252 lines
9.4 KiB
C++
252 lines
9.4 KiB
C++
|
//===-- TargetMachine.cpp - General Target Information ---------------------==//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file describes the general parts of a Target machine.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Target/TargetMachine.h"
|
||
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
|
#include "llvm/CodeGen/TargetLoweringObjectFile.h"
|
||
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/GlobalAlias.h"
|
||
|
#include "llvm/IR/GlobalValue.h"
|
||
|
#include "llvm/IR/GlobalVariable.h"
|
||
|
#include "llvm/IR/LegacyPassManager.h"
|
||
|
#include "llvm/IR/Mangler.h"
|
||
|
#include "llvm/MC/MCAsmInfo.h"
|
||
|
#include "llvm/MC/MCContext.h"
|
||
|
#include "llvm/MC/MCInstrInfo.h"
|
||
|
#include "llvm/MC/MCSectionMachO.h"
|
||
|
#include "llvm/MC/MCTargetOptions.h"
|
||
|
#include "llvm/MC/SectionKind.h"
|
||
|
using namespace llvm;
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
// TargetMachine Class
|
||
|
//
|
||
|
|
||
|
TargetMachine::TargetMachine(const Target &T, StringRef DataLayoutString,
|
||
|
const Triple &TT, StringRef CPU, StringRef FS,
|
||
|
const TargetOptions &Options)
|
||
|
: TheTarget(T), DL(DataLayoutString), TargetTriple(TT), TargetCPU(CPU),
|
||
|
TargetFS(FS), AsmInfo(nullptr), MRI(nullptr), MII(nullptr), STI(nullptr),
|
||
|
RequireStructuredCFG(false), DefaultOptions(Options), Options(Options) {
|
||
|
}
|
||
|
|
||
|
TargetMachine::~TargetMachine() {
|
||
|
delete AsmInfo;
|
||
|
delete MRI;
|
||
|
delete MII;
|
||
|
delete STI;
|
||
|
}
|
||
|
|
||
|
bool TargetMachine::isPositionIndependent() const {
|
||
|
return getRelocationModel() == Reloc::PIC_;
|
||
|
}
|
||
|
|
||
|
/// \brief Reset the target options based on the function's attributes.
|
||
|
// FIXME: This function needs to go away for a number of reasons:
|
||
|
// a) global state on the TargetMachine is terrible in general,
|
||
|
// b) these target options should be passed only on the function
|
||
|
// and not on the TargetMachine (via TargetOptions) at all.
|
||
|
void TargetMachine::resetTargetOptions(const Function &F) const {
|
||
|
#define RESET_OPTION(X, Y) \
|
||
|
do { \
|
||
|
if (F.hasFnAttribute(Y)) \
|
||
|
Options.X = (F.getFnAttribute(Y).getValueAsString() == "true"); \
|
||
|
else \
|
||
|
Options.X = DefaultOptions.X; \
|
||
|
} while (0)
|
||
|
|
||
|
RESET_OPTION(UnsafeFPMath, "unsafe-fp-math");
|
||
|
RESET_OPTION(NoInfsFPMath, "no-infs-fp-math");
|
||
|
RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math");
|
||
|
RESET_OPTION(NoSignedZerosFPMath, "no-signed-zeros-fp-math");
|
||
|
RESET_OPTION(NoTrappingFPMath, "no-trapping-math");
|
||
|
|
||
|
StringRef Denormal =
|
||
|
F.getFnAttribute("denormal-fp-math").getValueAsString();
|
||
|
if (Denormal == "ieee")
|
||
|
Options.FPDenormalMode = FPDenormal::IEEE;
|
||
|
else if (Denormal == "preserve-sign")
|
||
|
Options.FPDenormalMode = FPDenormal::PreserveSign;
|
||
|
else if (Denormal == "positive-zero")
|
||
|
Options.FPDenormalMode = FPDenormal::PositiveZero;
|
||
|
else
|
||
|
Options.FPDenormalMode = DefaultOptions.FPDenormalMode;
|
||
|
}
|
||
|
|
||
|
/// Returns the code generation relocation model. The choices are static, PIC,
|
||
|
/// and dynamic-no-pic.
|
||
|
Reloc::Model TargetMachine::getRelocationModel() const { return RM; }
|
||
|
|
||
|
/// Returns the code model. The choices are small, kernel, medium, large, and
|
||
|
/// target default.
|
||
|
CodeModel::Model TargetMachine::getCodeModel() const { return CMModel; }
|
||
|
|
||
|
/// Get the IR-specified TLS model for Var.
|
||
|
static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) {
|
||
|
switch (GV->getThreadLocalMode()) {
|
||
|
case GlobalVariable::NotThreadLocal:
|
||
|
llvm_unreachable("getSelectedTLSModel for non-TLS variable");
|
||
|
break;
|
||
|
case GlobalVariable::GeneralDynamicTLSModel:
|
||
|
return TLSModel::GeneralDynamic;
|
||
|
case GlobalVariable::LocalDynamicTLSModel:
|
||
|
return TLSModel::LocalDynamic;
|
||
|
case GlobalVariable::InitialExecTLSModel:
|
||
|
return TLSModel::InitialExec;
|
||
|
case GlobalVariable::LocalExecTLSModel:
|
||
|
return TLSModel::LocalExec;
|
||
|
}
|
||
|
llvm_unreachable("invalid TLS model");
|
||
|
}
|
||
|
|
||
|
bool TargetMachine::shouldAssumeDSOLocal(const Module &M,
|
||
|
const GlobalValue *GV) const {
|
||
|
// If the IR producer requested that this GV be treated as dso local, obey.
|
||
|
if (GV && GV->isDSOLocal())
|
||
|
return true;
|
||
|
|
||
|
// According to the llvm language reference, we should be able to just return
|
||
|
// false in here if we have a GV, as we know it is dso_preemptable.
|
||
|
// At this point in time, the various IR producers have not been transitioned
|
||
|
// to always produce a dso_local when it is possible to do so. As a result we
|
||
|
// still have some pre-dso_local logic in here to improve the quality of the
|
||
|
// generated code:
|
||
|
|
||
|
Reloc::Model RM = getRelocationModel();
|
||
|
const Triple &TT = getTargetTriple();
|
||
|
|
||
|
// DLLImport explicitly marks the GV as external.
|
||
|
if (GV && GV->hasDLLImportStorageClass())
|
||
|
return false;
|
||
|
|
||
|
// Every other GV is local on COFF.
|
||
|
// Make an exception for windows OS in the triple: Some firmwares builds use
|
||
|
// *-win32-macho triples. This (accidentally?) produced windows relocations
|
||
|
// without GOT tables in older clang versions; Keep this behaviour.
|
||
|
if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
|
||
|
return true;
|
||
|
|
||
|
// Most PIC code sequences that assume that a symbol is local cannot
|
||
|
// produce a 0 if it turns out the symbol is undefined. While this
|
||
|
// is ABI and relocation depended, it seems worth it to handle it
|
||
|
// here.
|
||
|
// FIXME: this is probably not ELF specific.
|
||
|
if (GV && isPositionIndependent() && TT.isOSBinFormatELF() &&
|
||
|
GV->hasExternalWeakLinkage())
|
||
|
return false;
|
||
|
|
||
|
if (GV && (GV->hasLocalLinkage() || !GV->hasDefaultVisibility()))
|
||
|
return true;
|
||
|
|
||
|
if (TT.isOSBinFormatMachO()) {
|
||
|
if (RM == Reloc::Static)
|
||
|
return true;
|
||
|
return GV && GV->isStrongDefinitionForLinker();
|
||
|
}
|
||
|
|
||
|
assert(TT.isOSBinFormatELF());
|
||
|
assert(RM != Reloc::DynamicNoPIC);
|
||
|
|
||
|
bool IsExecutable =
|
||
|
RM == Reloc::Static || M.getPIELevel() != PIELevel::Default;
|
||
|
if (IsExecutable) {
|
||
|
// If the symbol is defined, it cannot be preempted.
|
||
|
if (GV && !GV->isDeclarationForLinker())
|
||
|
return true;
|
||
|
|
||
|
// A symbol marked nonlazybind should not be accessed with a plt. If the
|
||
|
// symbol turns out to be external, the linker will convert a direct
|
||
|
// access to an access via the plt, so don't assume it is local.
|
||
|
const Function *F = dyn_cast_or_null<Function>(GV);
|
||
|
if (F && F->hasFnAttribute(Attribute::NonLazyBind))
|
||
|
return false;
|
||
|
|
||
|
bool IsTLS = GV && GV->isThreadLocal();
|
||
|
bool IsAccessViaCopyRelocs =
|
||
|
Options.MCOptions.MCPIECopyRelocations && GV && isa<GlobalVariable>(GV);
|
||
|
Triple::ArchType Arch = TT.getArch();
|
||
|
bool IsPPC =
|
||
|
Arch == Triple::ppc || Arch == Triple::ppc64 || Arch == Triple::ppc64le;
|
||
|
// Check if we can use copy relocations. PowerPC has no copy relocations.
|
||
|
if (!IsTLS && !IsPPC && (RM == Reloc::Static || IsAccessViaCopyRelocs))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// ELF supports preemption of other symbols.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const {
|
||
|
bool IsPIE = GV->getParent()->getPIELevel() != PIELevel::Default;
|
||
|
Reloc::Model RM = getRelocationModel();
|
||
|
bool IsSharedLibrary = RM == Reloc::PIC_ && !IsPIE;
|
||
|
bool IsLocal = shouldAssumeDSOLocal(*GV->getParent(), GV);
|
||
|
|
||
|
TLSModel::Model Model;
|
||
|
if (IsSharedLibrary) {
|
||
|
if (IsLocal)
|
||
|
Model = TLSModel::LocalDynamic;
|
||
|
else
|
||
|
Model = TLSModel::GeneralDynamic;
|
||
|
} else {
|
||
|
if (IsLocal)
|
||
|
Model = TLSModel::LocalExec;
|
||
|
else
|
||
|
Model = TLSModel::InitialExec;
|
||
|
}
|
||
|
|
||
|
// If the user specified a more specific model, use that.
|
||
|
TLSModel::Model SelectedModel = getSelectedTLSModel(GV);
|
||
|
if (SelectedModel > Model)
|
||
|
return SelectedModel;
|
||
|
|
||
|
return Model;
|
||
|
}
|
||
|
|
||
|
/// Returns the optimization level: None, Less, Default, or Aggressive.
|
||
|
CodeGenOpt::Level TargetMachine::getOptLevel() const { return OptLevel; }
|
||
|
|
||
|
void TargetMachine::setOptLevel(CodeGenOpt::Level Level) { OptLevel = Level; }
|
||
|
|
||
|
TargetTransformInfo TargetMachine::getTargetTransformInfo(const Function &F) {
|
||
|
return TargetTransformInfo(F.getParent()->getDataLayout());
|
||
|
}
|
||
|
|
||
|
void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
|
||
|
const GlobalValue *GV, Mangler &Mang,
|
||
|
bool MayAlwaysUsePrivate) const {
|
||
|
if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) {
|
||
|
// Simple case: If GV is not private, it is not important to find out if
|
||
|
// private labels are legal in this case or not.
|
||
|
Mang.getNameWithPrefix(Name, GV, false);
|
||
|
return;
|
||
|
}
|
||
|
const TargetLoweringObjectFile *TLOF = getObjFileLowering();
|
||
|
TLOF->getNameWithPrefix(Name, GV, *this);
|
||
|
}
|
||
|
|
||
|
MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV) const {
|
||
|
const TargetLoweringObjectFile *TLOF = getObjFileLowering();
|
||
|
SmallString<128> NameStr;
|
||
|
getNameWithPrefix(NameStr, GV, TLOF->getMangler());
|
||
|
return TLOF->getContext().getOrCreateSymbol(NameStr);
|
||
|
}
|
||
|
|
||
|
TargetIRAnalysis TargetMachine::getTargetIRAnalysis() {
|
||
|
// Since Analysis can't depend on Target, use a std::function to invert the
|
||
|
// dependency.
|
||
|
return TargetIRAnalysis(
|
||
|
[this](const Function &F) { return this->getTargetTransformInfo(F); });
|
||
|
}
|