2213 lines
84 KiB
C#
2213 lines
84 KiB
C#
|
// Copyright (c) Microsoft. All rights reserved.
|
||
|
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
|
||
|
|
||
|
using System.Globalization;
|
||
|
|
||
|
namespace System.Numerics
|
||
|
{
|
||
|
/// <summary>
|
||
|
/// A structure encapsulating a 4x4 matrix.
|
||
|
/// </summary>
|
||
|
public struct Matrix4x4 : IEquatable<Matrix4x4>
|
||
|
{
|
||
|
#region Public Fields
|
||
|
/// <summary>
|
||
|
/// Value at row 1, column 1 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M11;
|
||
|
/// <summary>
|
||
|
/// Value at row 1, column 2 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M12;
|
||
|
/// <summary>
|
||
|
/// Value at row 1, column 3 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M13;
|
||
|
/// <summary>
|
||
|
/// Value at row 1, column 4 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M14;
|
||
|
|
||
|
/// <summary>
|
||
|
/// Value at row 2, column 1 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M21;
|
||
|
/// <summary>
|
||
|
/// Value at row 2, column 2 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M22;
|
||
|
/// <summary>
|
||
|
/// Value at row 2, column 3 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M23;
|
||
|
/// <summary>
|
||
|
/// Value at row 2, column 4 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M24;
|
||
|
|
||
|
/// <summary>
|
||
|
/// Value at row 3, column 1 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M31;
|
||
|
/// <summary>
|
||
|
/// Value at row 3, column 2 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M32;
|
||
|
/// <summary>
|
||
|
/// Value at row 3, column 3 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M33;
|
||
|
/// <summary>
|
||
|
/// Value at row 3, column 4 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M34;
|
||
|
|
||
|
/// <summary>
|
||
|
/// Value at row 4, column 1 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M41;
|
||
|
/// <summary>
|
||
|
/// Value at row 4, column 2 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M42;
|
||
|
/// <summary>
|
||
|
/// Value at row 4, column 3 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M43;
|
||
|
/// <summary>
|
||
|
/// Value at row 4, column 4 of the matrix.
|
||
|
/// </summary>
|
||
|
public float M44;
|
||
|
#endregion Public Fields
|
||
|
|
||
|
private static readonly Matrix4x4 _identity = new Matrix4x4
|
||
|
(
|
||
|
1f, 0f, 0f, 0f,
|
||
|
0f, 1f, 0f, 0f,
|
||
|
0f, 0f, 1f, 0f,
|
||
|
0f, 0f, 0f, 1f
|
||
|
);
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns the multiplicative identity matrix.
|
||
|
/// </summary>
|
||
|
public static Matrix4x4 Identity
|
||
|
{
|
||
|
get { return _identity; }
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns whether the matrix is the identity matrix.
|
||
|
/// </summary>
|
||
|
public bool IsIdentity
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return M11 == 1f && M22 == 1f && M33 == 1f && M44 == 1f && // Check diagonal element first for early out.
|
||
|
M12 == 0f && M13 == 0f && M14 == 0f &&
|
||
|
M21 == 0f && M23 == 0f && M24 == 0f &&
|
||
|
M31 == 0f && M32 == 0f && M34 == 0f &&
|
||
|
M41 == 0f && M42 == 0f && M43 == 0f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Gets or sets the translation component of this matrix.
|
||
|
/// </summary>
|
||
|
public Vector3 Translation
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return new Vector3(M41, M42, M43);
|
||
|
}
|
||
|
set
|
||
|
{
|
||
|
M41 = value.X;
|
||
|
M42 = value.Y;
|
||
|
M43 = value.Z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Constructs a Matrix4x4 from the given components.
|
||
|
/// </summary>
|
||
|
public Matrix4x4(float m11, float m12, float m13, float m14,
|
||
|
float m21, float m22, float m23, float m24,
|
||
|
float m31, float m32, float m33, float m34,
|
||
|
float m41, float m42, float m43, float m44)
|
||
|
{
|
||
|
this.M11 = m11;
|
||
|
this.M12 = m12;
|
||
|
this.M13 = m13;
|
||
|
this.M14 = m14;
|
||
|
|
||
|
this.M21 = m21;
|
||
|
this.M22 = m22;
|
||
|
this.M23 = m23;
|
||
|
this.M24 = m24;
|
||
|
|
||
|
this.M31 = m31;
|
||
|
this.M32 = m32;
|
||
|
this.M33 = m33;
|
||
|
this.M34 = m34;
|
||
|
|
||
|
this.M41 = m41;
|
||
|
this.M42 = m42;
|
||
|
this.M43 = m43;
|
||
|
this.M44 = m44;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Constructs a Matrix4x4 from the given Matrix3x2.
|
||
|
/// </summary>
|
||
|
/// <param name="value">The source Matrix3x2.</param>
|
||
|
public Matrix4x4(Matrix3x2 value)
|
||
|
{
|
||
|
M11 = value.M11;
|
||
|
M12 = value.M12;
|
||
|
M13 = 0f;
|
||
|
M14 = 0f;
|
||
|
M21 = value.M21;
|
||
|
M22 = value.M22;
|
||
|
M23 = 0f;
|
||
|
M24 = 0f;
|
||
|
M31 = 0f;
|
||
|
M32 = 0f;
|
||
|
M33 = 1f;
|
||
|
M34 = 0f;
|
||
|
M41 = value.M31;
|
||
|
M42 = value.M32;
|
||
|
M43 = 0f;
|
||
|
M44 = 1f;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a spherical billboard that rotates around a specified object position.
|
||
|
/// </summary>
|
||
|
/// <param name="objectPosition">Position of the object the billboard will rotate around.</param>
|
||
|
/// <param name="cameraPosition">Position of the camera.</param>
|
||
|
/// <param name="cameraUpVector">The up vector of the camera.</param>
|
||
|
/// <param name="cameraForwardVector">The forward vector of the camera.</param>
|
||
|
/// <returns>The created billboard matrix</returns>
|
||
|
public static Matrix4x4 CreateBillboard(Vector3 objectPosition, Vector3 cameraPosition, Vector3 cameraUpVector, Vector3 cameraForwardVector)
|
||
|
{
|
||
|
const float epsilon = 1e-4f;
|
||
|
|
||
|
Vector3 zaxis = new Vector3(
|
||
|
objectPosition.X - cameraPosition.X,
|
||
|
objectPosition.Y - cameraPosition.Y,
|
||
|
objectPosition.Z - cameraPosition.Z);
|
||
|
|
||
|
float norm = zaxis.LengthSquared();
|
||
|
|
||
|
if (norm < epsilon)
|
||
|
{
|
||
|
zaxis = -cameraForwardVector;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
zaxis = Vector3.Multiply(zaxis, 1.0f / (float)Math.Sqrt(norm));
|
||
|
}
|
||
|
|
||
|
Vector3 xaxis = Vector3.Normalize(Vector3.Cross(cameraUpVector, zaxis));
|
||
|
|
||
|
Vector3 yaxis = Vector3.Cross(zaxis, xaxis);
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xaxis.X;
|
||
|
result.M12 = xaxis.Y;
|
||
|
result.M13 = xaxis.Z;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = yaxis.X;
|
||
|
result.M22 = yaxis.Y;
|
||
|
result.M23 = yaxis.Z;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = zaxis.X;
|
||
|
result.M32 = zaxis.Y;
|
||
|
result.M33 = zaxis.Z;
|
||
|
result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = objectPosition.X;
|
||
|
result.M42 = objectPosition.Y;
|
||
|
result.M43 = objectPosition.Z;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a cylindrical billboard that rotates around a specified axis.
|
||
|
/// </summary>
|
||
|
/// <param name="objectPosition">Position of the object the billboard will rotate around.</param>
|
||
|
/// <param name="cameraPosition">Position of the camera.</param>
|
||
|
/// <param name="rotateAxis">Axis to rotate the billboard around.</param>
|
||
|
/// <param name="cameraForwardVector">Forward vector of the camera.</param>
|
||
|
/// <param name="objectForwardVector">Forward vector of the object.</param>
|
||
|
/// <returns>The created billboard matrix.</returns>
|
||
|
public static Matrix4x4 CreateConstrainedBillboard(Vector3 objectPosition, Vector3 cameraPosition, Vector3 rotateAxis, Vector3 cameraForwardVector, Vector3 objectForwardVector)
|
||
|
{
|
||
|
const float epsilon = 1e-4f;
|
||
|
const float minAngle = 1.0f - (0.1f * ((float)Math.PI / 180.0f)); // 0.1 degrees
|
||
|
|
||
|
// Treat the case when object and camera positions are too close.
|
||
|
Vector3 faceDir = new Vector3(
|
||
|
objectPosition.X - cameraPosition.X,
|
||
|
objectPosition.Y - cameraPosition.Y,
|
||
|
objectPosition.Z - cameraPosition.Z);
|
||
|
|
||
|
float norm = faceDir.LengthSquared();
|
||
|
|
||
|
if (norm < epsilon)
|
||
|
{
|
||
|
faceDir = -cameraForwardVector;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
faceDir = Vector3.Multiply(faceDir, (1.0f / (float)Math.Sqrt(norm)));
|
||
|
}
|
||
|
|
||
|
Vector3 yaxis = rotateAxis;
|
||
|
Vector3 xaxis;
|
||
|
Vector3 zaxis;
|
||
|
|
||
|
// Treat the case when angle between faceDir and rotateAxis is too close to 0.
|
||
|
float dot = Vector3.Dot(rotateAxis, faceDir);
|
||
|
|
||
|
if (Math.Abs(dot) > minAngle)
|
||
|
{
|
||
|
zaxis = objectForwardVector;
|
||
|
|
||
|
// Make sure passed values are useful for compute.
|
||
|
dot = Vector3.Dot(rotateAxis, zaxis);
|
||
|
|
||
|
if (Math.Abs(dot) > minAngle)
|
||
|
{
|
||
|
zaxis = (Math.Abs(rotateAxis.Z) > minAngle) ? new Vector3(1, 0, 0) : new Vector3(0, 0, -1);
|
||
|
}
|
||
|
|
||
|
xaxis = Vector3.Normalize(Vector3.Cross(rotateAxis, zaxis));
|
||
|
zaxis = Vector3.Normalize(Vector3.Cross(xaxis, rotateAxis));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xaxis = Vector3.Normalize(Vector3.Cross(rotateAxis, faceDir));
|
||
|
zaxis = Vector3.Normalize(Vector3.Cross(xaxis, yaxis));
|
||
|
}
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xaxis.X;
|
||
|
result.M12 = xaxis.Y;
|
||
|
result.M13 = xaxis.Z;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = yaxis.X;
|
||
|
result.M22 = yaxis.Y;
|
||
|
result.M23 = yaxis.Z;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = zaxis.X;
|
||
|
result.M32 = zaxis.Y;
|
||
|
result.M33 = zaxis.Z;
|
||
|
result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = objectPosition.X;
|
||
|
result.M42 = objectPosition.Y;
|
||
|
result.M43 = objectPosition.Z;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a translation matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="position">The amount to translate in each axis.</param>
|
||
|
/// <returns>The translation matrix.</returns>
|
||
|
public static Matrix4x4 CreateTranslation(Vector3 position)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = 1.0f;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = 1.0f;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = 1.0f;
|
||
|
result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = position.X;
|
||
|
result.M42 = position.Y;
|
||
|
result.M43 = position.Z;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a translation matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="xPosition">The amount to translate on the X-axis.</param>
|
||
|
/// <param name="yPosition">The amount to translate on the Y-axis.</param>
|
||
|
/// <param name="zPosition">The amount to translate on the Z-axis.</param>
|
||
|
/// <returns>The translation matrix.</returns>
|
||
|
public static Matrix4x4 CreateTranslation(float xPosition, float yPosition, float zPosition)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = 1.0f;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = 1.0f;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = 1.0f;
|
||
|
result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = xPosition;
|
||
|
result.M42 = yPosition;
|
||
|
result.M43 = zPosition;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a scaling matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="xScale">Value to scale by on the X-axis.</param>
|
||
|
/// <param name="yScale">Value to scale by on the Y-axis.</param>
|
||
|
/// <param name="zScale">Value to scale by on the Z-axis.</param>
|
||
|
/// <returns>The scaling matrix.</returns>
|
||
|
public static Matrix4x4 CreateScale(float xScale, float yScale, float zScale)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xScale;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = yScale;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = zScale;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a scaling matrix with a center point.
|
||
|
/// </summary>
|
||
|
/// <param name="xScale">Value to scale by on the X-axis.</param>
|
||
|
/// <param name="yScale">Value to scale by on the Y-axis.</param>
|
||
|
/// <param name="zScale">Value to scale by on the Z-axis.</param>
|
||
|
/// <param name="centerPoint">The center point.</param>
|
||
|
/// <returns>The scaling matrix.</returns>
|
||
|
public static Matrix4x4 CreateScale(float xScale, float yScale, float zScale, Vector3 centerPoint)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float tx = centerPoint.X * (1 - xScale);
|
||
|
float ty = centerPoint.Y * (1 - yScale);
|
||
|
float tz = centerPoint.Z * (1 - zScale);
|
||
|
|
||
|
result.M11 = xScale;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = yScale;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = zScale;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = tx;
|
||
|
result.M42 = ty;
|
||
|
result.M43 = tz;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a scaling matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="scales">The vector containing the amount to scale by on each axis.</param>
|
||
|
/// <returns>The scaling matrix.</returns>
|
||
|
public static Matrix4x4 CreateScale(Vector3 scales)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = scales.X;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = scales.Y;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = scales.Z;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a scaling matrix with a center point.
|
||
|
/// </summary>
|
||
|
/// <param name="scales">The vector containing the amount to scale by on each axis.</param>
|
||
|
/// <param name="centerPoint">The center point.</param>
|
||
|
/// <returns>The scaling matrix.</returns>
|
||
|
public static Matrix4x4 CreateScale(Vector3 scales, Vector3 centerPoint)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float tx = centerPoint.X * (1 - scales.X);
|
||
|
float ty = centerPoint.Y * (1 - scales.Y);
|
||
|
float tz = centerPoint.Z * (1 - scales.Z);
|
||
|
|
||
|
result.M11 = scales.X;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = scales.Y;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = scales.Z;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = tx;
|
||
|
result.M42 = ty;
|
||
|
result.M43 = tz;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a uniform scaling matrix that scales equally on each axis.
|
||
|
/// </summary>
|
||
|
/// <param name="scale">The uniform scaling factor.</param>
|
||
|
/// <returns>The scaling matrix.</returns>
|
||
|
public static Matrix4x4 CreateScale(float scale)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = scale;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = scale;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = scale;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a uniform scaling matrix that scales equally on each axis with a center point.
|
||
|
/// </summary>
|
||
|
/// <param name="scale">The uniform scaling factor.</param>
|
||
|
/// <param name="centerPoint">The center point.</param>
|
||
|
/// <returns>The scaling matrix.</returns>
|
||
|
public static Matrix4x4 CreateScale(float scale, Vector3 centerPoint)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float tx = centerPoint.X * (1 - scale);
|
||
|
float ty = centerPoint.Y * (1 - scale);
|
||
|
float tz = centerPoint.Z * (1 - scale);
|
||
|
|
||
|
result.M11 = scale;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = scale;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = scale;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = tx;
|
||
|
result.M42 = ty;
|
||
|
result.M43 = tz;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix for rotating points around the X-axis.
|
||
|
/// </summary>
|
||
|
/// <param name="radians">The amount, in radians, by which to rotate around the X-axis.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateRotationX(float radians)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float c = (float)Math.Cos(radians);
|
||
|
float s = (float)Math.Sin(radians);
|
||
|
|
||
|
// [ 1 0 0 0 ]
|
||
|
// [ 0 c s 0 ]
|
||
|
// [ 0 -s c 0 ]
|
||
|
// [ 0 0 0 1 ]
|
||
|
result.M11 = 1.0f;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = c;
|
||
|
result.M23 = s;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = -s;
|
||
|
result.M33 = c;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix for rotating points around the X-axis, from a center point.
|
||
|
/// </summary>
|
||
|
/// <param name="radians">The amount, in radians, by which to rotate around the X-axis.</param>
|
||
|
/// <param name="centerPoint">The center point.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateRotationX(float radians, Vector3 centerPoint)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float c = (float)Math.Cos(radians);
|
||
|
float s = (float)Math.Sin(radians);
|
||
|
|
||
|
float y = centerPoint.Y * (1 - c) + centerPoint.Z * s;
|
||
|
float z = centerPoint.Z * (1 - c) - centerPoint.Y * s;
|
||
|
|
||
|
// [ 1 0 0 0 ]
|
||
|
// [ 0 c s 0 ]
|
||
|
// [ 0 -s c 0 ]
|
||
|
// [ 0 y z 1 ]
|
||
|
result.M11 = 1.0f;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = c;
|
||
|
result.M23 = s;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = -s;
|
||
|
result.M33 = c;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = y;
|
||
|
result.M43 = z;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix for rotating points around the Y-axis.
|
||
|
/// </summary>
|
||
|
/// <param name="radians">The amount, in radians, by which to rotate around the Y-axis.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateRotationY(float radians)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float c = (float)Math.Cos(radians);
|
||
|
float s = (float)Math.Sin(radians);
|
||
|
|
||
|
// [ c 0 -s 0 ]
|
||
|
// [ 0 1 0 0 ]
|
||
|
// [ s 0 c 0 ]
|
||
|
// [ 0 0 0 1 ]
|
||
|
result.M11 = c;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = -s;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = 1.0f;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = s;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = c;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix for rotating points around the Y-axis, from a center point.
|
||
|
/// </summary>
|
||
|
/// <param name="radians">The amount, in radians, by which to rotate around the Y-axis.</param>
|
||
|
/// <param name="centerPoint">The center point.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateRotationY(float radians, Vector3 centerPoint)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float c = (float)Math.Cos(radians);
|
||
|
float s = (float)Math.Sin(radians);
|
||
|
|
||
|
float x = centerPoint.X * (1 - c) - centerPoint.Z * s;
|
||
|
float z = centerPoint.Z * (1 - c) + centerPoint.X * s;
|
||
|
|
||
|
// [ c 0 -s 0 ]
|
||
|
// [ 0 1 0 0 ]
|
||
|
// [ s 0 c 0 ]
|
||
|
// [ x 0 z 1 ]
|
||
|
result.M11 = c;
|
||
|
result.M12 = 0.0f;
|
||
|
result.M13 = -s;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 0.0f;
|
||
|
result.M22 = 1.0f;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = s;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = c;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = x;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = z;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix for rotating points around the Z-axis.
|
||
|
/// </summary>
|
||
|
/// <param name="radians">The amount, in radians, by which to rotate around the Z-axis.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateRotationZ(float radians)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float c = (float)Math.Cos(radians);
|
||
|
float s = (float)Math.Sin(radians);
|
||
|
|
||
|
// [ c s 0 0 ]
|
||
|
// [ -s c 0 0 ]
|
||
|
// [ 0 0 1 0 ]
|
||
|
// [ 0 0 0 1 ]
|
||
|
result.M11 = c;
|
||
|
result.M12 = s;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = -s;
|
||
|
result.M22 = c;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = 1.0f;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix for rotating points around the Z-axis, from a center point.
|
||
|
/// </summary>
|
||
|
/// <param name="radians">The amount, in radians, by which to rotate around the Z-axis.</param>
|
||
|
/// <param name="centerPoint">The center point.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateRotationZ(float radians, Vector3 centerPoint)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float c = (float)Math.Cos(radians);
|
||
|
float s = (float)Math.Sin(radians);
|
||
|
|
||
|
float x = centerPoint.X * (1 - c) + centerPoint.Y * s;
|
||
|
float y = centerPoint.Y * (1 - c) - centerPoint.X * s;
|
||
|
|
||
|
// [ c s 0 0 ]
|
||
|
// [ -s c 0 0 ]
|
||
|
// [ 0 0 1 0 ]
|
||
|
// [ x y 0 1 ]
|
||
|
result.M11 = c;
|
||
|
result.M12 = s;
|
||
|
result.M13 = 0.0f;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = -s;
|
||
|
result.M22 = c;
|
||
|
result.M23 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 0.0f;
|
||
|
result.M32 = 0.0f;
|
||
|
result.M33 = 1.0f;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = x;
|
||
|
result.M42 = y;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a matrix that rotates around an arbitrary vector.
|
||
|
/// </summary>
|
||
|
/// <param name="axis">The axis to rotate around.</param>
|
||
|
/// <param name="angle">The angle to rotate around the given axis, in radians.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateFromAxisAngle(Vector3 axis, float angle)
|
||
|
{
|
||
|
// a: angle
|
||
|
// x, y, z: unit vector for axis.
|
||
|
//
|
||
|
// Rotation matrix M can compute by using below equation.
|
||
|
//
|
||
|
// T T
|
||
|
// M = uu + (cos a)( I-uu ) + (sin a)S
|
||
|
//
|
||
|
// Where:
|
||
|
//
|
||
|
// u = ( x, y, z )
|
||
|
//
|
||
|
// [ 0 -z y ]
|
||
|
// S = [ z 0 -x ]
|
||
|
// [ -y x 0 ]
|
||
|
//
|
||
|
// [ 1 0 0 ]
|
||
|
// I = [ 0 1 0 ]
|
||
|
// [ 0 0 1 ]
|
||
|
//
|
||
|
//
|
||
|
// [ xx+cosa*(1-xx) yx-cosa*yx-sina*z zx-cosa*xz+sina*y ]
|
||
|
// M = [ xy-cosa*yx+sina*z yy+cosa(1-yy) yz-cosa*yz-sina*x ]
|
||
|
// [ zx-cosa*zx-sina*y zy-cosa*zy+sina*x zz+cosa*(1-zz) ]
|
||
|
//
|
||
|
float x = axis.X, y = axis.Y, z = axis.Z;
|
||
|
float sa = (float)Math.Sin(angle), ca = (float)Math.Cos(angle);
|
||
|
float xx = x * x, yy = y * y, zz = z * z;
|
||
|
float xy = x * y, xz = x * z, yz = y * z;
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xx + ca * (1.0f - xx);
|
||
|
result.M12 = xy - ca * xy + sa * z;
|
||
|
result.M13 = xz - ca * xz - sa * y;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = xy - ca * xy - sa * z;
|
||
|
result.M22 = yy + ca * (1.0f - yy);
|
||
|
result.M23 = yz - ca * yz + sa * x;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = xz - ca * xz + sa * y;
|
||
|
result.M32 = yz - ca * yz - sa * x;
|
||
|
result.M33 = zz + ca * (1.0f - zz);
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances.
|
||
|
/// </summary>
|
||
|
/// <param name="fieldOfView">Field of view in the y direction, in radians.</param>
|
||
|
/// <param name="aspectRatio">Aspect ratio, defined as view space width divided by height.</param>
|
||
|
/// <param name="nearPlaneDistance">Distance to the near view plane.</param>
|
||
|
/// <param name="farPlaneDistance">Distance to the far view plane.</param>
|
||
|
/// <returns>The perspective projection matrix.</returns>
|
||
|
public static Matrix4x4 CreatePerspectiveFieldOfView(float fieldOfView, float aspectRatio, float nearPlaneDistance, float farPlaneDistance)
|
||
|
{
|
||
|
if (fieldOfView <= 0.0f || fieldOfView >= Math.PI)
|
||
|
throw new ArgumentOutOfRangeException("fieldOfView");
|
||
|
|
||
|
if (nearPlaneDistance <= 0.0f)
|
||
|
throw new ArgumentOutOfRangeException("nearPlaneDistance");
|
||
|
|
||
|
if (farPlaneDistance <= 0.0f)
|
||
|
throw new ArgumentOutOfRangeException("farPlaneDistance");
|
||
|
|
||
|
if (nearPlaneDistance >= farPlaneDistance)
|
||
|
throw new ArgumentOutOfRangeException("nearPlaneDistance");
|
||
|
|
||
|
float yScale = 1.0f / (float)Math.Tan(fieldOfView * 0.5f);
|
||
|
float xScale = yScale / aspectRatio;
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xScale;
|
||
|
result.M12 = result.M13 = result.M14 = 0.0f;
|
||
|
|
||
|
result.M22 = yScale;
|
||
|
result.M21 = result.M23 = result.M24 = 0.0f;
|
||
|
|
||
|
result.M31 = result.M32 = 0.0f;
|
||
|
result.M33 = farPlaneDistance / (nearPlaneDistance - farPlaneDistance);
|
||
|
result.M34 = -1.0f;
|
||
|
|
||
|
result.M41 = result.M42 = result.M44 = 0.0f;
|
||
|
result.M43 = nearPlaneDistance * farPlaneDistance / (nearPlaneDistance - farPlaneDistance);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a perspective projection matrix from the given view volume dimensions.
|
||
|
/// </summary>
|
||
|
/// <param name="width">Width of the view volume at the near view plane.</param>
|
||
|
/// <param name="height">Height of the view volume at the near view plane.</param>
|
||
|
/// <param name="nearPlaneDistance">Distance to the near view plane.</param>
|
||
|
/// <param name="farPlaneDistance">Distance to the far view plane.</param>
|
||
|
/// <returns>The perspective projection matrix.</returns>
|
||
|
public static Matrix4x4 CreatePerspective(float width, float height, float nearPlaneDistance, float farPlaneDistance)
|
||
|
{
|
||
|
if (nearPlaneDistance <= 0.0f)
|
||
|
throw new ArgumentOutOfRangeException("nearPlaneDistance");
|
||
|
|
||
|
if (farPlaneDistance <= 0.0f)
|
||
|
throw new ArgumentOutOfRangeException("farPlaneDistance");
|
||
|
|
||
|
if (nearPlaneDistance >= farPlaneDistance)
|
||
|
throw new ArgumentOutOfRangeException("nearPlaneDistance");
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = 2.0f * nearPlaneDistance / width;
|
||
|
result.M12 = result.M13 = result.M14 = 0.0f;
|
||
|
|
||
|
result.M22 = 2.0f * nearPlaneDistance / height;
|
||
|
result.M21 = result.M23 = result.M24 = 0.0f;
|
||
|
|
||
|
result.M33 = farPlaneDistance / (nearPlaneDistance - farPlaneDistance);
|
||
|
result.M31 = result.M32 = 0.0f;
|
||
|
result.M34 = -1.0f;
|
||
|
|
||
|
result.M41 = result.M42 = result.M44 = 0.0f;
|
||
|
result.M43 = nearPlaneDistance * farPlaneDistance / (nearPlaneDistance - farPlaneDistance);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a customized, perspective projection matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="left">Minimum x-value of the view volume at the near view plane.</param>
|
||
|
/// <param name="right">Maximum x-value of the view volume at the near view plane.</param>
|
||
|
/// <param name="bottom">Minimum y-value of the view volume at the near view plane.</param>
|
||
|
/// <param name="top">Maximum y-value of the view volume at the near view plane.</param>
|
||
|
/// <param name="nearPlaneDistance">Distance to the near view plane.</param>
|
||
|
/// <param name="farPlaneDistance">Distance to of the far view plane.</param>
|
||
|
/// <returns>The perspective projection matrix.</returns>
|
||
|
public static Matrix4x4 CreatePerspectiveOffCenter(float left, float right, float bottom, float top, float nearPlaneDistance, float farPlaneDistance)
|
||
|
{
|
||
|
if (nearPlaneDistance <= 0.0f)
|
||
|
throw new ArgumentOutOfRangeException("nearPlaneDistance");
|
||
|
|
||
|
if (farPlaneDistance <= 0.0f)
|
||
|
throw new ArgumentOutOfRangeException("farPlaneDistance");
|
||
|
|
||
|
if (nearPlaneDistance >= farPlaneDistance)
|
||
|
throw new ArgumentOutOfRangeException("nearPlaneDistance");
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = 2.0f * nearPlaneDistance / (right - left);
|
||
|
result.M12 = result.M13 = result.M14 = 0.0f;
|
||
|
|
||
|
result.M22 = 2.0f * nearPlaneDistance / (top - bottom);
|
||
|
result.M21 = result.M23 = result.M24 = 0.0f;
|
||
|
|
||
|
result.M31 = (left + right) / (right - left);
|
||
|
result.M32 = (top + bottom) / (top - bottom);
|
||
|
result.M33 = farPlaneDistance / (nearPlaneDistance - farPlaneDistance);
|
||
|
result.M34 = -1.0f;
|
||
|
|
||
|
result.M43 = nearPlaneDistance * farPlaneDistance / (nearPlaneDistance - farPlaneDistance);
|
||
|
result.M41 = result.M42 = result.M44 = 0.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates an orthographic perspective matrix from the given view volume dimensions.
|
||
|
/// </summary>
|
||
|
/// <param name="width">Width of the view volume.</param>
|
||
|
/// <param name="height">Height of the view volume.</param>
|
||
|
/// <param name="zNearPlane">Minimum Z-value of the view volume.</param>
|
||
|
/// <param name="zFarPlane">Maximum Z-value of the view volume.</param>
|
||
|
/// <returns>The orthographic projection matrix.</returns>
|
||
|
public static Matrix4x4 CreateOrthographic(float width, float height, float zNearPlane, float zFarPlane)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = 2.0f / width;
|
||
|
result.M12 = result.M13 = result.M14 = 0.0f;
|
||
|
|
||
|
result.M22 = 2.0f / height;
|
||
|
result.M21 = result.M23 = result.M24 = 0.0f;
|
||
|
|
||
|
result.M33 = 1.0f / (zNearPlane - zFarPlane);
|
||
|
result.M31 = result.M32 = result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = result.M42 = 0.0f;
|
||
|
result.M43 = zNearPlane / (zNearPlane - zFarPlane);
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Builds a customized, orthographic projection matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="left">Minimum X-value of the view volume.</param>
|
||
|
/// <param name="right">Maximum X-value of the view volume.</param>
|
||
|
/// <param name="bottom">Minimum Y-value of the view volume.</param>
|
||
|
/// <param name="top">Maximum Y-value of the view volume.</param>
|
||
|
/// <param name="zNearPlane">Minimum Z-value of the view volume.</param>
|
||
|
/// <param name="zFarPlane">Maximum Z-value of the view volume.</param>
|
||
|
/// <returns>The orthographic projection matrix.</returns>
|
||
|
public static Matrix4x4 CreateOrthographicOffCenter(float left, float right, float bottom, float top, float zNearPlane, float zFarPlane)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = 2.0f / (right - left);
|
||
|
result.M12 = result.M13 = result.M14 = 0.0f;
|
||
|
|
||
|
result.M22 = 2.0f / (top - bottom);
|
||
|
result.M21 = result.M23 = result.M24 = 0.0f;
|
||
|
|
||
|
result.M33 = 1.0f / (zNearPlane - zFarPlane);
|
||
|
result.M31 = result.M32 = result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = (left + right) / (left - right);
|
||
|
result.M42 = (top + bottom) / (bottom - top);
|
||
|
result.M43 = zNearPlane / (zNearPlane - zFarPlane);
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a view matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="cameraPosition">The position of the camera.</param>
|
||
|
/// <param name="cameraTarget">The target towards which the camera is pointing.</param>
|
||
|
/// <param name="cameraUpVector">The direction that is "up" from the camera's point of view.</param>
|
||
|
/// <returns>The view matrix.</returns>
|
||
|
public static Matrix4x4 CreateLookAt(Vector3 cameraPosition, Vector3 cameraTarget, Vector3 cameraUpVector)
|
||
|
{
|
||
|
Vector3 zaxis = Vector3.Normalize(cameraPosition - cameraTarget);
|
||
|
Vector3 xaxis = Vector3.Normalize(Vector3.Cross(cameraUpVector, zaxis));
|
||
|
Vector3 yaxis = Vector3.Cross(zaxis, xaxis);
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xaxis.X;
|
||
|
result.M12 = yaxis.X;
|
||
|
result.M13 = zaxis.X;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = xaxis.Y;
|
||
|
result.M22 = yaxis.Y;
|
||
|
result.M23 = zaxis.Y;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = xaxis.Z;
|
||
|
result.M32 = yaxis.Z;
|
||
|
result.M33 = zaxis.Z;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = -Vector3.Dot(xaxis, cameraPosition);
|
||
|
result.M42 = -Vector3.Dot(yaxis, cameraPosition);
|
||
|
result.M43 = -Vector3.Dot(zaxis, cameraPosition);
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a world matrix with the specified parameters.
|
||
|
/// </summary>
|
||
|
/// <param name="position">The position of the object; used in translation operations.</param>
|
||
|
/// <param name="forward">Forward direction of the object.</param>
|
||
|
/// <param name="up">Upward direction of the object; usually [0, 1, 0].</param>
|
||
|
/// <returns>The world matrix.</returns>
|
||
|
public static Matrix4x4 CreateWorld(Vector3 position, Vector3 forward, Vector3 up)
|
||
|
{
|
||
|
Vector3 zaxis = Vector3.Normalize(-forward);
|
||
|
Vector3 xaxis = Vector3.Normalize(Vector3.Cross(up, zaxis));
|
||
|
Vector3 yaxis = Vector3.Cross(zaxis, xaxis);
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = xaxis.X;
|
||
|
result.M12 = xaxis.Y;
|
||
|
result.M13 = xaxis.Z;
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = yaxis.X;
|
||
|
result.M22 = yaxis.Y;
|
||
|
result.M23 = yaxis.Z;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = zaxis.X;
|
||
|
result.M32 = zaxis.Y;
|
||
|
result.M33 = zaxis.Z;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = position.X;
|
||
|
result.M42 = position.Y;
|
||
|
result.M43 = position.Z;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a rotation matrix from the given Quaternion rotation value.
|
||
|
/// </summary>
|
||
|
/// <param name="quaternion">The source Quaternion.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateFromQuaternion(Quaternion quaternion)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
float xx = quaternion.X * quaternion.X;
|
||
|
float yy = quaternion.Y * quaternion.Y;
|
||
|
float zz = quaternion.Z * quaternion.Z;
|
||
|
|
||
|
float xy = quaternion.X * quaternion.Y;
|
||
|
float wz = quaternion.Z * quaternion.W;
|
||
|
float xz = quaternion.Z * quaternion.X;
|
||
|
float wy = quaternion.Y * quaternion.W;
|
||
|
float yz = quaternion.Y * quaternion.Z;
|
||
|
float wx = quaternion.X * quaternion.W;
|
||
|
|
||
|
result.M11 = 1.0f - 2.0f * (yy + zz);
|
||
|
result.M12 = 2.0f * (xy + wz);
|
||
|
result.M13 = 2.0f * (xz - wy);
|
||
|
result.M14 = 0.0f;
|
||
|
result.M21 = 2.0f * (xy - wz);
|
||
|
result.M22 = 1.0f - 2.0f * (zz + xx);
|
||
|
result.M23 = 2.0f * (yz + wx);
|
||
|
result.M24 = 0.0f;
|
||
|
result.M31 = 2.0f * (xz + wy);
|
||
|
result.M32 = 2.0f * (yz - wx);
|
||
|
result.M33 = 1.0f - 2.0f * (yy + xx);
|
||
|
result.M34 = 0.0f;
|
||
|
result.M41 = 0.0f;
|
||
|
result.M42 = 0.0f;
|
||
|
result.M43 = 0.0f;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a rotation matrix from the specified yaw, pitch, and roll.
|
||
|
/// </summary>
|
||
|
/// <param name="yaw">Angle of rotation, in radians, around the Y-axis.</param>
|
||
|
/// <param name="pitch">Angle of rotation, in radians, around the X-axis.</param>
|
||
|
/// <param name="roll">Angle of rotation, in radians, around the Z-axis.</param>
|
||
|
/// <returns>The rotation matrix.</returns>
|
||
|
public static Matrix4x4 CreateFromYawPitchRoll(float yaw, float pitch, float roll)
|
||
|
{
|
||
|
Quaternion q = Quaternion.CreateFromYawPitchRoll(yaw, pitch, roll);
|
||
|
|
||
|
return Matrix4x4.CreateFromQuaternion(q);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a Matrix that flattens geometry into a specified Plane as if casting a shadow from a specified light source.
|
||
|
/// </summary>
|
||
|
/// <param name="lightDirection">The direction from which the light that will cast the shadow is coming.</param>
|
||
|
/// <param name="plane">The Plane onto which the new matrix should flatten geometry so as to cast a shadow.</param>
|
||
|
/// <returns>A new Matrix that can be used to flatten geometry onto the specified plane from the specified direction.</returns>
|
||
|
public static Matrix4x4 CreateShadow(Vector3 lightDirection, Plane plane)
|
||
|
{
|
||
|
Plane p = Plane.Normalize(plane);
|
||
|
|
||
|
float dot = p.Normal.X * lightDirection.X + p.Normal.Y * lightDirection.Y + p.Normal.Z * lightDirection.Z;
|
||
|
float a = -p.Normal.X;
|
||
|
float b = -p.Normal.Y;
|
||
|
float c = -p.Normal.Z;
|
||
|
float d = -p.D;
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = a * lightDirection.X + dot;
|
||
|
result.M21 = b * lightDirection.X;
|
||
|
result.M31 = c * lightDirection.X;
|
||
|
result.M41 = d * lightDirection.X;
|
||
|
|
||
|
result.M12 = a * lightDirection.Y;
|
||
|
result.M22 = b * lightDirection.Y + dot;
|
||
|
result.M32 = c * lightDirection.Y;
|
||
|
result.M42 = d * lightDirection.Y;
|
||
|
|
||
|
result.M13 = a * lightDirection.Z;
|
||
|
result.M23 = b * lightDirection.Z;
|
||
|
result.M33 = c * lightDirection.Z + dot;
|
||
|
result.M43 = d * lightDirection.Z;
|
||
|
|
||
|
result.M14 = 0.0f;
|
||
|
result.M24 = 0.0f;
|
||
|
result.M34 = 0.0f;
|
||
|
result.M44 = dot;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Creates a Matrix that reflects the coordinate system about a specified Plane.
|
||
|
/// </summary>
|
||
|
/// <param name="value">The Plane about which to create a reflection.</param>
|
||
|
/// <returns>A new matrix expressing the reflection.</returns>
|
||
|
public static Matrix4x4 CreateReflection(Plane value)
|
||
|
{
|
||
|
value = Plane.Normalize(value);
|
||
|
|
||
|
float a = value.Normal.X;
|
||
|
float b = value.Normal.Y;
|
||
|
float c = value.Normal.Z;
|
||
|
|
||
|
float fa = -2.0f * a;
|
||
|
float fb = -2.0f * b;
|
||
|
float fc = -2.0f * c;
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = fa * a + 1.0f;
|
||
|
result.M12 = fb * a;
|
||
|
result.M13 = fc * a;
|
||
|
result.M14 = 0.0f;
|
||
|
|
||
|
result.M21 = fa * b;
|
||
|
result.M22 = fb * b + 1.0f;
|
||
|
result.M23 = fc * b;
|
||
|
result.M24 = 0.0f;
|
||
|
|
||
|
result.M31 = fa * c;
|
||
|
result.M32 = fb * c;
|
||
|
result.M33 = fc * c + 1.0f;
|
||
|
result.M34 = 0.0f;
|
||
|
|
||
|
result.M41 = fa * value.D;
|
||
|
result.M42 = fb * value.D;
|
||
|
result.M43 = fc * value.D;
|
||
|
result.M44 = 1.0f;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Calculates the determinant of the matrix.
|
||
|
/// </summary>
|
||
|
/// <returns>The determinant of the matrix.</returns>
|
||
|
public float GetDeterminant()
|
||
|
{
|
||
|
// | a b c d | | f g h | | e g h | | e f h | | e f g |
|
||
|
// | e f g h | = a | j k l | - b | i k l | + c | i j l | - d | i j k |
|
||
|
// | i j k l | | n o p | | m o p | | m n p | | m n o |
|
||
|
// | m n o p |
|
||
|
//
|
||
|
// | f g h |
|
||
|
// a | j k l | = a ( f ( kp - lo ) - g ( jp - ln ) + h ( jo - kn ) )
|
||
|
// | n o p |
|
||
|
//
|
||
|
// | e g h |
|
||
|
// b | i k l | = b ( e ( kp - lo ) - g ( ip - lm ) + h ( io - km ) )
|
||
|
// | m o p |
|
||
|
//
|
||
|
// | e f h |
|
||
|
// c | i j l | = c ( e ( jp - ln ) - f ( ip - lm ) + h ( in - jm ) )
|
||
|
// | m n p |
|
||
|
//
|
||
|
// | e f g |
|
||
|
// d | i j k | = d ( e ( jo - kn ) - f ( io - km ) + g ( in - jm ) )
|
||
|
// | m n o |
|
||
|
//
|
||
|
// Cost of operation
|
||
|
// 17 adds and 28 muls.
|
||
|
//
|
||
|
// add: 6 + 8 + 3 = 17
|
||
|
// mul: 12 + 16 = 28
|
||
|
|
||
|
float a = M11, b = M12, c = M13, d = M14;
|
||
|
float e = M21, f = M22, g = M23, h = M24;
|
||
|
float i = M31, j = M32, k = M33, l = M34;
|
||
|
float m = M41, n = M42, o = M43, p = M44;
|
||
|
|
||
|
float kp_lo = k * p - l * o;
|
||
|
float jp_ln = j * p - l * n;
|
||
|
float jo_kn = j * o - k * n;
|
||
|
float ip_lm = i * p - l * m;
|
||
|
float io_km = i * o - k * m;
|
||
|
float in_jm = i * n - j * m;
|
||
|
|
||
|
return a * (f * kp_lo - g * jp_ln + h * jo_kn) -
|
||
|
b * (e * kp_lo - g * ip_lm + h * io_km) +
|
||
|
c * (e * jp_ln - f * ip_lm + h * in_jm) -
|
||
|
d * (e * jo_kn - f * io_km + g * in_jm);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Attempts to calculate the inverse of the given matrix. If successful, result will contain the inverted matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="matrix">The source matrix to invert.</param>
|
||
|
/// <param name="result">If successful, contains the inverted matrix.</param>
|
||
|
/// <returns>True if the source matrix could be inverted; False otherwise.</returns>
|
||
|
public static bool Invert(Matrix4x4 matrix, out Matrix4x4 result)
|
||
|
{
|
||
|
// -1
|
||
|
// If you have matrix M, inverse Matrix M can compute
|
||
|
//
|
||
|
// -1 1
|
||
|
// M = --------- A
|
||
|
// det(M)
|
||
|
//
|
||
|
// A is adjugate (adjoint) of M, where,
|
||
|
//
|
||
|
// T
|
||
|
// A = C
|
||
|
//
|
||
|
// C is Cofactor matrix of M, where,
|
||
|
// i + j
|
||
|
// C = (-1) * det(M )
|
||
|
// ij ij
|
||
|
//
|
||
|
// [ a b c d ]
|
||
|
// M = [ e f g h ]
|
||
|
// [ i j k l ]
|
||
|
// [ m n o p ]
|
||
|
//
|
||
|
// First Row
|
||
|
// 2 | f g h |
|
||
|
// C = (-1) | j k l | = + ( f ( kp - lo ) - g ( jp - ln ) + h ( jo - kn ) )
|
||
|
// 11 | n o p |
|
||
|
//
|
||
|
// 3 | e g h |
|
||
|
// C = (-1) | i k l | = - ( e ( kp - lo ) - g ( ip - lm ) + h ( io - km ) )
|
||
|
// 12 | m o p |
|
||
|
//
|
||
|
// 4 | e f h |
|
||
|
// C = (-1) | i j l | = + ( e ( jp - ln ) - f ( ip - lm ) + h ( in - jm ) )
|
||
|
// 13 | m n p |
|
||
|
//
|
||
|
// 5 | e f g |
|
||
|
// C = (-1) | i j k | = - ( e ( jo - kn ) - f ( io - km ) + g ( in - jm ) )
|
||
|
// 14 | m n o |
|
||
|
//
|
||
|
// Second Row
|
||
|
// 3 | b c d |
|
||
|
// C = (-1) | j k l | = - ( b ( kp - lo ) - c ( jp - ln ) + d ( jo - kn ) )
|
||
|
// 21 | n o p |
|
||
|
//
|
||
|
// 4 | a c d |
|
||
|
// C = (-1) | i k l | = + ( a ( kp - lo ) - c ( ip - lm ) + d ( io - km ) )
|
||
|
// 22 | m o p |
|
||
|
//
|
||
|
// 5 | a b d |
|
||
|
// C = (-1) | i j l | = - ( a ( jp - ln ) - b ( ip - lm ) + d ( in - jm ) )
|
||
|
// 23 | m n p |
|
||
|
//
|
||
|
// 6 | a b c |
|
||
|
// C = (-1) | i j k | = + ( a ( jo - kn ) - b ( io - km ) + c ( in - jm ) )
|
||
|
// 24 | m n o |
|
||
|
//
|
||
|
// Third Row
|
||
|
// 4 | b c d |
|
||
|
// C = (-1) | f g h | = + ( b ( gp - ho ) - c ( fp - hn ) + d ( fo - gn ) )
|
||
|
// 31 | n o p |
|
||
|
//
|
||
|
// 5 | a c d |
|
||
|
// C = (-1) | e g h | = - ( a ( gp - ho ) - c ( ep - hm ) + d ( eo - gm ) )
|
||
|
// 32 | m o p |
|
||
|
//
|
||
|
// 6 | a b d |
|
||
|
// C = (-1) | e f h | = + ( a ( fp - hn ) - b ( ep - hm ) + d ( en - fm ) )
|
||
|
// 33 | m n p |
|
||
|
//
|
||
|
// 7 | a b c |
|
||
|
// C = (-1) | e f g | = - ( a ( fo - gn ) - b ( eo - gm ) + c ( en - fm ) )
|
||
|
// 34 | m n o |
|
||
|
//
|
||
|
// Fourth Row
|
||
|
// 5 | b c d |
|
||
|
// C = (-1) | f g h | = - ( b ( gl - hk ) - c ( fl - hj ) + d ( fk - gj ) )
|
||
|
// 41 | j k l |
|
||
|
//
|
||
|
// 6 | a c d |
|
||
|
// C = (-1) | e g h | = + ( a ( gl - hk ) - c ( el - hi ) + d ( ek - gi ) )
|
||
|
// 42 | i k l |
|
||
|
//
|
||
|
// 7 | a b d |
|
||
|
// C = (-1) | e f h | = - ( a ( fl - hj ) - b ( el - hi ) + d ( ej - fi ) )
|
||
|
// 43 | i j l |
|
||
|
//
|
||
|
// 8 | a b c |
|
||
|
// C = (-1) | e f g | = + ( a ( fk - gj ) - b ( ek - gi ) + c ( ej - fi ) )
|
||
|
// 44 | i j k |
|
||
|
//
|
||
|
// Cost of operation
|
||
|
// 53 adds, 104 muls, and 1 div.
|
||
|
float a = matrix.M11, b = matrix.M12, c = matrix.M13, d = matrix.M14;
|
||
|
float e = matrix.M21, f = matrix.M22, g = matrix.M23, h = matrix.M24;
|
||
|
float i = matrix.M31, j = matrix.M32, k = matrix.M33, l = matrix.M34;
|
||
|
float m = matrix.M41, n = matrix.M42, o = matrix.M43, p = matrix.M44;
|
||
|
|
||
|
float kp_lo = k * p - l * o;
|
||
|
float jp_ln = j * p - l * n;
|
||
|
float jo_kn = j * o - k * n;
|
||
|
float ip_lm = i * p - l * m;
|
||
|
float io_km = i * o - k * m;
|
||
|
float in_jm = i * n - j * m;
|
||
|
|
||
|
float a11 = +(f * kp_lo - g * jp_ln + h * jo_kn);
|
||
|
float a12 = -(e * kp_lo - g * ip_lm + h * io_km);
|
||
|
float a13 = +(e * jp_ln - f * ip_lm + h * in_jm);
|
||
|
float a14 = -(e * jo_kn - f * io_km + g * in_jm);
|
||
|
|
||
|
float det = a * a11 + b * a12 + c * a13 + d * a14;
|
||
|
|
||
|
if (Math.Abs(det) < float.Epsilon)
|
||
|
{
|
||
|
result = new Matrix4x4(float.NaN, float.NaN, float.NaN, float.NaN,
|
||
|
float.NaN, float.NaN, float.NaN, float.NaN,
|
||
|
float.NaN, float.NaN, float.NaN, float.NaN,
|
||
|
float.NaN, float.NaN, float.NaN, float.NaN);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
float invDet = 1.0f / det;
|
||
|
|
||
|
result.M11 = a11 * invDet;
|
||
|
result.M21 = a12 * invDet;
|
||
|
result.M31 = a13 * invDet;
|
||
|
result.M41 = a14 * invDet;
|
||
|
|
||
|
result.M12 = -(b * kp_lo - c * jp_ln + d * jo_kn) * invDet;
|
||
|
result.M22 = +(a * kp_lo - c * ip_lm + d * io_km) * invDet;
|
||
|
result.M32 = -(a * jp_ln - b * ip_lm + d * in_jm) * invDet;
|
||
|
result.M42 = +(a * jo_kn - b * io_km + c * in_jm) * invDet;
|
||
|
|
||
|
float gp_ho = g * p - h * o;
|
||
|
float fp_hn = f * p - h * n;
|
||
|
float fo_gn = f * o - g * n;
|
||
|
float ep_hm = e * p - h * m;
|
||
|
float eo_gm = e * o - g * m;
|
||
|
float en_fm = e * n - f * m;
|
||
|
|
||
|
result.M13 = +(b * gp_ho - c * fp_hn + d * fo_gn) * invDet;
|
||
|
result.M23 = -(a * gp_ho - c * ep_hm + d * eo_gm) * invDet;
|
||
|
result.M33 = +(a * fp_hn - b * ep_hm + d * en_fm) * invDet;
|
||
|
result.M43 = -(a * fo_gn - b * eo_gm + c * en_fm) * invDet;
|
||
|
|
||
|
float gl_hk = g * l - h * k;
|
||
|
float fl_hj = f * l - h * j;
|
||
|
float fk_gj = f * k - g * j;
|
||
|
float el_hi = e * l - h * i;
|
||
|
float ek_gi = e * k - g * i;
|
||
|
float ej_fi = e * j - f * i;
|
||
|
|
||
|
result.M14 = -(b * gl_hk - c * fl_hj + d * fk_gj) * invDet;
|
||
|
result.M24 = +(a * gl_hk - c * el_hi + d * ek_gi) * invDet;
|
||
|
result.M34 = -(a * fl_hj - b * el_hi + d * ej_fi) * invDet;
|
||
|
result.M44 = +(a * fk_gj - b * ek_gi + c * ej_fi) * invDet;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
struct CanonicalBasis
|
||
|
{
|
||
|
public Vector3 Row0;
|
||
|
public Vector3 Row1;
|
||
|
public Vector3 Row2;
|
||
|
};
|
||
|
|
||
|
[System.Security.SecuritySafeCritical]
|
||
|
struct VectorBasis
|
||
|
{
|
||
|
public unsafe Vector3* Element0;
|
||
|
public unsafe Vector3* Element1;
|
||
|
public unsafe Vector3* Element2;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Attempts to extract the scale, translation, and rotation components from the given scale/rotation/translation matrix.
|
||
|
/// If successful, the out parameters will contained the extracted values.
|
||
|
/// </summary>
|
||
|
/// <param name="matrix">The source matrix.</param>
|
||
|
/// <param name="scale">The scaling component of the transformation matrix.</param>
|
||
|
/// <param name="rotation">The rotation component of the transformation matrix.</param>
|
||
|
/// <param name="translation">The translation component of the transformation matrix</param>
|
||
|
/// <returns>True if the source matrix was successfully decomposed; False otherwise.</returns>
|
||
|
[System.Security.SecuritySafeCritical]
|
||
|
public static bool Decompose(Matrix4x4 matrix, out Vector3 scale, out Quaternion rotation, out Vector3 translation)
|
||
|
{
|
||
|
bool result = true;
|
||
|
|
||
|
unsafe
|
||
|
{
|
||
|
fixed (Vector3* scaleBase = &scale)
|
||
|
{
|
||
|
float* pfScales = (float*)scaleBase;
|
||
|
const float EPSILON = 0.0001f;
|
||
|
float det;
|
||
|
|
||
|
VectorBasis vectorBasis;
|
||
|
Vector3** pVectorBasis = (Vector3**)&vectorBasis;
|
||
|
|
||
|
Matrix4x4 matTemp = Matrix4x4.Identity;
|
||
|
CanonicalBasis canonicalBasis = new CanonicalBasis();
|
||
|
Vector3* pCanonicalBasis = &canonicalBasis.Row0;
|
||
|
|
||
|
canonicalBasis.Row0 = new Vector3(1.0f, 0.0f, 0.0f);
|
||
|
canonicalBasis.Row1 = new Vector3(0.0f, 1.0f, 0.0f);
|
||
|
canonicalBasis.Row2 = new Vector3(0.0f, 0.0f, 1.0f);
|
||
|
|
||
|
translation = new Vector3(
|
||
|
matrix.M41,
|
||
|
matrix.M42,
|
||
|
matrix.M43);
|
||
|
|
||
|
pVectorBasis[0] = (Vector3*)&matTemp.M11;
|
||
|
pVectorBasis[1] = (Vector3*)&matTemp.M21;
|
||
|
pVectorBasis[2] = (Vector3*)&matTemp.M31;
|
||
|
|
||
|
*(pVectorBasis[0]) = new Vector3(matrix.M11, matrix.M12, matrix.M13);
|
||
|
*(pVectorBasis[1]) = new Vector3(matrix.M21, matrix.M22, matrix.M23);
|
||
|
*(pVectorBasis[2]) = new Vector3(matrix.M31, matrix.M32, matrix.M33);
|
||
|
|
||
|
scale.X = pVectorBasis[0]->Length();
|
||
|
scale.Y = pVectorBasis[1]->Length();
|
||
|
scale.Z = pVectorBasis[2]->Length();
|
||
|
|
||
|
uint a, b, c;
|
||
|
#region Ranking
|
||
|
float x = pfScales[0], y = pfScales[1], z = pfScales[2];
|
||
|
if (x < y)
|
||
|
{
|
||
|
if (y < z)
|
||
|
{
|
||
|
a = 2;
|
||
|
b = 1;
|
||
|
c = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
a = 1;
|
||
|
|
||
|
if (x < z)
|
||
|
{
|
||
|
b = 2;
|
||
|
c = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b = 0;
|
||
|
c = 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (x < z)
|
||
|
{
|
||
|
a = 2;
|
||
|
b = 0;
|
||
|
c = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
a = 0;
|
||
|
|
||
|
if (y < z)
|
||
|
{
|
||
|
b = 2;
|
||
|
c = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b = 1;
|
||
|
c = 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endregion
|
||
|
|
||
|
if (pfScales[a] < EPSILON)
|
||
|
{
|
||
|
*(pVectorBasis[a]) = pCanonicalBasis[a];
|
||
|
}
|
||
|
|
||
|
*pVectorBasis[a] = Vector3.Normalize(*pVectorBasis[a]);
|
||
|
|
||
|
if (pfScales[b] < EPSILON)
|
||
|
{
|
||
|
uint cc;
|
||
|
float fAbsX, fAbsY, fAbsZ;
|
||
|
|
||
|
fAbsX = (float)Math.Abs(pVectorBasis[a]->X);
|
||
|
fAbsY = (float)Math.Abs(pVectorBasis[a]->Y);
|
||
|
fAbsZ = (float)Math.Abs(pVectorBasis[a]->Z);
|
||
|
|
||
|
#region Ranking
|
||
|
if (fAbsX < fAbsY)
|
||
|
{
|
||
|
if (fAbsY < fAbsZ)
|
||
|
{
|
||
|
cc = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (fAbsX < fAbsZ)
|
||
|
{
|
||
|
cc = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cc = 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (fAbsX < fAbsZ)
|
||
|
{
|
||
|
cc = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (fAbsY < fAbsZ)
|
||
|
{
|
||
|
cc = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cc = 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endregion
|
||
|
|
||
|
*pVectorBasis[b] = Vector3.Cross(*pVectorBasis[a], *(pCanonicalBasis + cc));
|
||
|
}
|
||
|
|
||
|
*pVectorBasis[b] = Vector3.Normalize(*pVectorBasis[b]);
|
||
|
|
||
|
if (pfScales[c] < EPSILON)
|
||
|
{
|
||
|
*pVectorBasis[c] = Vector3.Cross(*pVectorBasis[a], *pVectorBasis[b]);
|
||
|
}
|
||
|
|
||
|
*pVectorBasis[c] = Vector3.Normalize(*pVectorBasis[c]);
|
||
|
|
||
|
det = matTemp.GetDeterminant();
|
||
|
|
||
|
// use Kramer's rule to check for handedness of coordinate system
|
||
|
if (det < 0.0f)
|
||
|
{
|
||
|
// switch coordinate system by negating the scale and inverting the basis vector on the x-axis
|
||
|
pfScales[a] = -pfScales[a];
|
||
|
*pVectorBasis[a] = -(*pVectorBasis[a]);
|
||
|
|
||
|
det = -det;
|
||
|
}
|
||
|
|
||
|
det -= 1.0f;
|
||
|
det *= det;
|
||
|
|
||
|
if ((EPSILON < det))
|
||
|
{
|
||
|
// Non-SRT matrix encountered
|
||
|
rotation = Quaternion.Identity;
|
||
|
result = false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// generate the quaternion from the matrix
|
||
|
rotation = Quaternion.CreateFromRotationMatrix(matTemp);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Transforms the given matrix by applying the given Quaternion rotation.
|
||
|
/// </summary>
|
||
|
/// <param name="value">The source matrix to transform.</param>
|
||
|
/// <param name="rotation">The rotation to apply.</param>
|
||
|
/// <returns>The transformed matrix.</returns>
|
||
|
public static Matrix4x4 Transform(Matrix4x4 value, Quaternion rotation)
|
||
|
{
|
||
|
// Compute rotation matrix.
|
||
|
float x2 = rotation.X + rotation.X;
|
||
|
float y2 = rotation.Y + rotation.Y;
|
||
|
float z2 = rotation.Z + rotation.Z;
|
||
|
|
||
|
float wx2 = rotation.W * x2;
|
||
|
float wy2 = rotation.W * y2;
|
||
|
float wz2 = rotation.W * z2;
|
||
|
float xx2 = rotation.X * x2;
|
||
|
float xy2 = rotation.X * y2;
|
||
|
float xz2 = rotation.X * z2;
|
||
|
float yy2 = rotation.Y * y2;
|
||
|
float yz2 = rotation.Y * z2;
|
||
|
float zz2 = rotation.Z * z2;
|
||
|
|
||
|
float q11 = 1.0f - yy2 - zz2;
|
||
|
float q21 = xy2 - wz2;
|
||
|
float q31 = xz2 + wy2;
|
||
|
|
||
|
float q12 = xy2 + wz2;
|
||
|
float q22 = 1.0f - xx2 - zz2;
|
||
|
float q32 = yz2 - wx2;
|
||
|
|
||
|
float q13 = xz2 - wy2;
|
||
|
float q23 = yz2 + wx2;
|
||
|
float q33 = 1.0f - xx2 - yy2;
|
||
|
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
// First row
|
||
|
result.M11 = value.M11 * q11 + value.M12 * q21 + value.M13 * q31;
|
||
|
result.M12 = value.M11 * q12 + value.M12 * q22 + value.M13 * q32;
|
||
|
result.M13 = value.M11 * q13 + value.M12 * q23 + value.M13 * q33;
|
||
|
result.M14 = value.M14;
|
||
|
|
||
|
// Second row
|
||
|
result.M21 = value.M21 * q11 + value.M22 * q21 + value.M23 * q31;
|
||
|
result.M22 = value.M21 * q12 + value.M22 * q22 + value.M23 * q32;
|
||
|
result.M23 = value.M21 * q13 + value.M22 * q23 + value.M23 * q33;
|
||
|
result.M24 = value.M24;
|
||
|
|
||
|
// Third row
|
||
|
result.M31 = value.M31 * q11 + value.M32 * q21 + value.M33 * q31;
|
||
|
result.M32 = value.M31 * q12 + value.M32 * q22 + value.M33 * q32;
|
||
|
result.M33 = value.M31 * q13 + value.M32 * q23 + value.M33 * q33;
|
||
|
result.M34 = value.M34;
|
||
|
|
||
|
// Fourth row
|
||
|
result.M41 = value.M41 * q11 + value.M42 * q21 + value.M43 * q31;
|
||
|
result.M42 = value.M41 * q12 + value.M42 * q22 + value.M43 * q32;
|
||
|
result.M43 = value.M41 * q13 + value.M42 * q23 + value.M43 * q33;
|
||
|
result.M44 = value.M44;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Transposes the rows and columns of a matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="matrix">The source matrix.</param>
|
||
|
/// <returns>The transposed matrix.</returns>
|
||
|
public static Matrix4x4 Transpose(Matrix4x4 matrix)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = matrix.M11;
|
||
|
result.M12 = matrix.M21;
|
||
|
result.M13 = matrix.M31;
|
||
|
result.M14 = matrix.M41;
|
||
|
result.M21 = matrix.M12;
|
||
|
result.M22 = matrix.M22;
|
||
|
result.M23 = matrix.M32;
|
||
|
result.M24 = matrix.M42;
|
||
|
result.M31 = matrix.M13;
|
||
|
result.M32 = matrix.M23;
|
||
|
result.M33 = matrix.M33;
|
||
|
result.M34 = matrix.M43;
|
||
|
result.M41 = matrix.M14;
|
||
|
result.M42 = matrix.M24;
|
||
|
result.M43 = matrix.M34;
|
||
|
result.M44 = matrix.M44;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Linearly interpolates between the corresponding values of two matrices.
|
||
|
/// </summary>
|
||
|
/// <param name="matrix1">The first source matrix.</param>
|
||
|
/// <param name="matrix2">The second source matrix.</param>
|
||
|
/// <param name="amount">The relative weight of the second source matrix.</param>
|
||
|
/// <returns>The interpolated matrix.</returns>
|
||
|
public static Matrix4x4 Lerp(Matrix4x4 matrix1, Matrix4x4 matrix2, float amount)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
// First row
|
||
|
result.M11 = matrix1.M11 + (matrix2.M11 - matrix1.M11) * amount;
|
||
|
result.M12 = matrix1.M12 + (matrix2.M12 - matrix1.M12) * amount;
|
||
|
result.M13 = matrix1.M13 + (matrix2.M13 - matrix1.M13) * amount;
|
||
|
result.M14 = matrix1.M14 + (matrix2.M14 - matrix1.M14) * amount;
|
||
|
|
||
|
// Second row
|
||
|
result.M21 = matrix1.M21 + (matrix2.M21 - matrix1.M21) * amount;
|
||
|
result.M22 = matrix1.M22 + (matrix2.M22 - matrix1.M22) * amount;
|
||
|
result.M23 = matrix1.M23 + (matrix2.M23 - matrix1.M23) * amount;
|
||
|
result.M24 = matrix1.M24 + (matrix2.M24 - matrix1.M24) * amount;
|
||
|
|
||
|
// Third row
|
||
|
result.M31 = matrix1.M31 + (matrix2.M31 - matrix1.M31) * amount;
|
||
|
result.M32 = matrix1.M32 + (matrix2.M32 - matrix1.M32) * amount;
|
||
|
result.M33 = matrix1.M33 + (matrix2.M33 - matrix1.M33) * amount;
|
||
|
result.M34 = matrix1.M34 + (matrix2.M34 - matrix1.M34) * amount;
|
||
|
|
||
|
// Fourth row
|
||
|
result.M41 = matrix1.M41 + (matrix2.M41 - matrix1.M41) * amount;
|
||
|
result.M42 = matrix1.M42 + (matrix2.M42 - matrix1.M42) * amount;
|
||
|
result.M43 = matrix1.M43 + (matrix2.M43 - matrix1.M43) * amount;
|
||
|
result.M44 = matrix1.M44 + (matrix2.M44 - matrix1.M44) * amount;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a new matrix with the negated elements of the given matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="value">The source matrix.</param>
|
||
|
/// <returns>The negated matrix.</returns>
|
||
|
public static Matrix4x4 Negate(Matrix4x4 value)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = -value.M11;
|
||
|
result.M12 = -value.M12;
|
||
|
result.M13 = -value.M13;
|
||
|
result.M14 = -value.M14;
|
||
|
result.M21 = -value.M21;
|
||
|
result.M22 = -value.M22;
|
||
|
result.M23 = -value.M23;
|
||
|
result.M24 = -value.M24;
|
||
|
result.M31 = -value.M31;
|
||
|
result.M32 = -value.M32;
|
||
|
result.M33 = -value.M33;
|
||
|
result.M34 = -value.M34;
|
||
|
result.M41 = -value.M41;
|
||
|
result.M42 = -value.M42;
|
||
|
result.M43 = -value.M43;
|
||
|
result.M44 = -value.M44;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Adds two matrices together.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first source matrix.</param>
|
||
|
/// <param name="value2">The second source matrix.</param>
|
||
|
/// <returns>The resulting matrix.</returns>
|
||
|
public static Matrix4x4 Add(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = value1.M11 + value2.M11;
|
||
|
result.M12 = value1.M12 + value2.M12;
|
||
|
result.M13 = value1.M13 + value2.M13;
|
||
|
result.M14 = value1.M14 + value2.M14;
|
||
|
result.M21 = value1.M21 + value2.M21;
|
||
|
result.M22 = value1.M22 + value2.M22;
|
||
|
result.M23 = value1.M23 + value2.M23;
|
||
|
result.M24 = value1.M24 + value2.M24;
|
||
|
result.M31 = value1.M31 + value2.M31;
|
||
|
result.M32 = value1.M32 + value2.M32;
|
||
|
result.M33 = value1.M33 + value2.M33;
|
||
|
result.M34 = value1.M34 + value2.M34;
|
||
|
result.M41 = value1.M41 + value2.M41;
|
||
|
result.M42 = value1.M42 + value2.M42;
|
||
|
result.M43 = value1.M43 + value2.M43;
|
||
|
result.M44 = value1.M44 + value2.M44;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Subtracts the second matrix from the first.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first source matrix.</param>
|
||
|
/// <param name="value2">The second source matrix.</param>
|
||
|
/// <returns>The result of the subtraction.</returns>
|
||
|
public static Matrix4x4 Subtract(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = value1.M11 - value2.M11;
|
||
|
result.M12 = value1.M12 - value2.M12;
|
||
|
result.M13 = value1.M13 - value2.M13;
|
||
|
result.M14 = value1.M14 - value2.M14;
|
||
|
result.M21 = value1.M21 - value2.M21;
|
||
|
result.M22 = value1.M22 - value2.M22;
|
||
|
result.M23 = value1.M23 - value2.M23;
|
||
|
result.M24 = value1.M24 - value2.M24;
|
||
|
result.M31 = value1.M31 - value2.M31;
|
||
|
result.M32 = value1.M32 - value2.M32;
|
||
|
result.M33 = value1.M33 - value2.M33;
|
||
|
result.M34 = value1.M34 - value2.M34;
|
||
|
result.M41 = value1.M41 - value2.M41;
|
||
|
result.M42 = value1.M42 - value2.M42;
|
||
|
result.M43 = value1.M43 - value2.M43;
|
||
|
result.M44 = value1.M44 - value2.M44;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Multiplies a matrix by another matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first source matrix.</param>
|
||
|
/// <param name="value2">The second source matrix.</param>
|
||
|
/// <returns>The result of the multiplication.</returns>
|
||
|
public static Matrix4x4 Multiply(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
// First row
|
||
|
result.M11 = value1.M11 * value2.M11 + value1.M12 * value2.M21 + value1.M13 * value2.M31 + value1.M14 * value2.M41;
|
||
|
result.M12 = value1.M11 * value2.M12 + value1.M12 * value2.M22 + value1.M13 * value2.M32 + value1.M14 * value2.M42;
|
||
|
result.M13 = value1.M11 * value2.M13 + value1.M12 * value2.M23 + value1.M13 * value2.M33 + value1.M14 * value2.M43;
|
||
|
result.M14 = value1.M11 * value2.M14 + value1.M12 * value2.M24 + value1.M13 * value2.M34 + value1.M14 * value2.M44;
|
||
|
|
||
|
// Second row
|
||
|
result.M21 = value1.M21 * value2.M11 + value1.M22 * value2.M21 + value1.M23 * value2.M31 + value1.M24 * value2.M41;
|
||
|
result.M22 = value1.M21 * value2.M12 + value1.M22 * value2.M22 + value1.M23 * value2.M32 + value1.M24 * value2.M42;
|
||
|
result.M23 = value1.M21 * value2.M13 + value1.M22 * value2.M23 + value1.M23 * value2.M33 + value1.M24 * value2.M43;
|
||
|
result.M24 = value1.M21 * value2.M14 + value1.M22 * value2.M24 + value1.M23 * value2.M34 + value1.M24 * value2.M44;
|
||
|
|
||
|
// Third row
|
||
|
result.M31 = value1.M31 * value2.M11 + value1.M32 * value2.M21 + value1.M33 * value2.M31 + value1.M34 * value2.M41;
|
||
|
result.M32 = value1.M31 * value2.M12 + value1.M32 * value2.M22 + value1.M33 * value2.M32 + value1.M34 * value2.M42;
|
||
|
result.M33 = value1.M31 * value2.M13 + value1.M32 * value2.M23 + value1.M33 * value2.M33 + value1.M34 * value2.M43;
|
||
|
result.M34 = value1.M31 * value2.M14 + value1.M32 * value2.M24 + value1.M33 * value2.M34 + value1.M34 * value2.M44;
|
||
|
|
||
|
// Fourth row
|
||
|
result.M41 = value1.M41 * value2.M11 + value1.M42 * value2.M21 + value1.M43 * value2.M31 + value1.M44 * value2.M41;
|
||
|
result.M42 = value1.M41 * value2.M12 + value1.M42 * value2.M22 + value1.M43 * value2.M32 + value1.M44 * value2.M42;
|
||
|
result.M43 = value1.M41 * value2.M13 + value1.M42 * value2.M23 + value1.M43 * value2.M33 + value1.M44 * value2.M43;
|
||
|
result.M44 = value1.M41 * value2.M14 + value1.M42 * value2.M24 + value1.M43 * value2.M34 + value1.M44 * value2.M44;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Multiplies a matrix by a scalar value.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The source matrix.</param>
|
||
|
/// <param name="value2">The scaling factor.</param>
|
||
|
/// <returns>The scaled matrix.</returns>
|
||
|
public static Matrix4x4 Multiply(Matrix4x4 value1, float value2)
|
||
|
{
|
||
|
Matrix4x4 result;
|
||
|
|
||
|
result.M11 = value1.M11 * value2;
|
||
|
result.M12 = value1.M12 * value2;
|
||
|
result.M13 = value1.M13 * value2;
|
||
|
result.M14 = value1.M14 * value2;
|
||
|
result.M21 = value1.M21 * value2;
|
||
|
result.M22 = value1.M22 * value2;
|
||
|
result.M23 = value1.M23 * value2;
|
||
|
result.M24 = value1.M24 * value2;
|
||
|
result.M31 = value1.M31 * value2;
|
||
|
result.M32 = value1.M32 * value2;
|
||
|
result.M33 = value1.M33 * value2;
|
||
|
result.M34 = value1.M34 * value2;
|
||
|
result.M41 = value1.M41 * value2;
|
||
|
result.M42 = value1.M42 * value2;
|
||
|
result.M43 = value1.M43 * value2;
|
||
|
result.M44 = value1.M44 * value2;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a new matrix with the negated elements of the given matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="value">The source matrix.</param>
|
||
|
/// <returns>The negated matrix.</returns>
|
||
|
public static Matrix4x4 operator -(Matrix4x4 value)
|
||
|
{
|
||
|
Matrix4x4 m;
|
||
|
|
||
|
m.M11 = -value.M11;
|
||
|
m.M12 = -value.M12;
|
||
|
m.M13 = -value.M13;
|
||
|
m.M14 = -value.M14;
|
||
|
m.M21 = -value.M21;
|
||
|
m.M22 = -value.M22;
|
||
|
m.M23 = -value.M23;
|
||
|
m.M24 = -value.M24;
|
||
|
m.M31 = -value.M31;
|
||
|
m.M32 = -value.M32;
|
||
|
m.M33 = -value.M33;
|
||
|
m.M34 = -value.M34;
|
||
|
m.M41 = -value.M41;
|
||
|
m.M42 = -value.M42;
|
||
|
m.M43 = -value.M43;
|
||
|
m.M44 = -value.M44;
|
||
|
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Adds two matrices together.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first source matrix.</param>
|
||
|
/// <param name="value2">The second source matrix.</param>
|
||
|
/// <returns>The resulting matrix.</returns>
|
||
|
public static Matrix4x4 operator +(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
Matrix4x4 m;
|
||
|
|
||
|
m.M11 = value1.M11 + value2.M11;
|
||
|
m.M12 = value1.M12 + value2.M12;
|
||
|
m.M13 = value1.M13 + value2.M13;
|
||
|
m.M14 = value1.M14 + value2.M14;
|
||
|
m.M21 = value1.M21 + value2.M21;
|
||
|
m.M22 = value1.M22 + value2.M22;
|
||
|
m.M23 = value1.M23 + value2.M23;
|
||
|
m.M24 = value1.M24 + value2.M24;
|
||
|
m.M31 = value1.M31 + value2.M31;
|
||
|
m.M32 = value1.M32 + value2.M32;
|
||
|
m.M33 = value1.M33 + value2.M33;
|
||
|
m.M34 = value1.M34 + value2.M34;
|
||
|
m.M41 = value1.M41 + value2.M41;
|
||
|
m.M42 = value1.M42 + value2.M42;
|
||
|
m.M43 = value1.M43 + value2.M43;
|
||
|
m.M44 = value1.M44 + value2.M44;
|
||
|
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Subtracts the second matrix from the first.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first source matrix.</param>
|
||
|
/// <param name="value2">The second source matrix.</param>
|
||
|
/// <returns>The result of the subtraction.</returns>
|
||
|
public static Matrix4x4 operator -(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
Matrix4x4 m;
|
||
|
|
||
|
m.M11 = value1.M11 - value2.M11;
|
||
|
m.M12 = value1.M12 - value2.M12;
|
||
|
m.M13 = value1.M13 - value2.M13;
|
||
|
m.M14 = value1.M14 - value2.M14;
|
||
|
m.M21 = value1.M21 - value2.M21;
|
||
|
m.M22 = value1.M22 - value2.M22;
|
||
|
m.M23 = value1.M23 - value2.M23;
|
||
|
m.M24 = value1.M24 - value2.M24;
|
||
|
m.M31 = value1.M31 - value2.M31;
|
||
|
m.M32 = value1.M32 - value2.M32;
|
||
|
m.M33 = value1.M33 - value2.M33;
|
||
|
m.M34 = value1.M34 - value2.M34;
|
||
|
m.M41 = value1.M41 - value2.M41;
|
||
|
m.M42 = value1.M42 - value2.M42;
|
||
|
m.M43 = value1.M43 - value2.M43;
|
||
|
m.M44 = value1.M44 - value2.M44;
|
||
|
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Multiplies a matrix by another matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first source matrix.</param>
|
||
|
/// <param name="value2">The second source matrix.</param>
|
||
|
/// <returns>The result of the multiplication.</returns>
|
||
|
public static Matrix4x4 operator *(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
Matrix4x4 m;
|
||
|
|
||
|
// First row
|
||
|
m.M11 = value1.M11 * value2.M11 + value1.M12 * value2.M21 + value1.M13 * value2.M31 + value1.M14 * value2.M41;
|
||
|
m.M12 = value1.M11 * value2.M12 + value1.M12 * value2.M22 + value1.M13 * value2.M32 + value1.M14 * value2.M42;
|
||
|
m.M13 = value1.M11 * value2.M13 + value1.M12 * value2.M23 + value1.M13 * value2.M33 + value1.M14 * value2.M43;
|
||
|
m.M14 = value1.M11 * value2.M14 + value1.M12 * value2.M24 + value1.M13 * value2.M34 + value1.M14 * value2.M44;
|
||
|
|
||
|
// Second row
|
||
|
m.M21 = value1.M21 * value2.M11 + value1.M22 * value2.M21 + value1.M23 * value2.M31 + value1.M24 * value2.M41;
|
||
|
m.M22 = value1.M21 * value2.M12 + value1.M22 * value2.M22 + value1.M23 * value2.M32 + value1.M24 * value2.M42;
|
||
|
m.M23 = value1.M21 * value2.M13 + value1.M22 * value2.M23 + value1.M23 * value2.M33 + value1.M24 * value2.M43;
|
||
|
m.M24 = value1.M21 * value2.M14 + value1.M22 * value2.M24 + value1.M23 * value2.M34 + value1.M24 * value2.M44;
|
||
|
|
||
|
// Third row
|
||
|
m.M31 = value1.M31 * value2.M11 + value1.M32 * value2.M21 + value1.M33 * value2.M31 + value1.M34 * value2.M41;
|
||
|
m.M32 = value1.M31 * value2.M12 + value1.M32 * value2.M22 + value1.M33 * value2.M32 + value1.M34 * value2.M42;
|
||
|
m.M33 = value1.M31 * value2.M13 + value1.M32 * value2.M23 + value1.M33 * value2.M33 + value1.M34 * value2.M43;
|
||
|
m.M34 = value1.M31 * value2.M14 + value1.M32 * value2.M24 + value1.M33 * value2.M34 + value1.M34 * value2.M44;
|
||
|
|
||
|
// Fourth row
|
||
|
m.M41 = value1.M41 * value2.M11 + value1.M42 * value2.M21 + value1.M43 * value2.M31 + value1.M44 * value2.M41;
|
||
|
m.M42 = value1.M41 * value2.M12 + value1.M42 * value2.M22 + value1.M43 * value2.M32 + value1.M44 * value2.M42;
|
||
|
m.M43 = value1.M41 * value2.M13 + value1.M42 * value2.M23 + value1.M43 * value2.M33 + value1.M44 * value2.M43;
|
||
|
m.M44 = value1.M41 * value2.M14 + value1.M42 * value2.M24 + value1.M43 * value2.M34 + value1.M44 * value2.M44;
|
||
|
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Multiplies a matrix by a scalar value.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The source matrix.</param>
|
||
|
/// <param name="value2">The scaling factor.</param>
|
||
|
/// <returns>The scaled matrix.</returns>
|
||
|
public static Matrix4x4 operator *(Matrix4x4 value1, float value2)
|
||
|
{
|
||
|
Matrix4x4 m;
|
||
|
|
||
|
m.M11 = value1.M11 * value2;
|
||
|
m.M12 = value1.M12 * value2;
|
||
|
m.M13 = value1.M13 * value2;
|
||
|
m.M14 = value1.M14 * value2;
|
||
|
m.M21 = value1.M21 * value2;
|
||
|
m.M22 = value1.M22 * value2;
|
||
|
m.M23 = value1.M23 * value2;
|
||
|
m.M24 = value1.M24 * value2;
|
||
|
m.M31 = value1.M31 * value2;
|
||
|
m.M32 = value1.M32 * value2;
|
||
|
m.M33 = value1.M33 * value2;
|
||
|
m.M34 = value1.M34 * value2;
|
||
|
m.M41 = value1.M41 * value2;
|
||
|
m.M42 = value1.M42 * value2;
|
||
|
m.M43 = value1.M43 * value2;
|
||
|
m.M44 = value1.M44 * value2;
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a boolean indicating whether the given two matrices are equal.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first matrix to compare.</param>
|
||
|
/// <param name="value2">The second matrix to compare.</param>
|
||
|
/// <returns>True if the given matrices are equal; False otherwise.</returns>
|
||
|
public static bool operator ==(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
return (value1.M11 == value2.M11 && value1.M22 == value2.M22 && value1.M33 == value2.M33 && value1.M44 == value2.M44 && // Check diagonal element first for early out.
|
||
|
value1.M12 == value2.M12 && value1.M13 == value2.M13 && value1.M14 == value2.M14 &&
|
||
|
value1.M21 == value2.M21 && value1.M23 == value2.M23 && value1.M24 == value2.M24 &&
|
||
|
value1.M31 == value2.M31 && value1.M32 == value2.M32 && value1.M34 == value2.M34 &&
|
||
|
value1.M41 == value2.M41 && value1.M42 == value2.M42 && value1.M43 == value2.M43);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a boolean indicating whether the given two matrices are not equal.
|
||
|
/// </summary>
|
||
|
/// <param name="value1">The first matrix to compare.</param>
|
||
|
/// <param name="value2">The second matrix to compare.</param>
|
||
|
/// <returns>True if the given matrices are not equal; False if they are equal.</returns>
|
||
|
public static bool operator !=(Matrix4x4 value1, Matrix4x4 value2)
|
||
|
{
|
||
|
return (value1.M11 != value2.M11 || value1.M12 != value2.M12 || value1.M13 != value2.M13 || value1.M14 != value2.M14 ||
|
||
|
value1.M21 != value2.M21 || value1.M22 != value2.M22 || value1.M23 != value2.M23 || value1.M24 != value2.M24 ||
|
||
|
value1.M31 != value2.M31 || value1.M32 != value2.M32 || value1.M33 != value2.M33 || value1.M34 != value2.M34 ||
|
||
|
value1.M41 != value2.M41 || value1.M42 != value2.M42 || value1.M43 != value2.M43 || value1.M44 != value2.M44);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a boolean indicating whether this matrix instance is equal to the other given matrix.
|
||
|
/// </summary>
|
||
|
/// <param name="other">The matrix to compare this instance to.</param>
|
||
|
/// <returns>True if the matrices are equal; False otherwise.</returns>
|
||
|
public bool Equals(Matrix4x4 other)
|
||
|
{
|
||
|
return (M11 == other.M11 && M22 == other.M22 && M33 == other.M33 && M44 == other.M44 && // Check diagonal element first for early out.
|
||
|
M12 == other.M12 && M13 == other.M13 && M14 == other.M14 &&
|
||
|
M21 == other.M21 && M23 == other.M23 && M24 == other.M24 &&
|
||
|
M31 == other.M31 && M32 == other.M32 && M34 == other.M34 &&
|
||
|
M41 == other.M41 && M42 == other.M42 && M43 == other.M43);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a boolean indicating whether the given Object is equal to this matrix instance.
|
||
|
/// </summary>
|
||
|
/// <param name="obj">The Object to compare against.</param>
|
||
|
/// <returns>True if the Object is equal to this matrix; False otherwise.</returns>
|
||
|
public override bool Equals(object obj)
|
||
|
{
|
||
|
if (obj is Matrix4x4)
|
||
|
{
|
||
|
return Equals((Matrix4x4)obj);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns a String representing this matrix instance.
|
||
|
/// </summary>
|
||
|
/// <returns>The string representation.</returns>
|
||
|
public override string ToString()
|
||
|
{
|
||
|
CultureInfo ci = CultureInfo.CurrentCulture;
|
||
|
|
||
|
return String.Format(ci, "{{ {{M11:{0} M12:{1} M13:{2} M14:{3}}} {{M21:{4} M22:{5} M23:{6} M24:{7}}} {{M31:{8} M32:{9} M33:{10} M34:{11}}} {{M41:{12} M42:{13} M43:{14} M44:{15}}} }}",
|
||
|
M11.ToString(ci), M12.ToString(ci), M13.ToString(ci), M14.ToString(ci),
|
||
|
M21.ToString(ci), M22.ToString(ci), M23.ToString(ci), M24.ToString(ci),
|
||
|
M31.ToString(ci), M32.ToString(ci), M33.ToString(ci), M34.ToString(ci),
|
||
|
M41.ToString(ci), M42.ToString(ci), M43.ToString(ci), M44.ToString(ci));
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns the hash code for this instance.
|
||
|
/// </summary>
|
||
|
/// <returns>The hash code.</returns>
|
||
|
public override int GetHashCode()
|
||
|
{
|
||
|
return M11.GetHashCode() + M12.GetHashCode() + M13.GetHashCode() + M14.GetHashCode() +
|
||
|
M21.GetHashCode() + M22.GetHashCode() + M23.GetHashCode() + M24.GetHashCode() +
|
||
|
M31.GetHashCode() + M32.GetHashCode() + M33.GetHashCode() + M34.GetHashCode() +
|
||
|
M41.GetHashCode() + M42.GetHashCode() + M43.GetHashCode() + M44.GetHashCode();
|
||
|
}
|
||
|
}
|
||
|
}
|