You've already forked linux-packaging-mono
							
							
		
			
	
	
		
			973 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
		
		
			
		
	
	
			973 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
|   | =============================
 | ||
|  | User Guide for NVPTX Back-end
 | ||
|  | =============================
 | ||
|  | 
 | ||
|  | .. contents::
 | ||
|  |    :local: | ||
|  |    :depth: 3
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Introduction
 | ||
|  | ============
 | ||
|  | 
 | ||
|  | To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
 | ||
|  | along with a defined set of conventions used to represent GPU programming
 | ||
|  | concepts. This document provides an overview of the general usage of the back-
 | ||
|  | end, including a description of the conventions used and the set of accepted
 | ||
|  | LLVM IR.
 | ||
|  | 
 | ||
|  | .. note:: 
 | ||
|  |    
 | ||
|  |    This document assumes a basic familiarity with CUDA and the PTX
 | ||
|  |    assembly language. Information about the CUDA Driver API and the PTX assembly
 | ||
|  |    language can be found in the `CUDA documentation
 | ||
|  |    <http://docs.nvidia.com/cuda/index.html>`_.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Conventions
 | ||
|  | ===========
 | ||
|  | 
 | ||
|  | Marking Functions as Kernels
 | ||
|  | ----------------------------
 | ||
|  | 
 | ||
|  | In PTX, there are two types of functions: *device functions*, which are only
 | ||
|  | callable by device code, and *kernel functions*, which are callable by host
 | ||
|  | code. By default, the back-end will emit device functions. Metadata is used to
 | ||
|  | declare a function as a kernel function. This metadata is attached to the
 | ||
|  | ``nvvm.annotations`` named metadata object, and has the following format:
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |    !0 = !{<function-ref>, metadata !"kernel", i32 1}
 | ||
|  | 
 | ||
|  | The first parameter is a reference to the kernel function. The following
 | ||
|  | example shows a kernel function calling a device function in LLVM IR. The
 | ||
|  | function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |     define float @my_fmad(float %x, float %y, float %z) {
 | ||
|  |       %mul = fmul float %x, %y
 | ||
|  |       %add = fadd float %mul, %z
 | ||
|  |       ret float %add
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     define void @my_kernel(float* %ptr) {
 | ||
|  |       %val = load float, float* %ptr
 | ||
|  |       %ret = call float @my_fmad(float %val, float %val, float %val)
 | ||
|  |       store float %ret, float* %ptr
 | ||
|  |       ret void
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     !nvvm.annotations = !{!1}
 | ||
|  |     !1 = !{void (float*)* @my_kernel, !"kernel", i32 1}
 | ||
|  | 
 | ||
|  | When compiled, the PTX kernel functions are callable by host-side code.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | .. _address_spaces:
 | ||
|  | 
 | ||
|  | Address Spaces
 | ||
|  | --------------
 | ||
|  | 
 | ||
|  | The NVPTX back-end uses the following address space mapping:
 | ||
|  | 
 | ||
|  |    ============= ======================
 | ||
|  |    Address Space Memory Space
 | ||
|  |    ============= ======================
 | ||
|  |    0             Generic
 | ||
|  |    1             Global
 | ||
|  |    2             Internal Use
 | ||
|  |    3             Shared
 | ||
|  |    4             Constant
 | ||
|  |    5             Local
 | ||
|  |    ============= ======================
 | ||
|  | 
 | ||
|  | Every global variable and pointer type is assigned to one of these address
 | ||
|  | spaces, with 0 being the default address space. Intrinsics are provided which
 | ||
|  | can be used to convert pointers between the generic and non-generic address
 | ||
|  | spaces.
 | ||
|  | 
 | ||
|  | As an example, the following IR will define an array ``@g`` that resides in
 | ||
|  | global device memory.
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |     @g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]
 | ||
|  | 
 | ||
|  | LLVM IR functions can read and write to this array, and host-side code can
 | ||
|  | copy data to it by name with the CUDA Driver API.
 | ||
|  | 
 | ||
|  | Note that since address space 0 is the generic space, it is illegal to have
 | ||
|  | global variables in address space 0.  Address space 0 is the default address
 | ||
|  | space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
 | ||
|  | variables.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Triples
 | ||
|  | -------
 | ||
|  | 
 | ||
|  | The NVPTX target uses the module triple to select between 32/64-bit code
 | ||
|  | generation and the driver-compiler interface to use. The triple architecture
 | ||
|  | can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
 | ||
|  | operating system should be one of ``cuda`` or ``nvcl``, which determines the
 | ||
|  | interface used by the generated code to communicate with the driver.  Most
 | ||
|  | users will want to use ``cuda`` as the operating system, which makes the
 | ||
|  | generated PTX compatible with the CUDA Driver API.
 | ||
|  | 
 | ||
|  | Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``
 | ||
|  | 
 | ||
|  | Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | .. _nvptx_intrinsics:
 | ||
|  | 
 | ||
|  | NVPTX Intrinsics
 | ||
|  | ================
 | ||
|  | 
 | ||
|  | Address Space Conversion
 | ||
|  | ------------------------
 | ||
|  | 
 | ||
|  | '``llvm.nvvm.ptr.*.to.gen``' Intrinsics
 | ||
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | Syntax:
 | ||
|  | """""""
 | ||
|  | 
 | ||
|  | These are overloaded intrinsics.  You can use these on any pointer types.
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |     declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*)
 | ||
|  |     declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*)
 | ||
|  |     declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*)
 | ||
|  |     declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*)
 | ||
|  | 
 | ||
|  | Overview:
 | ||
|  | """""""""
 | ||
|  | 
 | ||
|  | The '``llvm.nvvm.ptr.*.to.gen``' intrinsics convert a pointer in a non-generic
 | ||
|  | address space to a generic address space pointer.
 | ||
|  | 
 | ||
|  | Semantics:
 | ||
|  | """"""""""
 | ||
|  | 
 | ||
|  | These intrinsics modify the pointer value to be a valid generic address space
 | ||
|  | pointer.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | '``llvm.nvvm.ptr.gen.to.*``' Intrinsics
 | ||
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | Syntax:
 | ||
|  | """""""
 | ||
|  | 
 | ||
|  | These are overloaded intrinsics.  You can use these on any pointer types.
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |     declare i8 addrspace(1)* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8*)
 | ||
|  |     declare i8 addrspace(3)* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8*)
 | ||
|  |     declare i8 addrspace(4)* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8*)
 | ||
|  |     declare i8 addrspace(5)* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8*)
 | ||
|  | 
 | ||
|  | Overview:
 | ||
|  | """""""""
 | ||
|  | 
 | ||
|  | The '``llvm.nvvm.ptr.gen.to.*``' intrinsics convert a pointer in the generic
 | ||
|  | address space to a pointer in the target address space.  Note that these
 | ||
|  | intrinsics are only useful if the address space of the target address space of
 | ||
|  | the pointer is known.  It is not legal to use address space conversion
 | ||
|  | intrinsics to convert a pointer from one non-generic address space to another
 | ||
|  | non-generic address space.
 | ||
|  | 
 | ||
|  | Semantics:
 | ||
|  | """"""""""
 | ||
|  | 
 | ||
|  | These intrinsics modify the pointer value to be a valid pointer in the target
 | ||
|  | non-generic address space.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Reading PTX Special Registers
 | ||
|  | -----------------------------
 | ||
|  | 
 | ||
|  | '``llvm.nvvm.read.ptx.sreg.*``'
 | ||
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | Syntax:
 | ||
|  | """""""
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
 | ||
|  |     declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()
 | ||
|  | 
 | ||
|  | Overview:
 | ||
|  | """""""""
 | ||
|  | 
 | ||
|  | The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX
 | ||
|  | special registers, in particular the kernel launch bounds.  These registers
 | ||
|  | map in the following way to CUDA builtins:
 | ||
|  | 
 | ||
|  |    ============ =====================================
 | ||
|  |    CUDA Builtin PTX Special Register Intrinsic
 | ||
|  |    ============ =====================================
 | ||
|  |    ``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*``
 | ||
|  |    ``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*``
 | ||
|  |    ``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*``
 | ||
|  |    ``gridDim``  ``@llvm.nvvm.read.ptx.sreg.nctaid.*``
 | ||
|  |    ============ =====================================
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Barriers
 | ||
|  | --------
 | ||
|  | 
 | ||
|  | '``llvm.nvvm.barrier0``'
 | ||
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | Syntax:
 | ||
|  | """""""
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   declare void @llvm.nvvm.barrier0()
 | ||
|  | 
 | ||
|  | Overview:
 | ||
|  | """""""""
 | ||
|  | 
 | ||
|  | The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0``
 | ||
|  | instruction, equivalent to the ``__syncthreads()`` call in CUDA.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Other Intrinsics
 | ||
|  | ----------------
 | ||
|  | 
 | ||
|  | For the full set of NVPTX intrinsics, please see the
 | ||
|  | ``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | .. _libdevice:
 | ||
|  | 
 | ||
|  | Linking with Libdevice
 | ||
|  | ======================
 | ||
|  | 
 | ||
|  | The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
 | ||
|  | implements many common mathematical functions. This library can be used as a
 | ||
|  | high-performance math library for any compilers using the LLVM NVPTX target.
 | ||
|  | The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
 | ||
|  | there is a separate version for each compute architecture.
 | ||
|  | 
 | ||
|  | For a list of all math functions implemented in libdevice, see
 | ||
|  | `libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.
 | ||
|  | 
 | ||
|  | To accommodate various math-related compiler flags that can affect code
 | ||
|  | generation of libdevice code, the library code depends on a special LLVM IR
 | ||
|  | pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
 | ||
|  | pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
 | ||
|  | with constants based on the defined reflection parameters. Such conditional
 | ||
|  | code often follows a pattern:
 | ||
|  | 
 | ||
|  | .. code-block:: c++
 | ||
|  | 
 | ||
|  |   float my_function(float a) {
 | ||
|  |     if (__nvvm_reflect("FASTMATH"))
 | ||
|  |       return my_function_fast(a);
 | ||
|  |     else
 | ||
|  |       return my_function_precise(a);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | The default value for all unspecified reflection parameters is zero.
 | ||
|  | 
 | ||
|  | The ``NVVMReflect`` pass should be executed early in the optimization
 | ||
|  | pipeline, immediately after the link stage. The ``internalize`` pass is also
 | ||
|  | recommended to remove unused math functions from the resulting PTX. For an
 | ||
|  | input IR module ``module.bc``, the following compilation flow is recommended:
 | ||
|  | 
 | ||
|  | 1. Save list of external functions in ``module.bc``
 | ||
|  | 2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
 | ||
|  | 3. Internalize all functions not in list from (1)
 | ||
|  | 4. Eliminate all unused internal functions
 | ||
|  | 5. Run ``NVVMReflect`` pass
 | ||
|  | 6. Run standard optimization pipeline
 | ||
|  | 
 | ||
|  | .. note::
 | ||
|  | 
 | ||
|  |   ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
 | ||
|  |   libdevice functions. It is possible to link two IR modules that have been
 | ||
|  |   linked against libdevice using different reflection variables.
 | ||
|  | 
 | ||
|  | Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
 | ||
|  | often leave behind dead code of the form:
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   entry:
 | ||
|  |     ..
 | ||
|  |     br i1 true, label %foo, label %bar
 | ||
|  |   foo:
 | ||
|  |     ..
 | ||
|  |   bar:
 | ||
|  |     ; Dead code
 | ||
|  |     ..
 | ||
|  | 
 | ||
|  | Therefore, it is recommended that ``NVVMReflect`` is executed early in the
 | ||
|  | optimization pipeline before dead-code elimination.
 | ||
|  | 
 | ||
|  | The NVPTX TargetMachine knows how to schedule ``NVVMReflect`` at the beginning
 | ||
|  | of your pass manager; just use the following code when setting up your pass
 | ||
|  | manager:
 | ||
|  | 
 | ||
|  | .. code-block:: c++
 | ||
|  | 
 | ||
|  |     std::unique_ptr<TargetMachine> TM = ...;
 | ||
|  |     PassManagerBuilder PMBuilder(...);
 | ||
|  |     if (TM)
 | ||
|  |       TM->adjustPassManager(PMBuilder);
 | ||
|  | 
 | ||
|  | Reflection Parameters
 | ||
|  | ---------------------
 | ||
|  | 
 | ||
|  | The libdevice library currently uses the following reflection parameters to
 | ||
|  | control code generation:
 | ||
|  | 
 | ||
|  | ==================== ======================================================
 | ||
|  | Flag                 Description
 | ||
|  | ==================== ======================================================
 | ||
|  | ``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
 | ||
|  | ==================== ======================================================
 | ||
|  | 
 | ||
|  | The value of this flag is determined by the "nvvm-reflect-ftz" module flag.
 | ||
|  | The following sets the ftz flag to 1.
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |     !llvm.module.flag = !{!0}
 | ||
|  |     !0 = !{i32 4, !"nvvm-reflect-ftz", i32 1}
 | ||
|  | 
 | ||
|  | (``i32 4`` indicates that the value set here overrides the value in another
 | ||
|  | module we link with.  See the `LangRef <LangRef.html#module-flags-metadata>`
 | ||
|  | for details.)
 | ||
|  | 
 | ||
|  | Executing PTX
 | ||
|  | =============
 | ||
|  | 
 | ||
|  | The most common way to execute PTX assembly on a GPU device is to use the CUDA
 | ||
|  | Driver API. This API is a low-level interface to the GPU driver and allows for
 | ||
|  | JIT compilation of PTX code to native GPU machine code.
 | ||
|  | 
 | ||
|  | Initializing the Driver API:
 | ||
|  | 
 | ||
|  | .. code-block:: c++
 | ||
|  | 
 | ||
|  |     CUdevice device;
 | ||
|  |     CUcontext context;
 | ||
|  | 
 | ||
|  |     // Initialize the driver API
 | ||
|  |     cuInit(0);
 | ||
|  |     // Get a handle to the first compute device
 | ||
|  |     cuDeviceGet(&device, 0);
 | ||
|  |     // Create a compute device context
 | ||
|  |     cuCtxCreate(&context, 0, device);
 | ||
|  | 
 | ||
|  | JIT compiling a PTX string to a device binary:
 | ||
|  | 
 | ||
|  | .. code-block:: c++
 | ||
|  | 
 | ||
|  |     CUmodule module;
 | ||
|  |     CUfunction function;
 | ||
|  | 
 | ||
|  |     // JIT compile a null-terminated PTX string
 | ||
|  |     cuModuleLoadData(&module, (void*)PTXString);
 | ||
|  | 
 | ||
|  |     // Get a handle to the "myfunction" kernel function
 | ||
|  |     cuModuleGetFunction(&function, module, "myfunction");
 | ||
|  | 
 | ||
|  | For full examples of executing PTX assembly, please see the `CUDA Samples
 | ||
|  | <https://developer.nvidia.com/cuda-downloads>`_ distribution.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Common Issues
 | ||
|  | =============
 | ||
|  | 
 | ||
|  | ptxas complains of undefined function: __nvvm_reflect
 | ||
|  | -----------------------------------------------------
 | ||
|  | 
 | ||
|  | When linking with libdevice, the ``NVVMReflect`` pass must be used. See
 | ||
|  | :ref:`libdevice` for more information.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Tutorial: A Simple Compute Kernel
 | ||
|  | =================================
 | ||
|  | 
 | ||
|  | To start, let us take a look at a simple compute kernel written directly in
 | ||
|  | LLVM IR. The kernel implements vector addition, where each thread computes one
 | ||
|  | element of the output vector C from the input vectors A and B.  To make this
 | ||
|  | easier, we also assume that only a single CTA (thread block) will be launched,
 | ||
|  | and that it will be one dimensional.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | The Kernel
 | ||
|  | ----------
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
 | ||
|  |   target triple = "nvptx64-nvidia-cuda"
 | ||
|  | 
 | ||
|  |   ; Intrinsic to read X component of thread ID
 | ||
|  |   declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
 | ||
|  | 
 | ||
|  |   define void @kernel(float addrspace(1)* %A,
 | ||
|  |                       float addrspace(1)* %B,
 | ||
|  |                       float addrspace(1)* %C) {
 | ||
|  |   entry:
 | ||
|  |     ; What is my ID?
 | ||
|  |     %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
 | ||
|  | 
 | ||
|  |     ; Compute pointers into A, B, and C
 | ||
|  |     %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
 | ||
|  |     %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
 | ||
|  |     %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id
 | ||
|  | 
 | ||
|  |     ; Read A, B
 | ||
|  |     %valA = load float, float addrspace(1)* %ptrA, align 4
 | ||
|  |     %valB = load float, float addrspace(1)* %ptrB, align 4
 | ||
|  | 
 | ||
|  |     ; Compute C = A + B
 | ||
|  |     %valC = fadd float %valA, %valB
 | ||
|  | 
 | ||
|  |     ; Store back to C
 | ||
|  |     store float %valC, float addrspace(1)* %ptrC, align 4
 | ||
|  | 
 | ||
|  |     ret void
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   !nvvm.annotations = !{!0}
 | ||
|  |   !0 = !{void (float addrspace(1)*,
 | ||
|  |                float addrspace(1)*,
 | ||
|  |                float addrspace(1)*)* @kernel, !"kernel", i32 1}
 | ||
|  | 
 | ||
|  | 
 | ||
|  | We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   # llc -mcpu=sm_20 kernel.ll -o kernel.ptx
 | ||
|  | 
 | ||
|  | 
 | ||
|  | .. note::
 | ||
|  | 
 | ||
|  |   If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
 | ||
|  |   in the module data layout string and use ``nvptx-nvidia-cuda`` as the
 | ||
|  |   target triple.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | The output we get from ``llc`` (as of LLVM 3.4):
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   //
 | ||
|  |   // Generated by LLVM NVPTX Back-End
 | ||
|  |   //
 | ||
|  | 
 | ||
|  |   .version 3.1
 | ||
|  |   .target sm_20
 | ||
|  |   .address_size 64
 | ||
|  | 
 | ||
|  |     // .globl kernel
 | ||
|  |                                           // @kernel
 | ||
|  |   .visible .entry kernel(
 | ||
|  |     .param .u64 kernel_param_0,
 | ||
|  |     .param .u64 kernel_param_1,
 | ||
|  |     .param .u64 kernel_param_2
 | ||
|  |   )
 | ||
|  |   {
 | ||
|  |     .reg .f32   %f<4>;
 | ||
|  |     .reg .s32   %r<2>;
 | ||
|  |     .reg .s64   %rl<8>;
 | ||
|  | 
 | ||
|  |   // %bb.0:                                // %entry
 | ||
|  |     ld.param.u64    %rl1, [kernel_param_0];
 | ||
|  |     mov.u32         %r1, %tid.x;
 | ||
|  |     mul.wide.s32    %rl2, %r1, 4;
 | ||
|  |     add.s64         %rl3, %rl1, %rl2;
 | ||
|  |     ld.param.u64    %rl4, [kernel_param_1];
 | ||
|  |     add.s64         %rl5, %rl4, %rl2;
 | ||
|  |     ld.param.u64    %rl6, [kernel_param_2];
 | ||
|  |     add.s64         %rl7, %rl6, %rl2;
 | ||
|  |     ld.global.f32   %f1, [%rl3];
 | ||
|  |     ld.global.f32   %f2, [%rl5];
 | ||
|  |     add.f32         %f3, %f1, %f2;
 | ||
|  |     st.global.f32   [%rl7], %f3;
 | ||
|  |     ret;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Dissecting the Kernel
 | ||
|  | ---------------------
 | ||
|  | 
 | ||
|  | Now let us dissect the LLVM IR that makes up this kernel. 
 | ||
|  | 
 | ||
|  | Data Layout
 | ||
|  | ^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | The data layout string determines the size in bits of common data types, their
 | ||
|  | ABI alignment, and their storage size.  For NVPTX, you should use one of the
 | ||
|  | following:
 | ||
|  | 
 | ||
|  | 32-bit PTX:
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
 | ||
|  | 
 | ||
|  | 64-bit PTX:
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Target Intrinsics
 | ||
|  | ^^^^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
 | ||
|  | read the X component of the current thread's ID, which corresponds to a read
 | ||
|  | of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
 | ||
|  | intrinsics.  A short list is shown below; please see
 | ||
|  | ``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | ================================================ ====================
 | ||
|  | Intrinsic                                        CUDA Equivalent
 | ||
|  | ================================================ ====================
 | ||
|  | ``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}``     threadIdx.{x,y,z}
 | ||
|  | ``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}``   blockIdx.{x,y,z}
 | ||
|  | ``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}``    blockDim.{x,y,z}
 | ||
|  | ``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}``  gridDim.{x,y,z}
 | ||
|  | ``void @llvm.nvvm.barrier0()``                   __syncthreads()
 | ||
|  | ================================================ ====================
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Address Spaces
 | ||
|  | ^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | You may have noticed that all of the pointer types in the LLVM IR example had
 | ||
|  | an explicit address space specifier. What is address space 1? NVIDIA GPU
 | ||
|  | devices (generally) have four types of memory:
 | ||
|  | 
 | ||
|  | - Global: Large, off-chip memory
 | ||
|  | - Shared: Small, on-chip memory shared among all threads in a CTA
 | ||
|  | - Local: Per-thread, private memory
 | ||
|  | - Constant: Read-only memory shared across all threads
 | ||
|  | 
 | ||
|  | These different types of memory are represented in LLVM IR as address spaces.
 | ||
|  | There is also a fifth address space used by the NVPTX code generator that
 | ||
|  | corresponds to the "generic" address space.  This address space can represent
 | ||
|  | addresses in any other address space (with a few exceptions).  This allows
 | ||
|  | users to write IR functions that can load/store memory using the same
 | ||
|  | instructions. Intrinsics are provided to convert pointers between the generic
 | ||
|  | and non-generic address spaces.
 | ||
|  | 
 | ||
|  | See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Kernel Metadata
 | ||
|  | ^^^^^^^^^^^^^^^
 | ||
|  | 
 | ||
|  | In PTX, a function can be either a `kernel` function (callable from the host
 | ||
|  | program), or a `device` function (callable only from GPU code). You can think
 | ||
|  | of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
 | ||
|  | function as a `kernel` function, we make use of special LLVM metadata. The
 | ||
|  | NVPTX back-end will look for a named metadata node called
 | ||
|  | ``nvvm.annotations``. This named metadata must contain a list of metadata that
 | ||
|  | describe the IR. For our purposes, we need to declare a metadata node that
 | ||
|  | assigns the "kernel" attribute to the LLVM IR function that should be emitted
 | ||
|  | as a PTX `kernel` function. These metadata nodes take the form:
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   !{<function ref>, metadata !"kernel", i32 1}
 | ||
|  | 
 | ||
|  | For the previous example, we have:
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   !nvvm.annotations = !{!0}
 | ||
|  |   !0 = !{void (float addrspace(1)*,
 | ||
|  |                float addrspace(1)*,
 | ||
|  |                float addrspace(1)*)* @kernel, !"kernel", i32 1}
 | ||
|  | 
 | ||
|  | Here, we have a single metadata declaration in ``nvvm.annotations``. This
 | ||
|  | metadata annotates our ``@kernel`` function with the ``kernel`` attribute.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Running the Kernel
 | ||
|  | ------------------
 | ||
|  | 
 | ||
|  | Generating PTX from LLVM IR is all well and good, but how do we execute it on
 | ||
|  | a real GPU device? The CUDA Driver API provides a convenient mechanism for
 | ||
|  | loading and JIT compiling PTX to a native GPU device, and launching a kernel.
 | ||
|  | The API is similar to OpenCL.  A simple example showing how to load and
 | ||
|  | execute our vector addition code is shown below. Note that for brevity this
 | ||
|  | code does not perform much error checking!
 | ||
|  | 
 | ||
|  | .. note::
 | ||
|  | 
 | ||
|  |   You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
 | ||
|  |   compile PTX to machine code (SASS) for a specific GPU architecture. Such
 | ||
|  |   binaries can be loaded by the CUDA Driver API in the same way as PTX. This
 | ||
|  |   can be useful for reducing startup time by precompiling the PTX kernels.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | .. code-block:: c++
 | ||
|  | 
 | ||
|  |   #include <iostream>
 | ||
|  |   #include <fstream>
 | ||
|  |   #include <cassert>
 | ||
|  |   #include "cuda.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   void checkCudaErrors(CUresult err) {
 | ||
|  |     assert(err == CUDA_SUCCESS);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   /// main - Program entry point
 | ||
|  |   int main(int argc, char **argv) {
 | ||
|  |     CUdevice    device;
 | ||
|  |     CUmodule    cudaModule;
 | ||
|  |     CUcontext   context;
 | ||
|  |     CUfunction  function;
 | ||
|  |     CUlinkState linker;
 | ||
|  |     int         devCount;
 | ||
|  | 
 | ||
|  |     // CUDA initialization
 | ||
|  |     checkCudaErrors(cuInit(0));
 | ||
|  |     checkCudaErrors(cuDeviceGetCount(&devCount));
 | ||
|  |     checkCudaErrors(cuDeviceGet(&device, 0));
 | ||
|  | 
 | ||
|  |     char name[128];
 | ||
|  |     checkCudaErrors(cuDeviceGetName(name, 128, device));
 | ||
|  |     std::cout << "Using CUDA Device [0]: " << name << "\n";
 | ||
|  | 
 | ||
|  |     int devMajor, devMinor;
 | ||
|  |     checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
 | ||
|  |     std::cout << "Device Compute Capability: "
 | ||
|  |               << devMajor << "." << devMinor << "\n";
 | ||
|  |     if (devMajor < 2) {
 | ||
|  |       std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
 | ||
|  |       return 1;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     std::ifstream t("kernel.ptx");
 | ||
|  |     if (!t.is_open()) {
 | ||
|  |       std::cerr << "kernel.ptx not found\n";
 | ||
|  |       return 1;
 | ||
|  |     }
 | ||
|  |     std::string str((std::istreambuf_iterator<char>(t)),
 | ||
|  |                       std::istreambuf_iterator<char>());
 | ||
|  | 
 | ||
|  |     // Create driver context
 | ||
|  |     checkCudaErrors(cuCtxCreate(&context, 0, device));
 | ||
|  | 
 | ||
|  |     // Create module for object
 | ||
|  |     checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
 | ||
|  | 
 | ||
|  |     // Get kernel function
 | ||
|  |     checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
 | ||
|  | 
 | ||
|  |     // Device data
 | ||
|  |     CUdeviceptr devBufferA;
 | ||
|  |     CUdeviceptr devBufferB;
 | ||
|  |     CUdeviceptr devBufferC;
 | ||
|  | 
 | ||
|  |     checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
 | ||
|  |     checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
 | ||
|  |     checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
 | ||
|  | 
 | ||
|  |     float* hostA = new float[16];
 | ||
|  |     float* hostB = new float[16];
 | ||
|  |     float* hostC = new float[16];
 | ||
|  | 
 | ||
|  |     // Populate input
 | ||
|  |     for (unsigned i = 0; i != 16; ++i) {
 | ||
|  |       hostA[i] = (float)i;
 | ||
|  |       hostB[i] = (float)(2*i);
 | ||
|  |       hostC[i] = 0.0f;
 | ||
|  |     }
 | ||
|  | 
 | ||
|  |     checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
 | ||
|  |     checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     unsigned blockSizeX = 16;
 | ||
|  |     unsigned blockSizeY = 1;
 | ||
|  |     unsigned blockSizeZ = 1;
 | ||
|  |     unsigned gridSizeX  = 1;
 | ||
|  |     unsigned gridSizeY  = 1;
 | ||
|  |     unsigned gridSizeZ  = 1;
 | ||
|  | 
 | ||
|  |     // Kernel parameters
 | ||
|  |     void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
 | ||
|  | 
 | ||
|  |     std::cout << "Launching kernel\n";
 | ||
|  | 
 | ||
|  |     // Kernel launch
 | ||
|  |     checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
 | ||
|  |                                    blockSizeX, blockSizeY, blockSizeZ,
 | ||
|  |                                    0, NULL, KernelParams, NULL));
 | ||
|  | 
 | ||
|  |     // Retrieve device data
 | ||
|  |     checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     std::cout << "Results:\n";
 | ||
|  |     for (unsigned i = 0; i != 16; ++i) {
 | ||
|  |       std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
 | ||
|  |     }
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     // Clean up after ourselves
 | ||
|  |     delete [] hostA;
 | ||
|  |     delete [] hostB;
 | ||
|  |     delete [] hostC;
 | ||
|  | 
 | ||
|  |     // Clean-up
 | ||
|  |     checkCudaErrors(cuMemFree(devBufferA));
 | ||
|  |     checkCudaErrors(cuMemFree(devBufferB));
 | ||
|  |     checkCudaErrors(cuMemFree(devBufferC));
 | ||
|  |     checkCudaErrors(cuModuleUnload(cudaModule));
 | ||
|  |     checkCudaErrors(cuCtxDestroy(context));
 | ||
|  | 
 | ||
|  |     return 0;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  | 
 | ||
|  | You will need to link with the CUDA driver and specify the path to cuda.h.
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
 | ||
|  | 
 | ||
|  | We don't need to specify a path to ``libcuda.so`` since this is installed in a
 | ||
|  | system location by the driver, not the CUDA toolkit.
 | ||
|  | 
 | ||
|  | If everything goes as planned, you should see the following output when
 | ||
|  | running the compiled program:
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   Using CUDA Device [0]: GeForce GTX 680
 | ||
|  |   Device Compute Capability: 3.0
 | ||
|  |   Launching kernel
 | ||
|  |   Results:
 | ||
|  |   0 + 0 = 0
 | ||
|  |   1 + 2 = 3
 | ||
|  |   2 + 4 = 6
 | ||
|  |   3 + 6 = 9
 | ||
|  |   4 + 8 = 12
 | ||
|  |   5 + 10 = 15
 | ||
|  |   6 + 12 = 18
 | ||
|  |   7 + 14 = 21
 | ||
|  |   8 + 16 = 24
 | ||
|  |   9 + 18 = 27
 | ||
|  |   10 + 20 = 30
 | ||
|  |   11 + 22 = 33
 | ||
|  |   12 + 24 = 36
 | ||
|  |   13 + 26 = 39
 | ||
|  |   14 + 28 = 42
 | ||
|  |   15 + 30 = 45
 | ||
|  | 
 | ||
|  | .. note::
 | ||
|  | 
 | ||
|  |   You will likely see a different device identifier based on your hardware
 | ||
|  | 
 | ||
|  | 
 | ||
|  | Tutorial: Linking with Libdevice
 | ||
|  | ================================
 | ||
|  | 
 | ||
|  | In this tutorial, we show a simple example of linking LLVM IR with the
 | ||
|  | libdevice library. We will use the same kernel as the previous tutorial,
 | ||
|  | except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
 | ||
|  | Libdevice provides an ``__nv_powf`` function that we will use.
 | ||
|  | 
 | ||
|  | .. code-block:: llvm
 | ||
|  | 
 | ||
|  |   target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
 | ||
|  |   target triple = "nvptx64-nvidia-cuda"
 | ||
|  | 
 | ||
|  |   ; Intrinsic to read X component of thread ID
 | ||
|  |   declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
 | ||
|  |   ; libdevice function
 | ||
|  |   declare float @__nv_powf(float, float)
 | ||
|  | 
 | ||
|  |   define void @kernel(float addrspace(1)* %A,
 | ||
|  |                       float addrspace(1)* %B,
 | ||
|  |                       float addrspace(1)* %C) {
 | ||
|  |   entry:
 | ||
|  |     ; What is my ID?
 | ||
|  |     %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
 | ||
|  | 
 | ||
|  |     ; Compute pointers into A, B, and C
 | ||
|  |     %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
 | ||
|  |     %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
 | ||
|  |     %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id
 | ||
|  | 
 | ||
|  |     ; Read A, B
 | ||
|  |     %valA = load float, float addrspace(1)* %ptrA, align 4
 | ||
|  |     %valB = load float, float addrspace(1)* %ptrB, align 4
 | ||
|  | 
 | ||
|  |     ; Compute C = pow(A, B)
 | ||
|  |     %valC = call float @__nv_powf(float %valA, float %valB)
 | ||
|  | 
 | ||
|  |     ; Store back to C
 | ||
|  |     store float %valC, float addrspace(1)* %ptrC, align 4
 | ||
|  | 
 | ||
|  |     ret void
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   !nvvm.annotations = !{!0}
 | ||
|  |   !0 = !{void (float addrspace(1)*,
 | ||
|  |                float addrspace(1)*,
 | ||
|  |                float addrspace(1)*)* @kernel, !"kernel", i32 1}
 | ||
|  | 
 | ||
|  | 
 | ||
|  | To compile this kernel, we perform the following steps:
 | ||
|  | 
 | ||
|  | 1. Link with libdevice
 | ||
|  | 2. Internalize all but the public kernel function
 | ||
|  | 3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
 | ||
|  | 4. Optimize the linked module
 | ||
|  | 5. Codegen the module
 | ||
|  | 
 | ||
|  | 
 | ||
|  | These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
 | ||
|  | tools. In a complete compiler, these steps can also be performed entirely
 | ||
|  | programmatically by setting up an appropriate pass configuration (see
 | ||
|  | :ref:`libdevice`).
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
 | ||
|  |   # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
 | ||
|  |   # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
 | ||
|  | 
 | ||
|  | .. note::
 | ||
|  | 
 | ||
|  |   The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
 | ||
|  |   undefined variables will default to zero. It is shown here for evaluation
 | ||
|  |   purposes.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | This gives us the following PTX (excerpt):
 | ||
|  | 
 | ||
|  | .. code-block:: text
 | ||
|  | 
 | ||
|  |   //
 | ||
|  |   // Generated by LLVM NVPTX Back-End
 | ||
|  |   //
 | ||
|  | 
 | ||
|  |   .version 3.1
 | ||
|  |   .target sm_20
 | ||
|  |   .address_size 64
 | ||
|  | 
 | ||
|  |     // .globl kernel
 | ||
|  |                                           // @kernel
 | ||
|  |   .visible .entry kernel(
 | ||
|  |     .param .u64 kernel_param_0,
 | ||
|  |     .param .u64 kernel_param_1,
 | ||
|  |     .param .u64 kernel_param_2
 | ||
|  |   )
 | ||
|  |   {
 | ||
|  |     .reg .pred  %p<30>;
 | ||
|  |     .reg .f32   %f<111>;
 | ||
|  |     .reg .s32   %r<21>;
 | ||
|  |     .reg .s64   %rl<8>;
 | ||
|  | 
 | ||
|  |   // %bb.0:                                // %entry
 | ||
|  |     ld.param.u64  %rl2, [kernel_param_0];
 | ||
|  |     mov.u32   %r3, %tid.x;
 | ||
|  |     ld.param.u64  %rl3, [kernel_param_1];
 | ||
|  |     mul.wide.s32  %rl4, %r3, 4;
 | ||
|  |     add.s64   %rl5, %rl2, %rl4;
 | ||
|  |     ld.param.u64  %rl6, [kernel_param_2];
 | ||
|  |     add.s64   %rl7, %rl3, %rl4;
 | ||
|  |     add.s64   %rl1, %rl6, %rl4;
 | ||
|  |     ld.global.f32   %f1, [%rl5];
 | ||
|  |     ld.global.f32   %f2, [%rl7];
 | ||
|  |     setp.eq.f32 %p1, %f1, 0f3F800000;
 | ||
|  |     setp.eq.f32 %p2, %f2, 0f00000000;
 | ||
|  |     or.pred   %p3, %p1, %p2;
 | ||
|  |     @%p3 bra  BB0_1;
 | ||
|  |     bra.uni   BB0_2;
 | ||
|  |   BB0_1:
 | ||
|  |     mov.f32   %f110, 0f3F800000;
 | ||
|  |     st.global.f32   [%rl1], %f110;
 | ||
|  |     ret;
 | ||
|  |   BB0_2:                                  // %__nv_isnanf.exit.i
 | ||
|  |     abs.f32   %f4, %f1;
 | ||
|  |     setp.gtu.f32  %p4, %f4, 0f7F800000;
 | ||
|  |     @%p4 bra  BB0_4;
 | ||
|  |   // %bb.3:                                // %__nv_isnanf.exit5.i
 | ||
|  |     abs.f32   %f5, %f2;
 | ||
|  |     setp.le.f32 %p5, %f5, 0f7F800000;
 | ||
|  |     @%p5 bra  BB0_5;
 | ||
|  |   BB0_4:                                  // %.critedge1.i
 | ||
|  |     add.f32   %f110, %f1, %f2;
 | ||
|  |     st.global.f32   [%rl1], %f110;
 | ||
|  |     ret;
 | ||
|  |   BB0_5:                                  // %__nv_isinff.exit.i
 | ||
|  | 
 | ||
|  |     ...
 | ||
|  | 
 | ||
|  |   BB0_26:                                 // %__nv_truncf.exit.i.i.i.i.i
 | ||
|  |     mul.f32   %f90, %f107, 0f3FB8AA3B;
 | ||
|  |     cvt.rzi.f32.f32 %f91, %f90;
 | ||
|  |     mov.f32   %f92, 0fBF317200;
 | ||
|  |     fma.rn.f32  %f93, %f91, %f92, %f107;
 | ||
|  |     mov.f32   %f94, 0fB5BFBE8E;
 | ||
|  |     fma.rn.f32  %f95, %f91, %f94, %f93;
 | ||
|  |     mul.f32   %f89, %f95, 0f3FB8AA3B;
 | ||
|  |     // inline asm
 | ||
|  |     ex2.approx.ftz.f32 %f88,%f89;
 | ||
|  |     // inline asm
 | ||
|  |     add.f32   %f96, %f91, 0f00000000;
 | ||
|  |     ex2.approx.f32  %f97, %f96;
 | ||
|  |     mul.f32   %f98, %f88, %f97;
 | ||
|  |     setp.lt.f32 %p15, %f107, 0fC2D20000;
 | ||
|  |     selp.f32  %f99, 0f00000000, %f98, %p15;
 | ||
|  |     setp.gt.f32 %p16, %f107, 0f42D20000;
 | ||
|  |     selp.f32  %f110, 0f7F800000, %f99, %p16;
 | ||
|  |     setp.eq.f32 %p17, %f110, 0f7F800000;
 | ||
|  |     @%p17 bra   BB0_28;
 | ||
|  |   // %bb.27:
 | ||
|  |     fma.rn.f32  %f110, %f110, %f108, %f110;
 | ||
|  |   BB0_28:                                 // %__internal_accurate_powf.exit.i
 | ||
|  |     setp.lt.f32 %p18, %f1, 0f00000000;
 | ||
|  |     setp.eq.f32 %p19, %f3, 0f3F800000;
 | ||
|  |     and.pred    %p20, %p18, %p19;
 | ||
|  |     @!%p20 bra  BB0_30;
 | ||
|  |     bra.uni   BB0_29;
 | ||
|  |   BB0_29:
 | ||
|  |     mov.b32    %r9, %f110;
 | ||
|  |     xor.b32   %r10, %r9, -2147483648;
 | ||
|  |     mov.b32    %f110, %r10;
 | ||
|  |   BB0_30:                                 // %__nv_powf.exit
 | ||
|  |     st.global.f32   [%rl1], %f110;
 | ||
|  |     ret;
 | ||
|  |   }
 | ||
|  | 
 |