You've already forked linux-packaging-mono
							
							
		
			
	
	
		
			1206 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1206 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | // Copyright 2007, Google Inc.
 | ||
|  | // All rights reserved.
 | ||
|  | //
 | ||
|  | // Redistribution and use in source and binary forms, with or without
 | ||
|  | // modification, are permitted provided that the following conditions are
 | ||
|  | // met:
 | ||
|  | //
 | ||
|  | //     * Redistributions of source code must retain the above copyright
 | ||
|  | // notice, this list of conditions and the following disclaimer.
 | ||
|  | //     * Redistributions in binary form must reproduce the above
 | ||
|  | // copyright notice, this list of conditions and the following disclaimer
 | ||
|  | // in the documentation and/or other materials provided with the
 | ||
|  | // distribution.
 | ||
|  | //     * Neither the name of Google Inc. nor the names of its
 | ||
|  | // contributors may be used to endorse or promote products derived from
 | ||
|  | // this software without specific prior written permission.
 | ||
|  | //
 | ||
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | ||
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | ||
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | ||
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | ||
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | ||
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | ||
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | ||
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | ||
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | ||
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | ||
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | ||
|  | //
 | ||
|  | // Author: wan@google.com (Zhanyong Wan)
 | ||
|  | 
 | ||
|  | // Google Mock - a framework for writing C++ mock classes.
 | ||
|  | //
 | ||
|  | // This file implements some commonly used actions.
 | ||
|  | 
 | ||
|  | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | ||
|  | #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | ||
|  | 
 | ||
|  | #ifndef _WIN32_WCE
 | ||
|  | # include <errno.h>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <algorithm>
 | ||
|  | #include <string>
 | ||
|  | 
 | ||
|  | #include "gmock/internal/gmock-internal-utils.h"
 | ||
|  | #include "gmock/internal/gmock-port.h"
 | ||
|  | 
 | ||
|  | #if GTEST_HAS_STD_TYPE_TRAITS_  // Defined by gtest-port.h via gmock-port.h.
 | ||
|  | #include <type_traits>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | namespace testing { | ||
|  | 
 | ||
|  | // To implement an action Foo, define:
 | ||
|  | //   1. a class FooAction that implements the ActionInterface interface, and
 | ||
|  | //   2. a factory function that creates an Action object from a
 | ||
|  | //      const FooAction*.
 | ||
|  | //
 | ||
|  | // The two-level delegation design follows that of Matcher, providing
 | ||
|  | // consistency for extension developers.  It also eases ownership
 | ||
|  | // management as Action objects can now be copied like plain values.
 | ||
|  | 
 | ||
|  | namespace internal { | ||
|  | 
 | ||
|  | template <typename F1, typename F2> | ||
|  | class ActionAdaptor; | ||
|  | 
 | ||
|  | // BuiltInDefaultValueGetter<T, true>::Get() returns a
 | ||
|  | // default-constructed T value.  BuiltInDefaultValueGetter<T,
 | ||
|  | // false>::Get() crashes with an error.
 | ||
|  | //
 | ||
|  | // This primary template is used when kDefaultConstructible is true.
 | ||
|  | template <typename T, bool kDefaultConstructible> | ||
|  | struct BuiltInDefaultValueGetter { | ||
|  |   static T Get() { return T(); } | ||
|  | }; | ||
|  | template <typename T> | ||
|  | struct BuiltInDefaultValueGetter<T, false> { | ||
|  |   static T Get() { | ||
|  |     Assert(false, __FILE__, __LINE__, | ||
|  |            "Default action undefined for the function return type."); | ||
|  |     return internal::Invalid<T>(); | ||
|  |     // The above statement will never be reached, but is required in
 | ||
|  |     // order for this function to compile.
 | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
 | ||
|  | // for type T, which is NULL when T is a raw pointer type, 0 when T is
 | ||
|  | // a numeric type, false when T is bool, or "" when T is string or
 | ||
|  | // std::string.  In addition, in C++11 and above, it turns a
 | ||
|  | // default-constructed T value if T is default constructible.  For any
 | ||
|  | // other type T, the built-in default T value is undefined, and the
 | ||
|  | // function will abort the process.
 | ||
|  | template <typename T> | ||
|  | class BuiltInDefaultValue { | ||
|  |  public: | ||
|  | #if GTEST_HAS_STD_TYPE_TRAITS_
 | ||
|  |   // This function returns true iff type T has a built-in default value.
 | ||
|  |   static bool Exists() { | ||
|  |     return ::std::is_default_constructible<T>::value; | ||
|  |   } | ||
|  | 
 | ||
|  |   static T Get() { | ||
|  |     return BuiltInDefaultValueGetter< | ||
|  |         T, ::std::is_default_constructible<T>::value>::Get(); | ||
|  |   } | ||
|  | 
 | ||
|  | #else  // GTEST_HAS_STD_TYPE_TRAITS_
 | ||
|  |   // This function returns true iff type T has a built-in default value.
 | ||
|  |   static bool Exists() { | ||
|  |     return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   static T Get() { | ||
|  |     return BuiltInDefaultValueGetter<T, false>::Get(); | ||
|  |   } | ||
|  | 
 | ||
|  | #endif  // GTEST_HAS_STD_TYPE_TRAITS_
 | ||
|  | }; | ||
|  | 
 | ||
|  | // This partial specialization says that we use the same built-in
 | ||
|  | // default value for T and const T.
 | ||
|  | template <typename T> | ||
|  | class BuiltInDefaultValue<const T> { | ||
|  |  public: | ||
|  |   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } | ||
|  |   static T Get() { return BuiltInDefaultValue<T>::Get(); } | ||
|  | }; | ||
|  | 
 | ||
|  | // This partial specialization defines the default values for pointer
 | ||
|  | // types.
 | ||
|  | template <typename T> | ||
|  | class BuiltInDefaultValue<T*> { | ||
|  |  public: | ||
|  |   static bool Exists() { return true; } | ||
|  |   static T* Get() { return NULL; } | ||
|  | }; | ||
|  | 
 | ||
|  | // The following specializations define the default values for
 | ||
|  | // specific types we care about.
 | ||
|  | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
 | ||
|  |   template <> \ | ||
|  |   class BuiltInDefaultValue<type> { \ | ||
|  |    public: \ | ||
|  |     static bool Exists() { return true; } \ | ||
|  |     static type Get() { return value; } \ | ||
|  |   } | ||
|  | 
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
 | ||
|  | #if GTEST_HAS_GLOBAL_STRING
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); | ||
|  | #endif  // GTEST_HAS_GLOBAL_STRING
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | ||
|  | 
 | ||
|  | // There's no need for a default action for signed wchar_t, as that
 | ||
|  | // type is the same as wchar_t for gcc, and invalid for MSVC.
 | ||
|  | //
 | ||
|  | // There's also no need for a default action for unsigned wchar_t, as
 | ||
|  | // that type is the same as unsigned int for gcc, and invalid for
 | ||
|  | // MSVC.
 | ||
|  | #if GMOCK_WCHAR_T_IS_NATIVE_
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
 | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | ||
|  | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | ||
|  | 
 | ||
|  | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
 | ||
|  | 
 | ||
|  | }  // namespace internal
 | ||
|  | 
 | ||
|  | // When an unexpected function call is encountered, Google Mock will
 | ||
|  | // let it return a default value if the user has specified one for its
 | ||
|  | // return type, or if the return type has a built-in default value;
 | ||
|  | // otherwise Google Mock won't know what value to return and will have
 | ||
|  | // to abort the process.
 | ||
|  | //
 | ||
|  | // The DefaultValue<T> class allows a user to specify the
 | ||
|  | // default value for a type T that is both copyable and publicly
 | ||
|  | // destructible (i.e. anything that can be used as a function return
 | ||
|  | // type).  The usage is:
 | ||
|  | //
 | ||
|  | //   // Sets the default value for type T to be foo.
 | ||
|  | //   DefaultValue<T>::Set(foo);
 | ||
|  | template <typename T> | ||
|  | class DefaultValue { | ||
|  |  public: | ||
|  |   // Sets the default value for type T; requires T to be
 | ||
|  |   // copy-constructable and have a public destructor.
 | ||
|  |   static void Set(T x) { | ||
|  |     delete producer_; | ||
|  |     producer_ = new FixedValueProducer(x); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Provides a factory function to be called to generate the default value.
 | ||
|  |   // This method can be used even if T is only move-constructible, but it is not
 | ||
|  |   // limited to that case.
 | ||
|  |   typedef T (*FactoryFunction)(); | ||
|  |   static void SetFactory(FactoryFunction factory) { | ||
|  |     delete producer_; | ||
|  |     producer_ = new FactoryValueProducer(factory); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Unsets the default value for type T.
 | ||
|  |   static void Clear() { | ||
|  |     delete producer_; | ||
|  |     producer_ = NULL; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns true iff the user has set the default value for type T.
 | ||
|  |   static bool IsSet() { return producer_ != NULL; } | ||
|  | 
 | ||
|  |   // Returns true if T has a default return value set by the user or there
 | ||
|  |   // exists a built-in default value.
 | ||
|  |   static bool Exists() { | ||
|  |     return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the default value for type T if the user has set one;
 | ||
|  |   // otherwise returns the built-in default value. Requires that Exists()
 | ||
|  |   // is true, which ensures that the return value is well-defined.
 | ||
|  |   static T Get() { | ||
|  |     return producer_ == NULL ? | ||
|  |         internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   class ValueProducer { | ||
|  |    public: | ||
|  |     virtual ~ValueProducer() {} | ||
|  |     virtual T Produce() = 0; | ||
|  |   }; | ||
|  | 
 | ||
|  |   class FixedValueProducer : public ValueProducer { | ||
|  |    public: | ||
|  |     explicit FixedValueProducer(T value) : value_(value) {} | ||
|  |     virtual T Produce() { return value_; } | ||
|  | 
 | ||
|  |    private: | ||
|  |     const T value_; | ||
|  |     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); | ||
|  |   }; | ||
|  | 
 | ||
|  |   class FactoryValueProducer : public ValueProducer { | ||
|  |    public: | ||
|  |     explicit FactoryValueProducer(FactoryFunction factory) | ||
|  |         : factory_(factory) {} | ||
|  |     virtual T Produce() { return factory_(); } | ||
|  | 
 | ||
|  |    private: | ||
|  |     const FactoryFunction factory_; | ||
|  |     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); | ||
|  |   }; | ||
|  | 
 | ||
|  |   static ValueProducer* producer_; | ||
|  | }; | ||
|  | 
 | ||
|  | // This partial specialization allows a user to set default values for
 | ||
|  | // reference types.
 | ||
|  | template <typename T> | ||
|  | class DefaultValue<T&> { | ||
|  |  public: | ||
|  |   // Sets the default value for type T&.
 | ||
|  |   static void Set(T& x) {  // NOLINT
 | ||
|  |     address_ = &x; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Unsets the default value for type T&.
 | ||
|  |   static void Clear() { | ||
|  |     address_ = NULL; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns true iff the user has set the default value for type T&.
 | ||
|  |   static bool IsSet() { return address_ != NULL; } | ||
|  | 
 | ||
|  |   // Returns true if T has a default return value set by the user or there
 | ||
|  |   // exists a built-in default value.
 | ||
|  |   static bool Exists() { | ||
|  |     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the default value for type T& if the user has set one;
 | ||
|  |   // otherwise returns the built-in default value if there is one;
 | ||
|  |   // otherwise aborts the process.
 | ||
|  |   static T& Get() { | ||
|  |     return address_ == NULL ? | ||
|  |         internal::BuiltInDefaultValue<T&>::Get() : *address_; | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   static T* address_; | ||
|  | }; | ||
|  | 
 | ||
|  | // This specialization allows DefaultValue<void>::Get() to
 | ||
|  | // compile.
 | ||
|  | template <> | ||
|  | class DefaultValue<void> { | ||
|  |  public: | ||
|  |   static bool Exists() { return true; } | ||
|  |   static void Get() {} | ||
|  | }; | ||
|  | 
 | ||
|  | // Points to the user-set default value for type T.
 | ||
|  | template <typename T> | ||
|  | typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL; | ||
|  | 
 | ||
|  | // Points to the user-set default value for type T&.
 | ||
|  | template <typename T> | ||
|  | T* DefaultValue<T&>::address_ = NULL; | ||
|  | 
 | ||
|  | // Implement this interface to define an action for function type F.
 | ||
|  | template <typename F> | ||
|  | class ActionInterface { | ||
|  |  public: | ||
|  |   typedef typename internal::Function<F>::Result Result; | ||
|  |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |   ActionInterface() {} | ||
|  |   virtual ~ActionInterface() {} | ||
|  | 
 | ||
|  |   // Performs the action.  This method is not const, as in general an
 | ||
|  |   // action can have side effects and be stateful.  For example, a
 | ||
|  |   // get-the-next-element-from-the-collection action will need to
 | ||
|  |   // remember the current element.
 | ||
|  |   virtual Result Perform(const ArgumentTuple& args) = 0; | ||
|  | 
 | ||
|  |  private: | ||
|  |   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); | ||
|  | }; | ||
|  | 
 | ||
|  | // An Action<F> is a copyable and IMMUTABLE (except by assignment)
 | ||
|  | // object that represents an action to be taken when a mock function
 | ||
|  | // of type F is called.  The implementation of Action<T> is just a
 | ||
|  | // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
 | ||
|  | // Don't inherit from Action!
 | ||
|  | //
 | ||
|  | // You can view an object implementing ActionInterface<F> as a
 | ||
|  | // concrete action (including its current state), and an Action<F>
 | ||
|  | // object as a handle to it.
 | ||
|  | template <typename F> | ||
|  | class Action { | ||
|  |  public: | ||
|  |   typedef typename internal::Function<F>::Result Result; | ||
|  |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |   // Constructs a null Action.  Needed for storing Action objects in
 | ||
|  |   // STL containers.
 | ||
|  |   Action() : impl_(NULL) {} | ||
|  | 
 | ||
|  |   // Constructs an Action from its implementation.  A NULL impl is
 | ||
|  |   // used to represent the "do-default" action.
 | ||
|  |   explicit Action(ActionInterface<F>* impl) : impl_(impl) {} | ||
|  | 
 | ||
|  |   // Copy constructor.
 | ||
|  |   Action(const Action& action) : impl_(action.impl_) {} | ||
|  | 
 | ||
|  |   // This constructor allows us to turn an Action<Func> object into an
 | ||
|  |   // Action<F>, as long as F's arguments can be implicitly converted
 | ||
|  |   // to Func's and Func's return type can be implicitly converted to
 | ||
|  |   // F's.
 | ||
|  |   template <typename Func> | ||
|  |   explicit Action(const Action<Func>& action); | ||
|  | 
 | ||
|  |   // Returns true iff this is the DoDefault() action.
 | ||
|  |   bool IsDoDefault() const { return impl_.get() == NULL; } | ||
|  | 
 | ||
|  |   // Performs the action.  Note that this method is const even though
 | ||
|  |   // the corresponding method in ActionInterface is not.  The reason
 | ||
|  |   // is that a const Action<F> means that it cannot be re-bound to
 | ||
|  |   // another concrete action, not that the concrete action it binds to
 | ||
|  |   // cannot change state.  (Think of the difference between a const
 | ||
|  |   // pointer and a pointer to const.)
 | ||
|  |   Result Perform(const ArgumentTuple& args) const { | ||
|  |     internal::Assert( | ||
|  |         !IsDoDefault(), __FILE__, __LINE__, | ||
|  |         "You are using DoDefault() inside a composite action like " | ||
|  |         "DoAll() or WithArgs().  This is not supported for technical " | ||
|  |         "reasons.  Please instead spell out the default action, or " | ||
|  |         "assign the default action to an Action variable and use " | ||
|  |         "the variable in various places."); | ||
|  |     return impl_->Perform(args); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   template <typename F1, typename F2> | ||
|  |   friend class internal::ActionAdaptor; | ||
|  | 
 | ||
|  |   internal::linked_ptr<ActionInterface<F> > impl_; | ||
|  | }; | ||
|  | 
 | ||
|  | // The PolymorphicAction class template makes it easy to implement a
 | ||
|  | // polymorphic action (i.e. an action that can be used in mock
 | ||
|  | // functions of than one type, e.g. Return()).
 | ||
|  | //
 | ||
|  | // To define a polymorphic action, a user first provides a COPYABLE
 | ||
|  | // implementation class that has a Perform() method template:
 | ||
|  | //
 | ||
|  | //   class FooAction {
 | ||
|  | //    public:
 | ||
|  | //     template <typename Result, typename ArgumentTuple>
 | ||
|  | //     Result Perform(const ArgumentTuple& args) const {
 | ||
|  | //       // Processes the arguments and returns a result, using
 | ||
|  | //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
 | ||
|  | //     }
 | ||
|  | //     ...
 | ||
|  | //   };
 | ||
|  | //
 | ||
|  | // Then the user creates the polymorphic action using
 | ||
|  | // MakePolymorphicAction(object) where object has type FooAction.  See
 | ||
|  | // the definition of Return(void) and SetArgumentPointee<N>(value) for
 | ||
|  | // complete examples.
 | ||
|  | template <typename Impl> | ||
|  | class PolymorphicAction { | ||
|  |  public: | ||
|  |   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} | ||
|  | 
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { | ||
|  |     return Action<F>(new MonomorphicImpl<F>(impl_)); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   template <typename F> | ||
|  |   class MonomorphicImpl : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename internal::Function<F>::Result Result; | ||
|  |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | ||
|  | 
 | ||
|  |     virtual Result Perform(const ArgumentTuple& args) { | ||
|  |       return impl_.template Perform<Result>(args); | ||
|  |     } | ||
|  | 
 | ||
|  |    private: | ||
|  |     Impl impl_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   Impl impl_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(PolymorphicAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Creates an Action from its implementation and returns it.  The
 | ||
|  | // created Action object owns the implementation.
 | ||
|  | template <typename F> | ||
|  | Action<F> MakeAction(ActionInterface<F>* impl) { | ||
|  |   return Action<F>(impl); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates a polymorphic action from its implementation.  This is
 | ||
|  | // easier to use than the PolymorphicAction<Impl> constructor as it
 | ||
|  | // doesn't require you to explicitly write the template argument, e.g.
 | ||
|  | //
 | ||
|  | //   MakePolymorphicAction(foo);
 | ||
|  | // vs
 | ||
|  | //   PolymorphicAction<TypeOfFoo>(foo);
 | ||
|  | template <typename Impl> | ||
|  | inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { | ||
|  |   return PolymorphicAction<Impl>(impl); | ||
|  | } | ||
|  | 
 | ||
|  | namespace internal { | ||
|  | 
 | ||
|  | // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
 | ||
|  | // and F1 are compatible.
 | ||
|  | template <typename F1, typename F2> | ||
|  | class ActionAdaptor : public ActionInterface<F1> { | ||
|  |  public: | ||
|  |   typedef typename internal::Function<F1>::Result Result; | ||
|  |   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {} | ||
|  | 
 | ||
|  |   virtual Result Perform(const ArgumentTuple& args) { | ||
|  |     return impl_->Perform(args); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   const internal::linked_ptr<ActionInterface<F2> > impl_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(ActionAdaptor); | ||
|  | }; | ||
|  | 
 | ||
|  | // Helper struct to specialize ReturnAction to execute a move instead of a copy
 | ||
|  | // on return. Useful for move-only types, but could be used on any type.
 | ||
|  | template <typename T> | ||
|  | struct ByMoveWrapper { | ||
|  |   explicit ByMoveWrapper(T value) : payload(internal::move(value)) {} | ||
|  |   T payload; | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the polymorphic Return(x) action, which can be used in
 | ||
|  | // any function that returns the type of x, regardless of the argument
 | ||
|  | // types.
 | ||
|  | //
 | ||
|  | // Note: The value passed into Return must be converted into
 | ||
|  | // Function<F>::Result when this action is cast to Action<F> rather than
 | ||
|  | // when that action is performed. This is important in scenarios like
 | ||
|  | //
 | ||
|  | // MOCK_METHOD1(Method, T(U));
 | ||
|  | // ...
 | ||
|  | // {
 | ||
|  | //   Foo foo;
 | ||
|  | //   X x(&foo);
 | ||
|  | //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
 | ||
|  | // }
 | ||
|  | //
 | ||
|  | // In the example above the variable x holds reference to foo which leaves
 | ||
|  | // scope and gets destroyed.  If copying X just copies a reference to foo,
 | ||
|  | // that copy will be left with a hanging reference.  If conversion to T
 | ||
|  | // makes a copy of foo, the above code is safe. To support that scenario, we
 | ||
|  | // need to make sure that the type conversion happens inside the EXPECT_CALL
 | ||
|  | // statement, and conversion of the result of Return to Action<T(U)> is a
 | ||
|  | // good place for that.
 | ||
|  | //
 | ||
|  | template <typename R> | ||
|  | class ReturnAction { | ||
|  |  public: | ||
|  |   // Constructs a ReturnAction object from the value to be returned.
 | ||
|  |   // 'value' is passed by value instead of by const reference in order
 | ||
|  |   // to allow Return("string literal") to compile.
 | ||
|  |   explicit ReturnAction(R value) : value_(new R(internal::move(value))) {} | ||
|  | 
 | ||
|  |   // This template type conversion operator allows Return(x) to be
 | ||
|  |   // used in ANY function that returns x's type.
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { | ||
|  |     // Assert statement belongs here because this is the best place to verify
 | ||
|  |     // conditions on F. It produces the clearest error messages
 | ||
|  |     // in most compilers.
 | ||
|  |     // Impl really belongs in this scope as a local class but can't
 | ||
|  |     // because MSVC produces duplicate symbols in different translation units
 | ||
|  |     // in this case. Until MS fixes that bug we put Impl into the class scope
 | ||
|  |     // and put the typedef both here (for use in assert statement) and
 | ||
|  |     // in the Impl class. But both definitions must be the same.
 | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     GTEST_COMPILE_ASSERT_( | ||
|  |         !is_reference<Result>::value, | ||
|  |         use_ReturnRef_instead_of_Return_to_return_a_reference); | ||
|  |     return Action<F>(new Impl<R, F>(value_)); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   // Implements the Return(x) action for a particular function type F.
 | ||
|  |   template <typename R_, typename F> | ||
|  |   class Impl : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |     // The implicit cast is necessary when Result has more than one
 | ||
|  |     // single-argument constructor (e.g. Result is std::vector<int>) and R
 | ||
|  |     // has a type conversion operator template.  In that case, value_(value)
 | ||
|  |     // won't compile as the compiler doesn't known which constructor of
 | ||
|  |     // Result to call.  ImplicitCast_ forces the compiler to convert R to
 | ||
|  |     // Result without considering explicit constructors, thus resolving the
 | ||
|  |     // ambiguity. value_ is then initialized using its copy constructor.
 | ||
|  |     explicit Impl(const linked_ptr<R>& value) | ||
|  |         : value_before_cast_(*value), | ||
|  |           value_(ImplicitCast_<Result>(value_before_cast_)) {} | ||
|  | 
 | ||
|  |     virtual Result Perform(const ArgumentTuple&) { return value_; } | ||
|  | 
 | ||
|  |    private: | ||
|  |     GTEST_COMPILE_ASSERT_(!is_reference<Result>::value, | ||
|  |                           Result_cannot_be_a_reference_type); | ||
|  |     // We save the value before casting just in case it is being cast to a
 | ||
|  |     // wrapper type.
 | ||
|  |     R value_before_cast_; | ||
|  |     Result value_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
 | ||
|  |   // move its contents instead.
 | ||
|  |   template <typename R_, typename F> | ||
|  |   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |     explicit Impl(const linked_ptr<R>& wrapper) | ||
|  |         : performed_(false), wrapper_(wrapper) {} | ||
|  | 
 | ||
|  |     virtual Result Perform(const ArgumentTuple&) { | ||
|  |       GTEST_CHECK_(!performed_) | ||
|  |           << "A ByMove() action should only be performed once."; | ||
|  |       performed_ = true; | ||
|  |       return internal::move(wrapper_->payload); | ||
|  |     } | ||
|  | 
 | ||
|  |    private: | ||
|  |     bool performed_; | ||
|  |     const linked_ptr<R> wrapper_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_ASSIGN_(Impl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   const linked_ptr<R> value_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(ReturnAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the ReturnNull() action.
 | ||
|  | class ReturnNullAction { | ||
|  |  public: | ||
|  |   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
 | ||
|  |   // this is enforced by returning nullptr, and in non-C++11 by asserting a
 | ||
|  |   // pointer type on compile time.
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   static Result Perform(const ArgumentTuple&) { | ||
|  | #if GTEST_LANG_CXX11
 | ||
|  |     return nullptr; | ||
|  | #else
 | ||
|  |     GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value, | ||
|  |                           ReturnNull_can_be_used_to_return_a_pointer_only); | ||
|  |     return NULL; | ||
|  | #endif  // GTEST_LANG_CXX11
 | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the Return() action.
 | ||
|  | class ReturnVoidAction { | ||
|  |  public: | ||
|  |   // Allows Return() to be used in any void-returning function.
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   static void Perform(const ArgumentTuple&) { | ||
|  |     CompileAssertTypesEqual<void, Result>(); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the polymorphic ReturnRef(x) action, which can be used
 | ||
|  | // in any function that returns a reference to the type of x,
 | ||
|  | // regardless of the argument types.
 | ||
|  | template <typename T> | ||
|  | class ReturnRefAction { | ||
|  |  public: | ||
|  |   // Constructs a ReturnRefAction object from the reference to be returned.
 | ||
|  |   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
 | ||
|  | 
 | ||
|  |   // This template type conversion operator allows ReturnRef(x) to be
 | ||
|  |   // used in ANY function that returns a reference to x's type.
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     // Asserts that the function return type is a reference.  This
 | ||
|  |     // catches the user error of using ReturnRef(x) when Return(x)
 | ||
|  |     // should be used, and generates some helpful error message.
 | ||
|  |     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value, | ||
|  |                           use_Return_instead_of_ReturnRef_to_return_a_value); | ||
|  |     return Action<F>(new Impl<F>(ref_)); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   // Implements the ReturnRef(x) action for a particular function type F.
 | ||
|  |   template <typename F> | ||
|  |   class Impl : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
 | ||
|  | 
 | ||
|  |     virtual Result Perform(const ArgumentTuple&) { | ||
|  |       return ref_; | ||
|  |     } | ||
|  | 
 | ||
|  |    private: | ||
|  |     T& ref_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_ASSIGN_(Impl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   T& ref_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(ReturnRefAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
 | ||
|  | // used in any function that returns a reference to the type of x,
 | ||
|  | // regardless of the argument types.
 | ||
|  | template <typename T> | ||
|  | class ReturnRefOfCopyAction { | ||
|  |  public: | ||
|  |   // Constructs a ReturnRefOfCopyAction object from the reference to
 | ||
|  |   // be returned.
 | ||
|  |   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
 | ||
|  | 
 | ||
|  |   // This template type conversion operator allows ReturnRefOfCopy(x) to be
 | ||
|  |   // used in ANY function that returns a reference to x's type.
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     // Asserts that the function return type is a reference.  This
 | ||
|  |     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
 | ||
|  |     // should be used, and generates some helpful error message.
 | ||
|  |     GTEST_COMPILE_ASSERT_( | ||
|  |         internal::is_reference<Result>::value, | ||
|  |         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); | ||
|  |     return Action<F>(new Impl<F>(value_)); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
 | ||
|  |   template <typename F> | ||
|  |   class Impl : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |     explicit Impl(const T& value) : value_(value) {}  // NOLINT
 | ||
|  | 
 | ||
|  |     virtual Result Perform(const ArgumentTuple&) { | ||
|  |       return value_; | ||
|  |     } | ||
|  | 
 | ||
|  |    private: | ||
|  |     T value_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_ASSIGN_(Impl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   const T value_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the polymorphic DoDefault() action.
 | ||
|  | class DoDefaultAction { | ||
|  |  public: | ||
|  |   // This template type conversion operator allows DoDefault() to be
 | ||
|  |   // used in any function.
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { return Action<F>(NULL); } | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the Assign action to set a given pointer referent to a
 | ||
|  | // particular value.
 | ||
|  | template <typename T1, typename T2> | ||
|  | class AssignAction { | ||
|  |  public: | ||
|  |   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | ||
|  | 
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   void Perform(const ArgumentTuple& /* args */) const { | ||
|  |     *ptr_ = value_; | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   T1* const ptr_; | ||
|  |   const T2 value_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(AssignAction); | ||
|  | }; | ||
|  | 
 | ||
|  | #if !GTEST_OS_WINDOWS_MOBILE
 | ||
|  | 
 | ||
|  | // Implements the SetErrnoAndReturn action to simulate return from
 | ||
|  | // various system calls and libc functions.
 | ||
|  | template <typename T> | ||
|  | class SetErrnoAndReturnAction { | ||
|  |  public: | ||
|  |   SetErrnoAndReturnAction(int errno_value, T result) | ||
|  |       : errno_(errno_value), | ||
|  |         result_(result) {} | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   Result Perform(const ArgumentTuple& /* args */) const { | ||
|  |     errno = errno_; | ||
|  |     return result_; | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   const int errno_; | ||
|  |   const T result_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); | ||
|  | }; | ||
|  | 
 | ||
|  | #endif  // !GTEST_OS_WINDOWS_MOBILE
 | ||
|  | 
 | ||
|  | // Implements the SetArgumentPointee<N>(x) action for any function
 | ||
|  | // whose N-th argument (0-based) is a pointer to x's type.  The
 | ||
|  | // template parameter kIsProto is true iff type A is ProtocolMessage,
 | ||
|  | // proto2::Message, or a sub-class of those.
 | ||
|  | template <size_t N, typename A, bool kIsProto> | ||
|  | class SetArgumentPointeeAction { | ||
|  |  public: | ||
|  |   // Constructs an action that sets the variable pointed to by the
 | ||
|  |   // N-th function argument to 'value'.
 | ||
|  |   explicit SetArgumentPointeeAction(const A& value) : value_(value) {} | ||
|  | 
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   void Perform(const ArgumentTuple& args) const { | ||
|  |     CompileAssertTypesEqual<void, Result>(); | ||
|  |     *::testing::get<N>(args) = value_; | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   const A value_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); | ||
|  | }; | ||
|  | 
 | ||
|  | template <size_t N, typename Proto> | ||
|  | class SetArgumentPointeeAction<N, Proto, true> { | ||
|  |  public: | ||
|  |   // Constructs an action that sets the variable pointed to by the
 | ||
|  |   // N-th function argument to 'proto'.  Both ProtocolMessage and
 | ||
|  |   // proto2::Message have the CopyFrom() method, so the same
 | ||
|  |   // implementation works for both.
 | ||
|  |   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { | ||
|  |     proto_->CopyFrom(proto); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   void Perform(const ArgumentTuple& args) const { | ||
|  |     CompileAssertTypesEqual<void, Result>(); | ||
|  |     ::testing::get<N>(args)->CopyFrom(*proto_); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   const internal::linked_ptr<Proto> proto_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the InvokeWithoutArgs(f) action.  The template argument
 | ||
|  | // FunctionImpl is the implementation type of f, which can be either a
 | ||
|  | // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
 | ||
|  | // Action<F> as long as f's type is compatible with F (i.e. f can be
 | ||
|  | // assigned to a tr1::function<F>).
 | ||
|  | template <typename FunctionImpl> | ||
|  | class InvokeWithoutArgsAction { | ||
|  |  public: | ||
|  |   // The c'tor makes a copy of function_impl (either a function
 | ||
|  |   // pointer or a functor).
 | ||
|  |   explicit InvokeWithoutArgsAction(FunctionImpl function_impl) | ||
|  |       : function_impl_(function_impl) {} | ||
|  | 
 | ||
|  |   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
 | ||
|  |   // compatible with f.
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   Result Perform(const ArgumentTuple&) { return function_impl_(); } | ||
|  | 
 | ||
|  |  private: | ||
|  |   FunctionImpl function_impl_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
 | ||
|  | template <class Class, typename MethodPtr> | ||
|  | class InvokeMethodWithoutArgsAction { | ||
|  |  public: | ||
|  |   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) | ||
|  |       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} | ||
|  | 
 | ||
|  |   template <typename Result, typename ArgumentTuple> | ||
|  |   Result Perform(const ArgumentTuple&) const { | ||
|  |     return (obj_ptr_->*method_ptr_)(); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   Class* const obj_ptr_; | ||
|  |   const MethodPtr method_ptr_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // Implements the IgnoreResult(action) action.
 | ||
|  | template <typename A> | ||
|  | class IgnoreResultAction { | ||
|  |  public: | ||
|  |   explicit IgnoreResultAction(const A& action) : action_(action) {} | ||
|  | 
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { | ||
|  |     // Assert statement belongs here because this is the best place to verify
 | ||
|  |     // conditions on F. It produces the clearest error messages
 | ||
|  |     // in most compilers.
 | ||
|  |     // Impl really belongs in this scope as a local class but can't
 | ||
|  |     // because MSVC produces duplicate symbols in different translation units
 | ||
|  |     // in this case. Until MS fixes that bug we put Impl into the class scope
 | ||
|  |     // and put the typedef both here (for use in assert statement) and
 | ||
|  |     // in the Impl class. But both definitions must be the same.
 | ||
|  |     typedef typename internal::Function<F>::Result Result; | ||
|  | 
 | ||
|  |     // Asserts at compile time that F returns void.
 | ||
|  |     CompileAssertTypesEqual<void, Result>(); | ||
|  | 
 | ||
|  |     return Action<F>(new Impl<F>(action_)); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   template <typename F> | ||
|  |   class Impl : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename internal::Function<F>::Result Result; | ||
|  |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | ||
|  | 
 | ||
|  |     explicit Impl(const A& action) : action_(action) {} | ||
|  | 
 | ||
|  |     virtual void Perform(const ArgumentTuple& args) { | ||
|  |       // Performs the action and ignores its result.
 | ||
|  |       action_.Perform(args); | ||
|  |     } | ||
|  | 
 | ||
|  |    private: | ||
|  |     // Type OriginalFunction is the same as F except that its return
 | ||
|  |     // type is IgnoredValue.
 | ||
|  |     typedef typename internal::Function<F>::MakeResultIgnoredValue | ||
|  |         OriginalFunction; | ||
|  | 
 | ||
|  |     const Action<OriginalFunction> action_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_ASSIGN_(Impl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   const A action_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); | ||
|  | }; | ||
|  | 
 | ||
|  | // A ReferenceWrapper<T> object represents a reference to type T,
 | ||
|  | // which can be either const or not.  It can be explicitly converted
 | ||
|  | // from, and implicitly converted to, a T&.  Unlike a reference,
 | ||
|  | // ReferenceWrapper<T> can be copied and can survive template type
 | ||
|  | // inference.  This is used to support by-reference arguments in the
 | ||
|  | // InvokeArgument<N>(...) action.  The idea was from "reference
 | ||
|  | // wrappers" in tr1, which we don't have in our source tree yet.
 | ||
|  | template <typename T> | ||
|  | class ReferenceWrapper { | ||
|  |  public: | ||
|  |   // Constructs a ReferenceWrapper<T> object from a T&.
 | ||
|  |   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
 | ||
|  | 
 | ||
|  |   // Allows a ReferenceWrapper<T> object to be implicitly converted to
 | ||
|  |   // a T&.
 | ||
|  |   operator T&() const { return *pointer_; } | ||
|  |  private: | ||
|  |   T* pointer_; | ||
|  | }; | ||
|  | 
 | ||
|  | // Allows the expression ByRef(x) to be printed as a reference to x.
 | ||
|  | template <typename T> | ||
|  | void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) { | ||
|  |   T& value = ref; | ||
|  |   UniversalPrinter<T&>::Print(value, os); | ||
|  | } | ||
|  | 
 | ||
|  | // Does two actions sequentially.  Used for implementing the DoAll(a1,
 | ||
|  | // a2, ...) action.
 | ||
|  | template <typename Action1, typename Action2> | ||
|  | class DoBothAction { | ||
|  |  public: | ||
|  |   DoBothAction(Action1 action1, Action2 action2) | ||
|  |       : action1_(action1), action2_(action2) {} | ||
|  | 
 | ||
|  |   // This template type conversion operator allows DoAll(a1, ..., a_n)
 | ||
|  |   // to be used in ANY function of compatible type.
 | ||
|  |   template <typename F> | ||
|  |   operator Action<F>() const { | ||
|  |     return Action<F>(new Impl<F>(action1_, action2_)); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   // Implements the DoAll(...) action for a particular function type F.
 | ||
|  |   template <typename F> | ||
|  |   class Impl : public ActionInterface<F> { | ||
|  |    public: | ||
|  |     typedef typename Function<F>::Result Result; | ||
|  |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | ||
|  |     typedef typename Function<F>::MakeResultVoid VoidResult; | ||
|  | 
 | ||
|  |     Impl(const Action<VoidResult>& action1, const Action<F>& action2) | ||
|  |         : action1_(action1), action2_(action2) {} | ||
|  | 
 | ||
|  |     virtual Result Perform(const ArgumentTuple& args) { | ||
|  |       action1_.Perform(args); | ||
|  |       return action2_.Perform(args); | ||
|  |     } | ||
|  | 
 | ||
|  |    private: | ||
|  |     const Action<VoidResult> action1_; | ||
|  |     const Action<F> action2_; | ||
|  | 
 | ||
|  |     GTEST_DISALLOW_ASSIGN_(Impl); | ||
|  |   }; | ||
|  | 
 | ||
|  |   Action1 action1_; | ||
|  |   Action2 action2_; | ||
|  | 
 | ||
|  |   GTEST_DISALLOW_ASSIGN_(DoBothAction); | ||
|  | }; | ||
|  | 
 | ||
|  | }  // namespace internal
 | ||
|  | 
 | ||
|  | // An Unused object can be implicitly constructed from ANY value.
 | ||
|  | // This is handy when defining actions that ignore some or all of the
 | ||
|  | // mock function arguments.  For example, given
 | ||
|  | //
 | ||
|  | //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 | ||
|  | //   MOCK_METHOD3(Bar, double(int index, double x, double y));
 | ||
|  | //
 | ||
|  | // instead of
 | ||
|  | //
 | ||
|  | //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
 | ||
|  | //     return sqrt(x*x + y*y);
 | ||
|  | //   }
 | ||
|  | //   double DistanceToOriginWithIndex(int index, double x, double y) {
 | ||
|  | //     return sqrt(x*x + y*y);
 | ||
|  | //   }
 | ||
|  | //   ...
 | ||
|  | //   EXEPCT_CALL(mock, Foo("abc", _, _))
 | ||
|  | //       .WillOnce(Invoke(DistanceToOriginWithLabel));
 | ||
|  | //   EXEPCT_CALL(mock, Bar(5, _, _))
 | ||
|  | //       .WillOnce(Invoke(DistanceToOriginWithIndex));
 | ||
|  | //
 | ||
|  | // you could write
 | ||
|  | //
 | ||
|  | //   // We can declare any uninteresting argument as Unused.
 | ||
|  | //   double DistanceToOrigin(Unused, double x, double y) {
 | ||
|  | //     return sqrt(x*x + y*y);
 | ||
|  | //   }
 | ||
|  | //   ...
 | ||
|  | //   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
 | ||
|  | //   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
 | ||
|  | typedef internal::IgnoredValue Unused; | ||
|  | 
 | ||
|  | // This constructor allows us to turn an Action<From> object into an
 | ||
|  | // Action<To>, as long as To's arguments can be implicitly converted
 | ||
|  | // to From's and From's return type cann be implicitly converted to
 | ||
|  | // To's.
 | ||
|  | template <typename To> | ||
|  | template <typename From> | ||
|  | Action<To>::Action(const Action<From>& from) | ||
|  |     : impl_(new internal::ActionAdaptor<To, From>(from)) {} | ||
|  | 
 | ||
|  | // Creates an action that returns 'value'.  'value' is passed by value
 | ||
|  | // instead of const reference - otherwise Return("string literal")
 | ||
|  | // will trigger a compiler error about using array as initializer.
 | ||
|  | template <typename R> | ||
|  | internal::ReturnAction<R> Return(R value) { | ||
|  |   return internal::ReturnAction<R>(internal::move(value)); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that returns NULL.
 | ||
|  | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | ||
|  |   return MakePolymorphicAction(internal::ReturnNullAction()); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that returns from a void function.
 | ||
|  | inline PolymorphicAction<internal::ReturnVoidAction> Return() { | ||
|  |   return MakePolymorphicAction(internal::ReturnVoidAction()); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that returns the reference to a variable.
 | ||
|  | template <typename R> | ||
|  | inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
 | ||
|  |   return internal::ReturnRefAction<R>(x); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that returns the reference to a copy of the
 | ||
|  | // argument.  The copy is created when the action is constructed and
 | ||
|  | // lives as long as the action.
 | ||
|  | template <typename R> | ||
|  | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | ||
|  |   return internal::ReturnRefOfCopyAction<R>(x); | ||
|  | } | ||
|  | 
 | ||
|  | // Modifies the parent action (a Return() action) to perform a move of the
 | ||
|  | // argument instead of a copy.
 | ||
|  | // Return(ByMove()) actions can only be executed once and will assert this
 | ||
|  | // invariant.
 | ||
|  | template <typename R> | ||
|  | internal::ByMoveWrapper<R> ByMove(R x) { | ||
|  |   return internal::ByMoveWrapper<R>(internal::move(x)); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that does the default action for the give mock function.
 | ||
|  | inline internal::DoDefaultAction DoDefault() { | ||
|  |   return internal::DoDefaultAction(); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that sets the variable pointed by the N-th
 | ||
|  | // (0-based) function argument to 'value'.
 | ||
|  | template <size_t N, typename T> | ||
|  | PolymorphicAction< | ||
|  |   internal::SetArgumentPointeeAction< | ||
|  |     N, T, internal::IsAProtocolMessage<T>::value> > | ||
|  | SetArgPointee(const T& x) { | ||
|  |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | ||
|  |       N, T, internal::IsAProtocolMessage<T>::value>(x)); | ||
|  | } | ||
|  | 
 | ||
|  | #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
 | ||
|  | // This overload allows SetArgPointee() to accept a string literal.
 | ||
|  | // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
 | ||
|  | // this overload from the templated version and emit a compile error.
 | ||
|  | template <size_t N> | ||
|  | PolymorphicAction< | ||
|  |   internal::SetArgumentPointeeAction<N, const char*, false> > | ||
|  | SetArgPointee(const char* p) { | ||
|  |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | ||
|  |       N, const char*, false>(p)); | ||
|  | } | ||
|  | 
 | ||
|  | template <size_t N> | ||
|  | PolymorphicAction< | ||
|  |   internal::SetArgumentPointeeAction<N, const wchar_t*, false> > | ||
|  | SetArgPointee(const wchar_t* p) { | ||
|  |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | ||
|  |       N, const wchar_t*, false>(p)); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // The following version is DEPRECATED.
 | ||
|  | template <size_t N, typename T> | ||
|  | PolymorphicAction< | ||
|  |   internal::SetArgumentPointeeAction< | ||
|  |     N, T, internal::IsAProtocolMessage<T>::value> > | ||
|  | SetArgumentPointee(const T& x) { | ||
|  |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | ||
|  |       N, T, internal::IsAProtocolMessage<T>::value>(x)); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that sets a pointer referent to a given value.
 | ||
|  | template <typename T1, typename T2> | ||
|  | PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { | ||
|  |   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | ||
|  | } | ||
|  | 
 | ||
|  | #if !GTEST_OS_WINDOWS_MOBILE
 | ||
|  | 
 | ||
|  | // Creates an action that sets errno and returns the appropriate error.
 | ||
|  | template <typename T> | ||
|  | PolymorphicAction<internal::SetErrnoAndReturnAction<T> > | ||
|  | SetErrnoAndReturn(int errval, T result) { | ||
|  |   return MakePolymorphicAction( | ||
|  |       internal::SetErrnoAndReturnAction<T>(errval, result)); | ||
|  | } | ||
|  | 
 | ||
|  | #endif  // !GTEST_OS_WINDOWS_MOBILE
 | ||
|  | 
 | ||
|  | // Various overloads for InvokeWithoutArgs().
 | ||
|  | 
 | ||
|  | // Creates an action that invokes 'function_impl' with no argument.
 | ||
|  | template <typename FunctionImpl> | ||
|  | PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> > | ||
|  | InvokeWithoutArgs(FunctionImpl function_impl) { | ||
|  |   return MakePolymorphicAction( | ||
|  |       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl)); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that invokes the given method on the given object
 | ||
|  | // with no argument.
 | ||
|  | template <class Class, typename MethodPtr> | ||
|  | PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> > | ||
|  | InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { | ||
|  |   return MakePolymorphicAction( | ||
|  |       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>( | ||
|  |           obj_ptr, method_ptr)); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates an action that performs an_action and throws away its
 | ||
|  | // result.  In other words, it changes the return type of an_action to
 | ||
|  | // void.  an_action MUST NOT return void, or the code won't compile.
 | ||
|  | template <typename A> | ||
|  | inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { | ||
|  |   return internal::IgnoreResultAction<A>(an_action); | ||
|  | } | ||
|  | 
 | ||
|  | // Creates a reference wrapper for the given L-value.  If necessary,
 | ||
|  | // you can explicitly specify the type of the reference.  For example,
 | ||
|  | // suppose 'derived' is an object of type Derived, ByRef(derived)
 | ||
|  | // would wrap a Derived&.  If you want to wrap a const Base& instead,
 | ||
|  | // where Base is a base class of Derived, just write:
 | ||
|  | //
 | ||
|  | //   ByRef<const Base>(derived)
 | ||
|  | template <typename T> | ||
|  | inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
 | ||
|  |   return internal::ReferenceWrapper<T>(l_value); | ||
|  | } | ||
|  | 
 | ||
|  | }  // namespace testing
 | ||
|  | 
 | ||
|  | #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 |