956 lines
34 KiB
C++
Raw Normal View History

//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LegalizerHelper class to legalize
/// individual instructions and the LegalizeMachineIR wrapper pass for the
/// primary legalization.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "legalizer"
using namespace llvm;
LegalizerHelper::LegalizerHelper(MachineFunction &MF)
: MRI(MF.getRegInfo()), LI(*MF.getSubtarget().getLegalizerInfo()) {
MIRBuilder.setMF(MF);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
auto Action = LI.getAction(MI, MRI);
switch (std::get<0>(Action)) {
case LegalizerInfo::Legal:
DEBUG(dbgs() << ".. Already legal\n");
return AlreadyLegal;
case LegalizerInfo::Libcall:
DEBUG(dbgs() << ".. Convert to libcall\n");
return libcall(MI);
case LegalizerInfo::NarrowScalar:
DEBUG(dbgs() << ".. Narrow scalar\n");
return narrowScalar(MI, std::get<1>(Action), std::get<2>(Action));
case LegalizerInfo::WidenScalar:
DEBUG(dbgs() << ".. Widen scalar\n");
return widenScalar(MI, std::get<1>(Action), std::get<2>(Action));
case LegalizerInfo::Lower:
DEBUG(dbgs() << ".. Lower\n");
return lower(MI, std::get<1>(Action), std::get<2>(Action));
case LegalizerInfo::FewerElements:
DEBUG(dbgs() << ".. Reduce number of elements\n");
return fewerElementsVector(MI, std::get<1>(Action), std::get<2>(Action));
case LegalizerInfo::Custom:
DEBUG(dbgs() << ".. Custom legalization\n");
return LI.legalizeCustom(MI, MRI, MIRBuilder) ? Legalized
: UnableToLegalize;
default:
DEBUG(dbgs() << ".. Unable to legalize\n");
return UnableToLegalize;
}
}
void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts,
SmallVectorImpl<unsigned> &VRegs) {
for (int i = 0; i < NumParts; ++i)
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
MIRBuilder.buildUnmerge(VRegs, Reg);
}
static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
switch (Opcode) {
case TargetOpcode::G_SDIV:
assert(Size == 32 && "Unsupported size");
return RTLIB::SDIV_I32;
case TargetOpcode::G_UDIV:
assert(Size == 32 && "Unsupported size");
return RTLIB::UDIV_I32;
case TargetOpcode::G_SREM:
assert(Size == 32 && "Unsupported size");
return RTLIB::SREM_I32;
case TargetOpcode::G_UREM:
assert(Size == 32 && "Unsupported size");
return RTLIB::UREM_I32;
case TargetOpcode::G_FADD:
assert((Size == 32 || Size == 64) && "Unsupported size");
return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
case TargetOpcode::G_FSUB:
assert((Size == 32 || Size == 64) && "Unsupported size");
return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
case TargetOpcode::G_FMUL:
assert((Size == 32 || Size == 64) && "Unsupported size");
return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
case TargetOpcode::G_FDIV:
assert((Size == 32 || Size == 64) && "Unsupported size");
return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
case TargetOpcode::G_FREM:
return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
case TargetOpcode::G_FPOW:
return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
}
llvm_unreachable("Unknown libcall function");
}
LegalizerHelper::LegalizeResult
llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
const CallLowering::ArgInfo &Result,
ArrayRef<CallLowering::ArgInfo> Args) {
auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
const char *Name = TLI.getLibcallName(Libcall);
MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall),
MachineOperand::CreateES(Name), Result, Args))
return LegalizerHelper::UnableToLegalize;
return LegalizerHelper::Legalized;
}
static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
Type *OpType) {
auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
{{MI.getOperand(1).getReg(), OpType},
{MI.getOperand(2).getReg(), OpType}});
}
LegalizerHelper::LegalizeResult
LegalizerHelper::libcall(MachineInstr &MI) {
LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
unsigned Size = LLTy.getSizeInBits();
auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
MIRBuilder.setInstr(MI);
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV:
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM: {
Type *HLTy = Type::getInt32Ty(Ctx);
auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
if (Status != Legalized)
return Status;
break;
}
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FPOW:
case TargetOpcode::G_FREM: {
Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
if (Status != Legalized)
return Status;
break;
}
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
unsigned TypeIdx,
LLT NarrowTy) {
// FIXME: Don't know how to handle secondary types yet.
if (TypeIdx != 0 && MI.getOpcode() != TargetOpcode::G_EXTRACT)
return UnableToLegalize;
MIRBuilder.setInstr(MI);
int64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
int64_t NarrowSize = NarrowTy.getSizeInBits();
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_IMPLICIT_DEF: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
SmallVector<unsigned, 2> DstRegs;
for (int i = 0; i < NumParts; ++i) {
unsigned Dst = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildUndef(Dst);
DstRegs.push_back(Dst);
}
MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_ADD: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
// Expand in terms of carry-setting/consuming G_ADDE instructions.
int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1));
MIRBuilder.buildConstant(CarryIn, 0);
for (int i = 0; i < NumParts; ++i) {
unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
Src2Regs[i], CarryIn);
DstRegs.push_back(DstReg);
CarryIn = CarryOut;
}
unsigned DstReg = MI.getOperand(0).getReg();
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_EXTRACT: {
if (TypeIdx != 1)
return UnableToLegalize;
int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
// FIXME: add support for when SizeOp1 isn't an exact multiple of
// NarrowSize.
if (SizeOp1 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp1 / NarrowSize;
SmallVector<unsigned, 2> SrcRegs, DstRegs;
SmallVector<uint64_t, 2> Indexes;
extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
unsigned OpReg = MI.getOperand(0).getReg();
int64_t OpStart = MI.getOperand(2).getImm();
int64_t OpSize = MRI.getType(OpReg).getSizeInBits();
for (int i = 0; i < NumParts; ++i) {
unsigned SrcStart = i * NarrowSize;
if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
// No part of the extract uses this subregister, ignore it.
continue;
} else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
// The entire subregister is extracted, forward the value.
DstRegs.push_back(SrcRegs[i]);
continue;
}
// OpSegStart is where this destination segment would start in OpReg if it
// extended infinitely in both directions.
int64_t ExtractOffset, SegSize;
if (OpStart < SrcStart) {
ExtractOffset = 0;
SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
} else {
ExtractOffset = OpStart - SrcStart;
SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
}
unsigned SegReg = SrcRegs[i];
if (ExtractOffset != 0 || SegSize != NarrowSize) {
// A genuine extract is needed.
SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
}
DstRegs.push_back(SegReg);
}
MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_INSERT: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
SmallVector<unsigned, 2> SrcRegs, DstRegs;
SmallVector<uint64_t, 2> Indexes;
extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
unsigned OpReg = MI.getOperand(2).getReg();
int64_t OpStart = MI.getOperand(3).getImm();
int64_t OpSize = MRI.getType(OpReg).getSizeInBits();
for (int i = 0; i < NumParts; ++i) {
unsigned DstStart = i * NarrowSize;
if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
// No part of the insert affects this subregister, forward the original.
DstRegs.push_back(SrcRegs[i]);
continue;
} else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
// The entire subregister is defined by this insert, forward the new
// value.
DstRegs.push_back(OpReg);
continue;
}
// OpSegStart is where this destination segment would start in OpReg if it
// extended infinitely in both directions.
int64_t ExtractOffset, InsertOffset, SegSize;
if (OpStart < DstStart) {
InsertOffset = 0;
ExtractOffset = DstStart - OpStart;
SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
} else {
InsertOffset = OpStart - DstStart;
ExtractOffset = 0;
SegSize =
std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
}
unsigned SegReg = OpReg;
if (ExtractOffset != 0 || SegSize != OpSize) {
// A genuine extract is needed.
SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
}
unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
DstRegs.push_back(DstReg);
}
assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_LOAD: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
LLT OffsetTy = LLT::scalar(
MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits());
SmallVector<unsigned, 2> DstRegs;
for (int i = 0; i < NumParts; ++i) {
unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
unsigned SrcReg = 0;
unsigned Adjustment = i * NarrowSize / 8;
MIRBuilder.materializeGEP(SrcReg, MI.getOperand(1).getReg(), OffsetTy,
Adjustment);
// TODO: This is conservatively correct, but we probably want to split the
// memory operands in the future.
MIRBuilder.buildLoad(DstReg, SrcReg, **MI.memoperands_begin());
DstRegs.push_back(DstReg);
}
unsigned DstReg = MI.getOperand(0).getReg();
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_STORE: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
LLT OffsetTy = LLT::scalar(
MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits());
SmallVector<unsigned, 2> SrcRegs;
extractParts(MI.getOperand(0).getReg(), NarrowTy, NumParts, SrcRegs);
for (int i = 0; i < NumParts; ++i) {
unsigned DstReg = 0;
unsigned Adjustment = i * NarrowSize / 8;
MIRBuilder.materializeGEP(DstReg, MI.getOperand(1).getReg(), OffsetTy,
Adjustment);
// TODO: This is conservatively correct, but we probably want to split the
// memory operands in the future.
MIRBuilder.buildStore(SrcRegs[i], DstReg, **MI.memoperands_begin());
}
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_CONSTANT: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
const APInt &Cst = MI.getOperand(1).getCImm()->getValue();
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
SmallVector<unsigned, 2> DstRegs;
for (int i = 0; i < NumParts; ++i) {
unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
ConstantInt *CI =
ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize));
MIRBuilder.buildConstant(DstReg, *CI);
DstRegs.push_back(DstReg);
}
unsigned DstReg = MI.getOperand(0).getReg();
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_OR: {
// Legalize bitwise operation:
// A = BinOp<Ty> B, C
// into:
// B1, ..., BN = G_UNMERGE_VALUES B
// C1, ..., CN = G_UNMERGE_VALUES C
// A1 = BinOp<Ty/N> B1, C2
// ...
// AN = BinOp<Ty/N> BN, CN
// A = G_MERGE_VALUES A1, ..., AN
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
// List the registers where the destination will be scattered.
SmallVector<unsigned, 2> DstRegs;
// List the registers where the first argument will be split.
SmallVector<unsigned, 2> SrcsReg1;
// List the registers where the second argument will be split.
SmallVector<unsigned, 2> SrcsReg2;
// Create all the temporary registers.
for (int i = 0; i < NumParts; ++i) {
unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy);
unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy);
DstRegs.push_back(DstReg);
SrcsReg1.push_back(SrcReg1);
SrcsReg2.push_back(SrcReg2);
}
// Explode the big arguments into smaller chunks.
MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg());
MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg());
// Do the operation on each small part.
for (int i = 0; i < NumParts; ++i)
MIRBuilder.buildOr(DstRegs[i], SrcsReg1[i], SrcsReg2[i]);
// Gather the destination registers into the final destination.
unsigned DstReg = MI.getOperand(0).getReg();
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
}
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
MIRBuilder.setInstr(MI);
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_ADD:
case TargetOpcode::G_AND:
case TargetOpcode::G_MUL:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
case TargetOpcode::G_SUB:
case TargetOpcode::G_SHL: {
// Perform operation at larger width (any extension is fine here, high bits
// don't affect the result) and then truncate the result back to the
// original type.
unsigned Src1Ext = MRI.createGenericVirtualRegister(WideTy);
unsigned Src2Ext = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildAnyExt(Src1Ext, MI.getOperand(1).getReg());
MIRBuilder.buildAnyExt(Src2Ext, MI.getOperand(2).getReg());
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(MI.getOpcode())
.addDef(DstExt)
.addUse(Src1Ext)
.addUse(Src2Ext);
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV:
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR: {
unsigned ExtOp = MI.getOpcode() == TargetOpcode::G_SDIV ||
MI.getOpcode() == TargetOpcode::G_SREM ||
MI.getOpcode() == TargetOpcode::G_ASHR
? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT;
unsigned LHSExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(ExtOp).addDef(LHSExt).addUse(
MI.getOperand(1).getReg());
unsigned RHSExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(ExtOp).addDef(RHSExt).addUse(
MI.getOperand(2).getReg());
unsigned ResExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(MI.getOpcode())
.addDef(ResExt)
.addUse(LHSExt)
.addUse(RHSExt);
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), ResExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SELECT: {
if (TypeIdx != 0)
return UnableToLegalize;
// Perform operation at larger width (any extension is fine here, high bits
// don't affect the result) and then truncate the result back to the
// original type.
unsigned Src1Ext = MRI.createGenericVirtualRegister(WideTy);
unsigned Src2Ext = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildAnyExt(Src1Ext, MI.getOperand(2).getReg());
MIRBuilder.buildAnyExt(Src2Ext, MI.getOperand(3).getReg());
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(TargetOpcode::G_SELECT)
.addDef(DstExt)
.addReg(MI.getOperand(1).getReg())
.addUse(Src1Ext)
.addUse(Src2Ext);
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI: {
if (TypeIdx != 0)
return UnableToLegalize;
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(MI.getOpcode())
.addDef(DstExt)
.addUse(MI.getOperand(1).getReg());
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP: {
if (TypeIdx != 1)
return UnableToLegalize;
unsigned Src = MI.getOperand(1).getReg();
unsigned SrcExt = MRI.createGenericVirtualRegister(WideTy);
if (MI.getOpcode() == TargetOpcode::G_SITOFP) {
MIRBuilder.buildSExt(SrcExt, Src);
} else {
assert(MI.getOpcode() == TargetOpcode::G_UITOFP && "Unexpected conv op");
MIRBuilder.buildZExt(SrcExt, Src);
}
MIRBuilder.buildInstr(MI.getOpcode())
.addDef(MI.getOperand(0).getReg())
.addUse(SrcExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_INSERT: {
if (TypeIdx != 0)
return UnableToLegalize;
unsigned Src = MI.getOperand(1).getReg();
unsigned SrcExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildAnyExt(SrcExt, Src);
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
auto MIB = MIRBuilder.buildInsert(DstExt, SrcExt, MI.getOperand(2).getReg(),
MI.getOperand(3).getImm());
for (unsigned OpNum = 4; OpNum < MI.getNumOperands(); OpNum += 2) {
MIB.addReg(MI.getOperand(OpNum).getReg());
MIB.addImm(MI.getOperand(OpNum + 1).getImm());
}
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_LOAD: {
assert(alignTo(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(), 8) ==
WideTy.getSizeInBits() &&
"illegal to increase number of bytes loaded");
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildLoad(DstExt, MI.getOperand(1).getReg(),
**MI.memoperands_begin());
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_STORE: {
if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(1) ||
WideTy != LLT::scalar(8))
return UnableToLegalize;
auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
auto Content = TLI.getBooleanContents(false, false);
unsigned ExtOp = TargetOpcode::G_ANYEXT;
if (Content == TargetLoweringBase::ZeroOrOneBooleanContent)
ExtOp = TargetOpcode::G_ZEXT;
else if (Content == TargetLoweringBase::ZeroOrNegativeOneBooleanContent)
ExtOp = TargetOpcode::G_SEXT;
else
ExtOp = TargetOpcode::G_ANYEXT;
unsigned SrcExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildInstr(ExtOp).addDef(SrcExt).addUse(
MI.getOperand(0).getReg());
MIRBuilder.buildStore(SrcExt, MI.getOperand(1).getReg(),
**MI.memoperands_begin());
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_CONSTANT: {
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildConstant(DstExt, *MI.getOperand(1).getCImm());
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FCONSTANT: {
unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
const ConstantFP *CFP = MI.getOperand(1).getFPImm();
APFloat Val = CFP->getValueAPF();
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
auto LLT2Sem = [](LLT Ty) {
switch (Ty.getSizeInBits()) {
case 32:
return &APFloat::IEEEsingle();
break;
case 64:
return &APFloat::IEEEdouble();
break;
default:
llvm_unreachable("Unhandled fp widen type");
}
};
bool LosesInfo;
Val.convert(*LLT2Sem(WideTy), APFloat::rmTowardZero, &LosesInfo);
MIRBuilder.buildFConstant(DstExt, *ConstantFP::get(Ctx, Val));
MIRBuilder.buildFPTrunc(MI.getOperand(0).getReg(), DstExt);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_BRCOND: {
unsigned TstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildAnyExt(TstExt, MI.getOperand(0).getReg());
MIRBuilder.buildBrCond(TstExt, *MI.getOperand(1).getMBB());
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FCMP: {
unsigned Op0Ext, Op1Ext, DstReg;
unsigned Cmp1 = MI.getOperand(2).getReg();
unsigned Cmp2 = MI.getOperand(3).getReg();
if (TypeIdx == 0) {
Op0Ext = Cmp1;
Op1Ext = Cmp2;
DstReg = MRI.createGenericVirtualRegister(WideTy);
} else {
Op0Ext = MRI.createGenericVirtualRegister(WideTy);
Op1Ext = MRI.createGenericVirtualRegister(WideTy);
DstReg = MI.getOperand(0).getReg();
MIRBuilder.buildInstr(TargetOpcode::G_FPEXT, Op0Ext, Cmp1);
MIRBuilder.buildInstr(TargetOpcode::G_FPEXT, Op1Ext, Cmp2);
}
MIRBuilder.buildFCmp(
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()),
DstReg, Op0Ext, Op1Ext);
if (TypeIdx == 0)
MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, MI.getOperand(0).getReg(),
DstReg);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_ICMP: {
bool IsSigned = CmpInst::isSigned(
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()));
unsigned Cmp1 = MI.getOperand(2).getReg();
unsigned Cmp2 = MI.getOperand(3).getReg();
unsigned Op0Ext, Op1Ext, DstReg;
if (TypeIdx == 0) {
Op0Ext = Cmp1;
Op1Ext = Cmp2;
DstReg = MRI.createGenericVirtualRegister(WideTy);
} else {
Op0Ext = MRI.createGenericVirtualRegister(WideTy);
Op1Ext = MRI.createGenericVirtualRegister(WideTy);
DstReg = MI.getOperand(0).getReg();
if (IsSigned) {
MIRBuilder.buildSExt(Op0Ext, Cmp1);
MIRBuilder.buildSExt(Op1Ext, Cmp2);
} else {
MIRBuilder.buildZExt(Op0Ext, Cmp1);
MIRBuilder.buildZExt(Op1Ext, Cmp2);
}
}
MIRBuilder.buildICmp(
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()),
DstReg, Op0Ext, Op1Ext);
if (TypeIdx == 0)
MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, MI.getOperand(0).getReg(),
DstReg);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_GEP: {
assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
unsigned OffsetExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.buildSExt(OffsetExt, MI.getOperand(2).getReg());
MI.getOperand(2).setReg(OffsetExt);
return Legalized;
}
case TargetOpcode::G_PHI: {
assert(TypeIdx == 0 && "Expecting only Idx 0");
auto getExtendedReg = [&](unsigned Reg, MachineBasicBlock &MBB) {
auto FirstTermIt = MBB.getFirstTerminator();
MIRBuilder.setInsertPt(MBB, FirstTermIt);
MachineInstr *DefMI = MRI.getVRegDef(Reg);
MachineInstrBuilder MIB;
if (DefMI->getOpcode() == TargetOpcode::G_TRUNC)
MIB = MIRBuilder.buildAnyExtOrTrunc(WideTy,
DefMI->getOperand(1).getReg());
else
MIB = MIRBuilder.buildAnyExt(WideTy, Reg);
return MIB->getOperand(0).getReg();
};
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, WideTy);
for (auto OpIt = MI.operands_begin() + 1, OpE = MI.operands_end();
OpIt != OpE;) {
unsigned Reg = OpIt++->getReg();
MachineBasicBlock *OpMBB = OpIt++->getMBB();
MIB.addReg(getExtendedReg(Reg, *OpMBB));
MIB.addMBB(OpMBB);
}
auto *MBB = MI.getParent();
MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
MIRBuilder.buildTrunc(MI.getOperand(0).getReg(),
MIB->getOperand(0).getReg());
MI.eraseFromParent();
return Legalized;
}
}
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
using namespace TargetOpcode;
MIRBuilder.setInstr(MI);
switch(MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM: {
unsigned QuotReg = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
.addDef(QuotReg)
.addUse(MI.getOperand(1).getReg())
.addUse(MI.getOperand(2).getReg());
unsigned ProdReg = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
ProdReg);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SMULO:
case TargetOpcode::G_UMULO: {
// Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
// result.
unsigned Res = MI.getOperand(0).getReg();
unsigned Overflow = MI.getOperand(1).getReg();
unsigned LHS = MI.getOperand(2).getReg();
unsigned RHS = MI.getOperand(3).getReg();
MIRBuilder.buildMul(Res, LHS, RHS);
unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
? TargetOpcode::G_SMULH
: TargetOpcode::G_UMULH;
unsigned HiPart = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildInstr(Opcode)
.addDef(HiPart)
.addUse(LHS)
.addUse(RHS);
unsigned Zero = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildConstant(Zero, 0);
// For *signed* multiply, overflow is detected by checking:
// (hi != (lo >> bitwidth-1))
if (Opcode == TargetOpcode::G_SMULH) {
unsigned Shifted = MRI.createGenericVirtualRegister(Ty);
unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
.addDef(Shifted)
.addUse(Res)
.addUse(ShiftAmt);
MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
} else {
MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
}
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FNEG: {
// TODO: Handle vector types once we are able to
// represent them.
if (Ty.isVector())
return UnableToLegalize;
unsigned Res = MI.getOperand(0).getReg();
Type *ZeroTy;
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
switch (Ty.getSizeInBits()) {
case 16:
ZeroTy = Type::getHalfTy(Ctx);
break;
case 32:
ZeroTy = Type::getFloatTy(Ctx);
break;
case 64:
ZeroTy = Type::getDoubleTy(Ctx);
break;
case 128:
ZeroTy = Type::getFP128Ty(Ctx);
break;
default:
llvm_unreachable("unexpected floating-point type");
}
ConstantFP &ZeroForNegation =
*cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
unsigned Zero = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildFConstant(Zero, ZeroForNegation);
MIRBuilder.buildInstr(TargetOpcode::G_FSUB)
.addDef(Res)
.addUse(Zero)
.addUse(MI.getOperand(1).getReg());
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FSUB: {
// Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
// First, check if G_FNEG is marked as Lower. If so, we may
// end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
if (LI.getAction({G_FNEG, Ty}).first == LegalizerInfo::Lower)
return UnableToLegalize;
unsigned Res = MI.getOperand(0).getReg();
unsigned LHS = MI.getOperand(1).getReg();
unsigned RHS = MI.getOperand(2).getReg();
unsigned Neg = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
MIRBuilder.buildInstr(TargetOpcode::G_FADD)
.addDef(Res)
.addUse(LHS)
.addUse(Neg);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
unsigned OldValRes = MI.getOperand(0).getReg();
unsigned SuccessRes = MI.getOperand(1).getReg();
unsigned Addr = MI.getOperand(2).getReg();
unsigned CmpVal = MI.getOperand(3).getReg();
unsigned NewVal = MI.getOperand(4).getReg();
MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
**MI.memoperands_begin());
MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
MI.eraseFromParent();
return Legalized;
}
}
}
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
// FIXME: Don't know how to handle secondary types yet.
if (TypeIdx != 0)
return UnableToLegalize;
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_ADD: {
unsigned NarrowSize = NarrowTy.getSizeInBits();
unsigned DstReg = MI.getOperand(0).getReg();
unsigned Size = MRI.getType(DstReg).getSizeInBits();
int NumParts = Size / NarrowSize;
// FIXME: Don't know how to handle the situation where the small vectors
// aren't all the same size yet.
if (Size % NarrowSize != 0)
return UnableToLegalize;
MIRBuilder.setInstr(MI);
SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
for (int i = 0; i < NumParts; ++i) {
unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildAdd(DstReg, Src1Regs[i], Src2Regs[i]);
DstRegs.push_back(DstReg);
}
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
}
}