin == UriTemplateTrieIntraNodeLocation.BeforeLiteral, "forward-pointers should always point to a BeforeLiteral location");
Fx.Assert(current.nextVariableSegment.node.depth == current.depth + 1, "current.nextVariableSegment.node.depth == current.depth + 1");
Fx.Assert(current.nextVariableSegment.node.onFailure.node == current, "back pointer should point back to here");
Fx.Assert(current.nextVariableSegment.node.onFailure.locationWithin == UriTemplateTrieIntraNodeLocation.AfterVariable, "back-pointer should be AfterVariable");
nodesQueue.Enqueue(current.nextVariableSegment.node);
}
// move on to next bit of work
if (nodesQueue.Count == 0)
{
break;
}
current = nodesQueue.Dequeue();
}
}
static void Validate(UriTemplatePathPartiallyEquivalentSet pes, bool allowDuplicateEquivalentUriTemplates)
{
// A set with 0 or 1 items is valid by definition
if (pes.Items.Count < 2)
{
return;
}
// Assert all paths are partially-equivalent
for (int i = 0; i < pes.Items.Count - 1; ++i)
{
Fx.Assert(pes.Items[i].Key.IsPathPartiallyEquivalentAt(pes.Items[i + 1].Key, pes.SegmentsCount),
"all elements of a PES must be path partially-equivalent");
}
// We will check that the queries disambiguate only for templates, which are
// matched completely at the segments count; templates, which are match at
// that point due to terminal defaults, will be ruled out.
UriTemplate[] a = new UriTemplate[pes.Items.Count];
int arrayIndex = 0;
foreach (KeyValuePair<UriTemplate, object> kvp in pes.Items)
{
if (pes.SegmentsCount < kvp.Key.segments.Count)
{
continue;
}
Fx.Assert(arrayIndex < a.Length, "We made enough room for all the items");
a[arrayIndex++] = kvp.Key;
}
// Ensure that queries disambiguate (if needed) :
if (arrayIndex > 0)
{
UriTemplateHelpers.DisambiguateSamePath(a, 0, arrayIndex, allowDuplicateEquivalentUriTemplates);
}
}
static UriTemplate FindAnyUriTemplate(UriTemplateTrieNode node)
{
while (node != null)
{
if (node.endOfPath.Items.Count > 0)
{
return node.endOfPath.Items[0].Key;
}
if (node.finalVariableSegment.Items.Count > 0)
{
return node.finalVariableSegment.Items[0].Key;
}
if (node.star.Items.Count > 0)
{
return node.star.Items[0].Key;
}
if (node.finalLiteralSegment != null)
{
UriTemplatePathPartiallyEquivalentSet pes =
GetAnyDictionaryValue<UriTemplatePathPartiallyEquivalentSet>(node.finalLiteralSegment);
Fx.Assert(pes.Items.Count > 0, "Otherwise, why creating the dictionary?");
return pes.Items[0].Key;
}
if (node.finalCompoundSegment != null)
{
UriTemplatePathPartiallyEquivalentSet pes = node.finalCompoundSegment.GetAnyValue();
Fx.Assert(pes.Items.Count > 0, "Otherwise, why creating the collection?");
return pes.Items[0].Key;
}
if (node.nextLiteralSegment != null)
{
UriTemplateTrieLocation location =
GetAnyDictionaryValue<UriTemplateTrieLocation>(node.nextLiteralSegment);
node = location.node;
}
else if (node.nextCompoundSegment != null)
{
UriTemplateTrieLocation location = node.nextCompoundSegment.GetAnyValue();
node = location.node;
}
else if (node.nextVariableSegment != null)
{
node = node.nextVariableSegment.node;
}
else
{
node = null;
}
}
Fx.Assert("How did we got here without finding a UriTemplate earlier?");
return null;
}
static T GetAnyDictionaryValue<T>(IDictionary<UriTemplateLiteralPathSegment, T> dictionary)
{
using (IEnumerator<T> valuesEnumerator = dictionary.Values.GetEnumerator())
{
valuesEnumerator.MoveNext();
return valuesEnumerator.Current;
}
}
void AddFinalCompoundSegment(UriTemplateCompoundPathSegment cps, KeyValuePair<UriTemplate, object> kvp)
{
Fx.Assert(cps != null, "must be - based on the segment nature");
if (this.finalCompoundSegment == null)
{
this.finalCompoundSegment = new AscendingSortedCompoundSegmentsCollection<UriTemplatePathPartiallyEquivalentSet>();
}
UriTemplatePathPartiallyEquivalentSet pes = this.finalCompoundSegment.Find(cps);
if (pes == null)
{
pes = new UriTemplatePathPartiallyEquivalentSet(this.depth + 1);
this.finalCompoundSegment.Add(cps, pes);
}
pes.Items.Add(kvp);
}
void AddFinalLiteralSegment(UriTemplateLiteralPathSegment lps, KeyValuePair<UriTemplate, object> kvp)
{
Fx.Assert(lps != null, "must be - based on the segment nature");
if (this.finalLiteralSegment != null && this.finalLiteralSegment.ContainsKey(lps))
{
this.finalLiteralSegment[lps].Items.Add(kvp);
}
else
{
if (this.finalLiteralSegment == null)
{
this.finalLiteralSegment = new Dictionary<UriTemplateLiteralPathSegment, UriTemplatePathPartiallyEquivalentSet>();
}
UriTemplatePathPartiallyEquivalentSet pes = new UriTemplatePathPartiallyEquivalentSet(this.depth + 1);
pes.Items.Add(kvp);
this.finalLiteralSegment.Add(lps, pes);
}
}
UriTemplateTrieNode AddNextCompoundSegment(UriTemplateCompoundPathSegment cps)
{
Fx.Assert(cps != null, "must be - based on the segment nature");
if (this.nextCompoundSegment == null)
{
this.nextCompoundSegment = new AscendingSortedCompoundSegmentsCollection<UriTemplateTrieLocation>();
}
UriTemplateTrieLocation nextLocation = this.nextCompoundSegment.Find(cps);
if (nextLocation == null)
{
UriTemplateTrieNode nextNode = new UriTemplateTrieNode(this.depth + 1);
nextNode.onFailure = new UriTemplateTrieLocation(this, UriTemplateTrieIntraNodeLocation.AfterCompound);
nextLocation = new UriTemplateTrieLocation(nextNode, UriTemplateTrieIntraNodeLocation.BeforeLiteral);
this.nextCompoundSegment.Add(cps, nextLocation);
}
return nextLocation.node;
}
UriTemplateTrieNode AddNextLiteralSegment(UriTemplateLiteralPathSegment lps)
{
Fx.Assert(lps != null, "must be - based on the segment nature");
if (this.nextLiteralSegment != null && this.nextLiteralSegment.ContainsKey(lps))
{
return this.nextLiteralSegment[lps].node;
}
else
{
if (this.nextLiteralSegment == null)
{
this.nextLiteralSegment = new Dictionary<UriTemplateLiteralPathSegment, UriTemplateTrieLocation>();
}
UriTemplateTrieNode newNode = new UriTemplateTrieNode(this.depth + 1);
newNode.onFailure = new UriTemplateTrieLocation(this, UriTemplateTrieIntraNodeLocation.AfterLiteral);
this.nextLiteralSegment.Add(lps, new UriTemplateTrieLocation(newNode, UriTemplateTrieIntraNodeLocation.BeforeLiteral));
return newNode;
}
}
UriTemplateTrieNode AddNextVariableSegment()
{
if (this.nextVariableSegment != null)
{
return this.nextVariableSegment.node;
}
else
{
UriTemplateTrieNode newNode = new UriTemplateTrieNode(this.depth + 1);
newNode.onFailure = new UriTemplateTrieLocation(this, UriTemplateTrieIntraNodeLocation.AfterVariable);
this.nextVariableSegment = new UriTemplateTrieLocation(newNode, UriTemplateTrieIntraNodeLocation.BeforeLiteral);
return newNode;
}
}
struct SingleLocationOrLocationsSet
{
readonly bool isSingle;
readonly IList<IList<UriTemplateTrieLocation>> locationsSet;
readonly UriTemplateTrieLocation singleLocation;
public SingleLocationOrLocationsSet(UriTemplateTrieLocation singleLocation)
{
this.isSingle = true;
this.singleLocation = singleLocation;
this.locationsSet = null;
}
public SingleLocationOrLocationsSet(IList<IList<UriTemplateTrieLocation>> locationsSet)
{
this.isSingle = false;
this.singleLocation = null;
this.locationsSet = locationsSet;
}
public bool IsSingle
{
get
{
return this.isSingle;
}
}
public IList<IList<UriTemplateTrieLocation>> LocationsSet
{
get
{
Fx.Assert(!this.isSingle, "!this.isSingle");
return this.locationsSet;
}
}
public UriTemplateTrieLocation SingleLocation
{
get
{
Fx.Assert(this.isSingle, "this.isSingle");
return this.singleLocation;
}
}
}
class AscendingSortedCompoundSegmentsCollection<T>
where T : class
{
SortedList<UriTemplateCompoundPathSegment, Collection<CollectionItem>> items;
public AscendingSortedCompoundSegmentsCollection()
{
this.items = new SortedList<UriTemplateCompoundPathSegment, Collection<AscendingSortedCompoundSegmentsCollection<T>.CollectionItem>>();
}
public IList<IList<T>> Values
{
get
{
IList<IList<T>> results = new List<IList<T>>(this.items.Count);
for (int i = 0; i < this.items.Values.Count; i++)
{
results.Add(new List<T>(this.items.Values[i].Count));
Fx.Assert(results.Count == i + 1, "We are adding item for each values collection");
for (int j = 0; j < this.items.Values[i].Count; j++)
{
results[i].Add(this.items.Values[i][j].Value);
Fx.Assert(results[i].Count == j + 1, "We are adding item for each value in the collection");
}
Fx.Assert(results[i].Count == this.items.Values[i].Count, "We were supposed to add an item for each value in the collection");
}
Fx.Assert(results.Count == this.items.Values.Count, "We were supposed to add a sub-list for each values collection");
return results;
}
}
public void Add(UriTemplateCompoundPathSegment segment, T value)
{
int index = this.items.IndexOfKey(segment);
if (index == -1)
{
Collection<CollectionItem> subItems = new Collection<CollectionItem>();
subItems.Add(new CollectionItem(segment, value));
this.items.Add(segment, subItems);
}
else
{
Collection<CollectionItem> subItems = this.items.Values[index];
subItems.Add(new CollectionItem(segment, value));
}
}
public T Find(UriTemplateCompoundPathSegment segment)
{
int index = this.items.IndexOfKey(segment);
if (index == -1)
{
return null;
}
Collection<CollectionItem> subItems = this.items.Values[index];
for (int i = 0; i < subItems.Count; i++)
{
if (subItems[i].Segment.IsEquivalentTo(segment, false))
{
return subItems[i].Value;
}
}
return null;
}
public IList<IList<T>> Find(UriTemplateLiteralPathSegment wireData)
{
IList<IList<T>> results = new List<IList<T>>();
for (int i = 0; i < this.items.Values.Count; i++)
{
List<T> sameOrderResults = null;
for (int j = 0; j < this.items.Values[i].Count; j++)
{
if (this.items.Values[i][j].Segment.IsMatch(wireData))
{
if (sameOrderResults == null)
{
sameOrderResults = new List<T>();
}
sameOrderResults.Add(this.items.Values[i][j].Value);
}
}
if (sameOrderResults != null)
{
results.Add(sameOrderResults);
}
}
return results;
}
public T GetAnyValue()
{
if (this.items.Values.Count > 0)
{
Fx.Assert(this.items.Values[0].Count > 0, "We are not adding a sub-list unless there is at list one item");
return this.items.Values[0][0].Value;
}
else
{
return null;
}
}
public static bool Lookup(AscendingSortedCompoundSegmentsCollection<T> collection,
UriTemplateLiteralPathSegment wireData, out IList<IList<T>> results)
{
results = collection.Find(wireData);
return ((results != null) && (results.Count > 0));
}
struct CollectionItem
{
UriTemplateCompoundPathSegment segment;
T value;
public CollectionItem(UriTemplateCompoundPathSegment segment, T value)
{
this.segment = segment;
this.value = value;
}
public UriTemplateCompoundPathSegment Segment
{
get
{
return this.segment;
}
}
public T Value
{
get
{
return this.value;
}
}
}
}
}
}