You've already forked linux-packaging-mono
							
							
		
			
	
	
		
			2186 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			2186 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
 | ||
|  | //
 | ||
|  | //                     The LLVM Compiler Infrastructure
 | ||
|  | //
 | ||
|  | // This file is distributed under the University of Illinois Open Source
 | ||
|  | // License. See LICENSE.TXT for details.
 | ||
|  | //
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | //
 | ||
|  | // This file defines an instruction selector for the Hexagon target.
 | ||
|  | //
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | #include "Hexagon.h"
 | ||
|  | #include "HexagonISelDAGToDAG.h"
 | ||
|  | #include "HexagonISelLowering.h"
 | ||
|  | #include "HexagonMachineFunctionInfo.h"
 | ||
|  | #include "HexagonTargetMachine.h"
 | ||
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | ||
|  | #include "llvm/CodeGen/MachineInstrBuilder.h"
 | ||
|  | #include "llvm/CodeGen/SelectionDAGISel.h"
 | ||
|  | #include "llvm/IR/Intrinsics.h"
 | ||
|  | #include "llvm/Support/CommandLine.h"
 | ||
|  | #include "llvm/Support/Debug.h"
 | ||
|  | using namespace llvm; | ||
|  | 
 | ||
|  | #define DEBUG_TYPE "hexagon-isel"
 | ||
|  | 
 | ||
|  | static | ||
|  | cl::opt<bool> | ||
|  | EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), | ||
|  |   cl::desc("Rebalance address calculation trees to improve " | ||
|  |           "instruction selection")); | ||
|  | 
 | ||
|  | // Rebalance only if this allows e.g. combining a GA with an offset or
 | ||
|  | // factoring out a shift.
 | ||
|  | static | ||
|  | cl::opt<bool> | ||
|  | RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), | ||
|  |   cl::desc("Rebalance address tree only if this allows optimizations")); | ||
|  | 
 | ||
|  | static | ||
|  | cl::opt<bool> | ||
|  | RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, | ||
|  |   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); | ||
|  | 
 | ||
|  | static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, | ||
|  |   cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Instruction Selector Implementation
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | #define GET_DAGISEL_BODY HexagonDAGToDAGISel
 | ||
|  | #include "HexagonGenDAGISel.inc"
 | ||
|  | 
 | ||
|  | /// createHexagonISelDag - This pass converts a legalized DAG into a
 | ||
|  | /// Hexagon-specific DAG, ready for instruction scheduling.
 | ||
|  | ///
 | ||
|  | namespace llvm { | ||
|  | FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, | ||
|  |                                    CodeGenOpt::Level OptLevel) { | ||
|  |   return new HexagonDAGToDAGISel(TM, OptLevel); | ||
|  | } | ||
|  | } | ||
|  | 
 | ||
|  | // Intrinsics that return a a predicate.
 | ||
|  | static bool doesIntrinsicReturnPredicate(unsigned ID) { | ||
|  |   switch (ID) { | ||
|  |     default: | ||
|  |       return false; | ||
|  |     case Intrinsic::hexagon_C2_cmpeq: | ||
|  |     case Intrinsic::hexagon_C2_cmpgt: | ||
|  |     case Intrinsic::hexagon_C2_cmpgtu: | ||
|  |     case Intrinsic::hexagon_C2_cmpgtup: | ||
|  |     case Intrinsic::hexagon_C2_cmpgtp: | ||
|  |     case Intrinsic::hexagon_C2_cmpeqp: | ||
|  |     case Intrinsic::hexagon_C2_bitsset: | ||
|  |     case Intrinsic::hexagon_C2_bitsclr: | ||
|  |     case Intrinsic::hexagon_C2_cmpeqi: | ||
|  |     case Intrinsic::hexagon_C2_cmpgti: | ||
|  |     case Intrinsic::hexagon_C2_cmpgtui: | ||
|  |     case Intrinsic::hexagon_C2_cmpgei: | ||
|  |     case Intrinsic::hexagon_C2_cmpgeui: | ||
|  |     case Intrinsic::hexagon_C2_cmplt: | ||
|  |     case Intrinsic::hexagon_C2_cmpltu: | ||
|  |     case Intrinsic::hexagon_C2_bitsclri: | ||
|  |     case Intrinsic::hexagon_C2_and: | ||
|  |     case Intrinsic::hexagon_C2_or: | ||
|  |     case Intrinsic::hexagon_C2_xor: | ||
|  |     case Intrinsic::hexagon_C2_andn: | ||
|  |     case Intrinsic::hexagon_C2_not: | ||
|  |     case Intrinsic::hexagon_C2_orn: | ||
|  |     case Intrinsic::hexagon_C2_pxfer_map: | ||
|  |     case Intrinsic::hexagon_C2_any8: | ||
|  |     case Intrinsic::hexagon_C2_all8: | ||
|  |     case Intrinsic::hexagon_A2_vcmpbeq: | ||
|  |     case Intrinsic::hexagon_A2_vcmpbgtu: | ||
|  |     case Intrinsic::hexagon_A2_vcmpheq: | ||
|  |     case Intrinsic::hexagon_A2_vcmphgt: | ||
|  |     case Intrinsic::hexagon_A2_vcmphgtu: | ||
|  |     case Intrinsic::hexagon_A2_vcmpweq: | ||
|  |     case Intrinsic::hexagon_A2_vcmpwgt: | ||
|  |     case Intrinsic::hexagon_A2_vcmpwgtu: | ||
|  |     case Intrinsic::hexagon_C2_tfrrp: | ||
|  |     case Intrinsic::hexagon_S2_tstbit_i: | ||
|  |     case Intrinsic::hexagon_S2_tstbit_r: | ||
|  |       return true; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { | ||
|  |   SDValue Chain = LD->getChain(); | ||
|  |   SDValue Base = LD->getBasePtr(); | ||
|  |   SDValue Offset = LD->getOffset(); | ||
|  |   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); | ||
|  |   EVT LoadedVT = LD->getMemoryVT(); | ||
|  |   unsigned Opcode = 0; | ||
|  | 
 | ||
|  |   // Check for zero extended loads. Treat any-extend loads as zero extended
 | ||
|  |   // loads.
 | ||
|  |   ISD::LoadExtType ExtType = LD->getExtensionType(); | ||
|  |   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); | ||
|  |   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); | ||
|  | 
 | ||
|  |   assert(LoadedVT.isSimple()); | ||
|  |   switch (LoadedVT.getSimpleVT().SimpleTy) { | ||
|  |   case MVT::i8: | ||
|  |     if (IsZeroExt) | ||
|  |       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; | ||
|  |     else | ||
|  |       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; | ||
|  |     break; | ||
|  |   case MVT::i16: | ||
|  |     if (IsZeroExt) | ||
|  |       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; | ||
|  |     else | ||
|  |       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; | ||
|  |     break; | ||
|  |   case MVT::i32: | ||
|  |     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; | ||
|  |     break; | ||
|  |   case MVT::i64: | ||
|  |     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; | ||
|  |     break; | ||
|  |   // 64B
 | ||
|  |   case MVT::v64i8: | ||
|  |   case MVT::v32i16: | ||
|  |   case MVT::v16i32: | ||
|  |   case MVT::v8i64: | ||
|  |   case MVT::v128i8: | ||
|  |   case MVT::v64i16: | ||
|  |   case MVT::v32i32: | ||
|  |   case MVT::v16i64: | ||
|  |     if (isAlignedMemNode(LD)) { | ||
|  |       if (LD->isNonTemporal()) | ||
|  |         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; | ||
|  |       else | ||
|  |         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; | ||
|  |     } else { | ||
|  |       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; | ||
|  |     } | ||
|  |     break; | ||
|  |   default: | ||
|  |     llvm_unreachable("Unexpected memory type in indexed load"); | ||
|  |   } | ||
|  | 
 | ||
|  |   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); | ||
|  |   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | ||
|  |   MemOp[0] = LD->getMemOperand(); | ||
|  | 
 | ||
|  |   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) | ||
|  |         -> MachineSDNode* { | ||
|  |     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { | ||
|  |       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | ||
|  |       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, | ||
|  |                                     Zero, SDValue(N, 0)); | ||
|  |     } | ||
|  |     if (ExtType == ISD::SEXTLOAD) | ||
|  |       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, | ||
|  |                                     SDValue(N, 0)); | ||
|  |     return N; | ||
|  |   }; | ||
|  | 
 | ||
|  |   //                  Loaded value   Next address   Chain
 | ||
|  |   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; | ||
|  |   SDValue To[3]; | ||
|  | 
 | ||
|  |   EVT ValueVT = LD->getValueType(0); | ||
|  |   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { | ||
|  |     // A load extending to i64 will actually produce i32, which will then
 | ||
|  |     // need to be extended to i64.
 | ||
|  |     assert(LoadedVT.getSizeInBits() <= 32); | ||
|  |     ValueVT = MVT::i32; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (IsValidInc) { | ||
|  |     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, | ||
|  |                                               MVT::i32, MVT::Other, Base, | ||
|  |                                               IncV, Chain); | ||
|  |     L->setMemRefs(MemOp, MemOp+1); | ||
|  |     To[1] = SDValue(L, 1); // Next address.
 | ||
|  |     To[2] = SDValue(L, 2); // Chain.
 | ||
|  |     // Handle special case for extension to i64.
 | ||
|  |     if (LD->getValueType(0) == MVT::i64) | ||
|  |       L = getExt64(L, dl); | ||
|  |     To[0] = SDValue(L, 0); // Loaded (extended) value.
 | ||
|  |   } else { | ||
|  |     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | ||
|  |     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, | ||
|  |                                               Base, Zero, Chain); | ||
|  |     L->setMemRefs(MemOp, MemOp+1); | ||
|  |     To[2] = SDValue(L, 1); // Chain.
 | ||
|  |     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, | ||
|  |                                               Base, IncV); | ||
|  |     To[1] = SDValue(A, 0); // Next address.
 | ||
|  |     // Handle special case for extension to i64.
 | ||
|  |     if (LD->getValueType(0) == MVT::i64) | ||
|  |       L = getExt64(L, dl); | ||
|  |     To[0] = SDValue(L, 0); // Loaded (extended) value.
 | ||
|  |   } | ||
|  |   ReplaceUses(From, To, 3); | ||
|  |   CurDAG->RemoveDeadNode(LD); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { | ||
|  |   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) | ||
|  |     return nullptr; | ||
|  | 
 | ||
|  |   SDLoc dl(IntN); | ||
|  |   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); | ||
|  | 
 | ||
|  |   static std::map<unsigned,unsigned> LoadPciMap = { | ||
|  |     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  }, | ||
|  |     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, | ||
|  |     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  }, | ||
|  |     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, | ||
|  |     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  }, | ||
|  |     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  }, | ||
|  |   }; | ||
|  |   auto FLC = LoadPciMap.find(IntNo); | ||
|  |   if (FLC != LoadPciMap.end()) { | ||
|  |     SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32, | ||
|  |           IntN->getOperand(4)); | ||
|  |     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; | ||
|  |     EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; | ||
|  |     // Operands: { Base, Increment, Modifier, Chain }
 | ||
|  |     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); | ||
|  |     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); | ||
|  |     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, | ||
|  |           { IntN->getOperand(2), I, SDValue(Mod,0), IntN->getOperand(0) }); | ||
|  |     return Res; | ||
|  |   } | ||
|  | 
 | ||
|  |   static std::map<unsigned,unsigned> LoadPbrMap = { | ||
|  |     { Intrinsic::hexagon_brev_ldb,  Hexagon::L2_loadrb_pbr  }, | ||
|  |     { Intrinsic::hexagon_brev_ldub, Hexagon::L2_loadrub_pbr }, | ||
|  |     { Intrinsic::hexagon_brev_ldh,  Hexagon::L2_loadrh_pbr  }, | ||
|  |     { Intrinsic::hexagon_brev_lduh, Hexagon::L2_loadruh_pbr }, | ||
|  |     { Intrinsic::hexagon_brev_ldw,  Hexagon::L2_loadri_pbr  }, | ||
|  |     { Intrinsic::hexagon_brev_ldd,  Hexagon::L2_loadrd_pbr  }, | ||
|  |   }; | ||
|  |   auto FLB = LoadPbrMap.find(IntNo); | ||
|  |   if (FLB != LoadPbrMap.end()) { | ||
|  |     SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32, | ||
|  |             IntN->getOperand(4)); | ||
|  |     EVT ValTy = (IntNo == Intrinsic::hexagon_brev_ldd) ? MVT::i64 : MVT::i32; | ||
|  |     EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; | ||
|  |     // Operands: { Base, Modifier, Chain }
 | ||
|  |     MachineSDNode *Res = CurDAG->getMachineNode(FLB->second, dl, RTys, | ||
|  |           { IntN->getOperand(2), SDValue(Mod,0), IntN->getOperand(0) }); | ||
|  |     return Res; | ||
|  |   } | ||
|  | 
 | ||
|  |   return nullptr; | ||
|  | } | ||
|  | 
 | ||
|  | SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, | ||
|  |       SDNode *IntN) { | ||
|  |   // The "LoadN" is just a machine load instruction. The intrinsic also
 | ||
|  |   // involves storing it. Generate an appropriate store to the location
 | ||
|  |   // given in the intrinsic's operand(3).
 | ||
|  |   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; | ||
|  |   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & | ||
|  |                       HexagonII::MemAccesSizeMask; | ||
|  |   unsigned Size = 1U << (SizeBits-1); | ||
|  | 
 | ||
|  |   SDLoc dl(IntN); | ||
|  |   MachinePointerInfo PI; | ||
|  |   SDValue TS; | ||
|  |   SDValue Loc = IntN->getOperand(3); | ||
|  | 
 | ||
|  |   if (Size >= 4) | ||
|  |     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, | ||
|  |                           Size); | ||
|  |   else | ||
|  |     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, | ||
|  |                                PI, MVT::getIntegerVT(Size * 8), Size); | ||
|  | 
 | ||
|  |   SDNode *StoreN; | ||
|  |   { | ||
|  |     HandleSDNode Handle(TS); | ||
|  |     SelectStore(TS.getNode()); | ||
|  |     StoreN = Handle.getValue().getNode(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Load's results are { Loaded value, Updated pointer, Chain }
 | ||
|  |   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); | ||
|  |   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); | ||
|  |   return StoreN; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { | ||
|  |   // The intrinsics for load circ/brev perform two operations:
 | ||
|  |   // 1. Load a value V from the specified location, using the addressing
 | ||
|  |   //    mode corresponding to the intrinsic.
 | ||
|  |   // 2. Store V into a specified location. This location is typically a
 | ||
|  |   //    local, temporary object.
 | ||
|  |   // In many cases, the program using these intrinsics will immediately
 | ||
|  |   // load V again from the local object. In those cases, when certain
 | ||
|  |   // conditions are met, the last load can be removed.
 | ||
|  |   // This function identifies and optimizes this pattern. If the pattern
 | ||
|  |   // cannot be optimized, it returns nullptr, which will cause the load
 | ||
|  |   // to be selected separately from the intrinsic (which will be handled
 | ||
|  |   // in SelectIntrinsicWChain).
 | ||
|  | 
 | ||
|  |   SDValue Ch = N->getOperand(0); | ||
|  |   SDValue Loc = N->getOperand(1); | ||
|  | 
 | ||
|  |   // Assume that the load and the intrinsic are connected directly with a
 | ||
|  |   // chain:
 | ||
|  |   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
 | ||
|  |   //   t2: i32,ch = load t1:1, Loc, ...
 | ||
|  |   SDNode *C = Ch.getNode(); | ||
|  | 
 | ||
|  |   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   // The second load can only be eliminated if its extension type matches
 | ||
|  |   // that of the load instruction corresponding to the intrinsic. The user
 | ||
|  |   // can provide an address of an unsigned variable to store the result of
 | ||
|  |   // a sign-extending intrinsic into (or the other way around).
 | ||
|  |   ISD::LoadExtType IntExt; | ||
|  |   switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) { | ||
|  |     case Intrinsic::hexagon_brev_ldub: | ||
|  |     case Intrinsic::hexagon_brev_lduh: | ||
|  |     case Intrinsic::hexagon_circ_ldub: | ||
|  |     case Intrinsic::hexagon_circ_lduh: | ||
|  |       IntExt = ISD::ZEXTLOAD; | ||
|  |       break; | ||
|  |     case Intrinsic::hexagon_brev_ldw: | ||
|  |     case Intrinsic::hexagon_brev_ldd: | ||
|  |     case Intrinsic::hexagon_circ_ldw: | ||
|  |     case Intrinsic::hexagon_circ_ldd: | ||
|  |       IntExt = ISD::NON_EXTLOAD; | ||
|  |       break; | ||
|  |     default: | ||
|  |       IntExt = ISD::SEXTLOAD; | ||
|  |       break; | ||
|  |   } | ||
|  |   if (N->getExtensionType() != IntExt) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   // Make sure the target location for the loaded value in the load intrinsic
 | ||
|  |   // is the location from which LD (or N) is loading.
 | ||
|  |   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { | ||
|  |     SDNode *S = StoreInstrForLoadIntrinsic(L, C); | ||
|  |     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; | ||
|  |     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; | ||
|  |     ReplaceUses(F, T, array_lengthof(T)); | ||
|  |     // This transformation will leave the intrinsic dead. If it remains in
 | ||
|  |     // the DAG, the selection code will see it again, but without the load,
 | ||
|  |     // and it will generate a store that is normally required for it.
 | ||
|  |     CurDAG->RemoveDeadNode(C); | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { | ||
|  |   SDLoc dl(N); | ||
|  |   LoadSDNode *LD = cast<LoadSDNode>(N); | ||
|  |   ISD::MemIndexedMode AM = LD->getAddressingMode(); | ||
|  | 
 | ||
|  |   // Handle indexed loads.
 | ||
|  |   if (AM != ISD::UNINDEXED) { | ||
|  |     SelectIndexedLoad(LD, dl); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Handle patterns using circ/brev load intrinsics.
 | ||
|  |   if (tryLoadOfLoadIntrinsic(LD)) | ||
|  |     return; | ||
|  | 
 | ||
|  |   SelectCode(LD); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { | ||
|  |   SDValue Chain = ST->getChain(); | ||
|  |   SDValue Base = ST->getBasePtr(); | ||
|  |   SDValue Offset = ST->getOffset(); | ||
|  |   SDValue Value = ST->getValue(); | ||
|  |   // Get the constant value.
 | ||
|  |   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); | ||
|  |   EVT StoredVT = ST->getMemoryVT(); | ||
|  |   EVT ValueVT = Value.getValueType(); | ||
|  | 
 | ||
|  |   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); | ||
|  |   unsigned Opcode = 0; | ||
|  | 
 | ||
|  |   assert(StoredVT.isSimple()); | ||
|  |   switch (StoredVT.getSimpleVT().SimpleTy) { | ||
|  |   case MVT::i8: | ||
|  |     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; | ||
|  |     break; | ||
|  |   case MVT::i16: | ||
|  |     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; | ||
|  |     break; | ||
|  |   case MVT::i32: | ||
|  |     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; | ||
|  |     break; | ||
|  |   case MVT::i64: | ||
|  |     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; | ||
|  |     break; | ||
|  |   case MVT::v64i8: | ||
|  |   case MVT::v32i16: | ||
|  |   case MVT::v16i32: | ||
|  |   case MVT::v8i64: | ||
|  |   case MVT::v128i8: | ||
|  |   case MVT::v64i16: | ||
|  |   case MVT::v32i32: | ||
|  |   case MVT::v16i64: | ||
|  |     if (isAlignedMemNode(ST)) { | ||
|  |       if (ST->isNonTemporal()) | ||
|  |         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; | ||
|  |       else | ||
|  |         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; | ||
|  |     } else { | ||
|  |       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; | ||
|  |     } | ||
|  |     break; | ||
|  |   default: | ||
|  |     llvm_unreachable("Unexpected memory type in indexed store"); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { | ||
|  |     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); | ||
|  |     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, | ||
|  |                                            dl, MVT::i32, Value); | ||
|  |   } | ||
|  | 
 | ||
|  |   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); | ||
|  |   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | ||
|  |   MemOp[0] = ST->getMemOperand(); | ||
|  | 
 | ||
|  |   //                  Next address   Chain
 | ||
|  |   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; | ||
|  |   SDValue To[2]; | ||
|  | 
 | ||
|  |   if (IsValidInc) { | ||
|  |     // Build post increment store.
 | ||
|  |     SDValue Ops[] = { Base, IncV, Value, Chain }; | ||
|  |     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, | ||
|  |                                               Ops); | ||
|  |     S->setMemRefs(MemOp, MemOp + 1); | ||
|  |     To[0] = SDValue(S, 0); | ||
|  |     To[1] = SDValue(S, 1); | ||
|  |   } else { | ||
|  |     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); | ||
|  |     SDValue Ops[] = { Base, Zero, Value, Chain }; | ||
|  |     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); | ||
|  |     S->setMemRefs(MemOp, MemOp + 1); | ||
|  |     To[1] = SDValue(S, 0); | ||
|  |     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, | ||
|  |                                               Base, IncV); | ||
|  |     To[0] = SDValue(A, 0); | ||
|  |   } | ||
|  | 
 | ||
|  |   ReplaceUses(From, To, 2); | ||
|  |   CurDAG->RemoveDeadNode(ST); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectStore(SDNode *N) { | ||
|  |   SDLoc dl(N); | ||
|  |   StoreSDNode *ST = cast<StoreSDNode>(N); | ||
|  |   ISD::MemIndexedMode AM = ST->getAddressingMode(); | ||
|  | 
 | ||
|  |   // Handle indexed stores.
 | ||
|  |   if (AM != ISD::UNINDEXED) { | ||
|  |     SelectIndexedStore(ST, dl); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SelectCode(ST); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { | ||
|  |   SDLoc dl(N); | ||
|  |   SDValue Shl_0 = N->getOperand(0); | ||
|  |   SDValue Shl_1 = N->getOperand(1); | ||
|  | 
 | ||
|  |   auto Default = [this,N] () -> void { SelectCode(N); }; | ||
|  | 
 | ||
|  |   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) | ||
|  |     return Default(); | ||
|  | 
 | ||
|  |   // RHS is const.
 | ||
|  |   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); | ||
|  | 
 | ||
|  |   if (Shl_0.getOpcode() == ISD::MUL) { | ||
|  |     SDValue Mul_0 = Shl_0.getOperand(0); // Val
 | ||
|  |     SDValue Mul_1 = Shl_0.getOperand(1); // Const
 | ||
|  |     // RHS of mul is const.
 | ||
|  |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { | ||
|  |       int32_t ValConst = C->getSExtValue() << ShlConst; | ||
|  |       if (isInt<9>(ValConst)) { | ||
|  |         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); | ||
|  |         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, | ||
|  |                                                 MVT::i32, Mul_0, Val); | ||
|  |         ReplaceNode(N, Result); | ||
|  |         return; | ||
|  |       } | ||
|  |     } | ||
|  |     return Default(); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (Shl_0.getOpcode() == ISD::SUB) { | ||
|  |     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
 | ||
|  |     SDValue Sub_1 = Shl_0.getOperand(1); // Val
 | ||
|  |     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { | ||
|  |       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) | ||
|  |         return Default(); | ||
|  |       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
 | ||
|  |       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
 | ||
|  |       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { | ||
|  |         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); | ||
|  |         if (isInt<9>(-ValConst)) { | ||
|  |           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); | ||
|  |           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, | ||
|  |                                                   MVT::i32, Shl2_0, Val); | ||
|  |           ReplaceNode(N, Result); | ||
|  |           return; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   return Default(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //
 | ||
|  | // If there is an zero_extend followed an intrinsic in DAG (this means - the
 | ||
|  | // result of the intrinsic is predicate); convert the zero_extend to
 | ||
|  | // transfer instruction.
 | ||
|  | //
 | ||
|  | // Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
 | ||
|  | // converted into a MUX as predicate registers defined as 1 bit in the
 | ||
|  | // compiler. Architecture defines them as 8-bit registers.
 | ||
|  | // We want to preserve all the lower 8-bits and, not just 1 LSB bit.
 | ||
|  | //
 | ||
|  | void HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) { | ||
|  |   SDLoc dl(N); | ||
|  | 
 | ||
|  |   SDValue Op0 = N->getOperand(0); | ||
|  |   EVT OpVT = Op0.getValueType(); | ||
|  |   unsigned OpBW = OpVT.getSizeInBits(); | ||
|  | 
 | ||
|  |   // Special handling for zero-extending a vector of booleans.
 | ||
|  |   if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) { | ||
|  |     SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0); | ||
|  |     unsigned NE = OpVT.getVectorNumElements(); | ||
|  |     EVT ExVT = N->getValueType(0); | ||
|  |     unsigned ES = ExVT.getScalarSizeInBits(); | ||
|  |     uint64_t MV = 0, Bit = 1; | ||
|  |     for (unsigned i = 0; i < NE; ++i) { | ||
|  |       MV |= Bit; | ||
|  |       Bit <<= ES; | ||
|  |     } | ||
|  |     SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64); | ||
|  |     SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64, dl, | ||
|  |                                              MVT::i64, Ones); | ||
|  |     if (ExVT.getSizeInBits() == 32) { | ||
|  |       SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64, | ||
|  |                                            SDValue(Mask,0), SDValue(OnesReg,0)); | ||
|  |       SDValue SubR = CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32); | ||
|  |       ReplaceNode(N, CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT, | ||
|  |                                             SDValue(And, 0), SubR)); | ||
|  |       return; | ||
|  |     } | ||
|  |     ReplaceNode(N, | ||
|  |                 CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT, | ||
|  |                                        SDValue(Mask, 0), SDValue(OnesReg, 0))); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SDNode *Int = N->getOperand(0).getNode(); | ||
|  |   if ((Int->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) { | ||
|  |     unsigned ID = cast<ConstantSDNode>(Int->getOperand(0))->getZExtValue(); | ||
|  |     if (doesIntrinsicReturnPredicate(ID)) { | ||
|  |       // Now we need to differentiate target data types.
 | ||
|  |       if (N->getValueType(0) == MVT::i64) { | ||
|  |         // Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
 | ||
|  |         SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32); | ||
|  |         SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl, | ||
|  |                                                   MVT::i32, SDValue(Int, 0)); | ||
|  |         SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, | ||
|  |                                                   MVT::i32, TargetConst0); | ||
|  |         SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl, | ||
|  |                                                   MVT::i64, MVT::Other, | ||
|  |                                                   SDValue(Result_2, 0), | ||
|  |                                                   SDValue(Result_1, 0)); | ||
|  |         ReplaceNode(N, Result_3); | ||
|  |         return; | ||
|  |       } | ||
|  |       if (N->getValueType(0) == MVT::i32) { | ||
|  |         // Convert the zero_extend to Rs = Pd
 | ||
|  |         SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl, | ||
|  |                                               MVT::i32, SDValue(Int, 0)); | ||
|  |         ReplaceNode(N, RsPd); | ||
|  |         return; | ||
|  |       } | ||
|  |       llvm_unreachable("Unexpected value type"); | ||
|  |     } | ||
|  |   } | ||
|  |   SelectCode(N); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //
 | ||
|  | // Handling intrinsics for circular load and bitreverse load.
 | ||
|  | //
 | ||
|  | void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { | ||
|  |   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { | ||
|  |     StoreInstrForLoadIntrinsic(L, N); | ||
|  |     CurDAG->RemoveDeadNode(N); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | ||
|  |   if (IntNo == Intrinsic::hexagon_V6_vgathermw || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermw_128B || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermh || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermh_128B || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermhw || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { | ||
|  |     SelectV65Gather(N); | ||
|  |     return; | ||
|  |   } | ||
|  |   if (IntNo == Intrinsic::hexagon_V6_vgathermwq || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermhq || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermhwq || | ||
|  |       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { | ||
|  |     SelectV65GatherPred(N); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SelectCode(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { | ||
|  |   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | ||
|  |   unsigned Bits; | ||
|  |   switch (IID) { | ||
|  |   case Intrinsic::hexagon_S2_vsplatrb: | ||
|  |     Bits = 8; | ||
|  |     break; | ||
|  |   case Intrinsic::hexagon_S2_vsplatrh: | ||
|  |     Bits = 16; | ||
|  |     break; | ||
|  |   case Intrinsic::hexagon_V6_vaddcarry: | ||
|  |   case Intrinsic::hexagon_V6_vaddcarry_128B: | ||
|  |   case Intrinsic::hexagon_V6_vsubcarry: | ||
|  |   case Intrinsic::hexagon_V6_vsubcarry_128B: | ||
|  |     SelectHVXDualOutput(N); | ||
|  |     return; | ||
|  |   default: | ||
|  |     SelectCode(N); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SDValue V = N->getOperand(1); | ||
|  |   SDValue U; | ||
|  |   if (keepsLowBits(V, Bits, U)) { | ||
|  |     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), | ||
|  |                                 N->getOperand(0), U); | ||
|  |     ReplaceNode(N, R.getNode()); | ||
|  |     SelectCode(R.getNode()); | ||
|  |     return; | ||
|  |   } | ||
|  |   SelectCode(N); | ||
|  | } | ||
|  | 
 | ||
|  | //
 | ||
|  | // Map floating point constant values.
 | ||
|  | //
 | ||
|  | void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { | ||
|  |   SDLoc dl(N); | ||
|  |   ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N); | ||
|  |   APInt A = CN->getValueAPF().bitcastToAPInt(); | ||
|  |   if (N->getValueType(0) == MVT::f32) { | ||
|  |     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); | ||
|  |     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); | ||
|  |     return; | ||
|  |   } | ||
|  |   if (N->getValueType(0) == MVT::f64) { | ||
|  |     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); | ||
|  |     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SelectCode(N); | ||
|  | } | ||
|  | 
 | ||
|  | //
 | ||
|  | // Map boolean values.
 | ||
|  | //
 | ||
|  | void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { | ||
|  |   if (N->getValueType(0) == MVT::i1) { | ||
|  |     assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1)); | ||
|  |     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) | ||
|  |                       ? Hexagon::PS_true | ||
|  |                       : Hexagon::PS_false; | ||
|  |     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SelectCode(N); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { | ||
|  |   MachineFrameInfo &MFI = MF->getFrameInfo(); | ||
|  |   const HexagonFrameLowering *HFI = HST->getFrameLowering(); | ||
|  |   int FX = cast<FrameIndexSDNode>(N)->getIndex(); | ||
|  |   unsigned StkA = HFI->getStackAlignment(); | ||
|  |   unsigned MaxA = MFI.getMaxAlignment(); | ||
|  |   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); | ||
|  |   SDLoc DL(N); | ||
|  |   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); | ||
|  |   SDNode *R = nullptr; | ||
|  | 
 | ||
|  |   // Use PS_fi when:
 | ||
|  |   // - the object is fixed, or
 | ||
|  |   // - there are no objects with higher-than-default alignment, or
 | ||
|  |   // - there are no dynamically allocated objects.
 | ||
|  |   // Otherwise, use PS_fia.
 | ||
|  |   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { | ||
|  |     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); | ||
|  |   } else { | ||
|  |     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); | ||
|  |     unsigned AR = HMFI.getStackAlignBaseVReg(); | ||
|  |     SDValue CH = CurDAG->getEntryNode(); | ||
|  |     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; | ||
|  |     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); | ||
|  |   } | ||
|  | 
 | ||
|  |   ReplaceNode(N, R); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectBitcast(SDNode *N) { | ||
|  |   EVT SVT = N->getOperand(0).getValueType(); | ||
|  |   EVT DVT = N->getValueType(0); | ||
|  |   if (!SVT.isVector() || !DVT.isVector() || | ||
|  |       SVT.getVectorElementType() == MVT::i1 || | ||
|  |       DVT.getVectorElementType() == MVT::i1 || | ||
|  |       SVT.getSizeInBits() != DVT.getSizeInBits()) { | ||
|  |     SelectCode(N); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N,0), N->getOperand(0)); | ||
|  |   CurDAG->RemoveDeadNode(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::Select(SDNode *N) { | ||
|  |   if (N->isMachineOpcode()) | ||
|  |     return N->setNodeId(-1);  // Already selected.
 | ||
|  | 
 | ||
|  |   switch (N->getOpcode()) { | ||
|  |   case ISD::Constant:             return SelectConstant(N); | ||
|  |   case ISD::ConstantFP:           return SelectConstantFP(N); | ||
|  |   case ISD::FrameIndex:           return SelectFrameIndex(N); | ||
|  |   case ISD::BITCAST:              return SelectBitcast(N); | ||
|  |   case ISD::SHL:                  return SelectSHL(N); | ||
|  |   case ISD::LOAD:                 return SelectLoad(N); | ||
|  |   case ISD::STORE:                return SelectStore(N); | ||
|  |   case ISD::ZERO_EXTEND:          return SelectZeroExtend(N); | ||
|  |   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N); | ||
|  |   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (HST->useHVXOps()) { | ||
|  |     switch (N->getOpcode()) { | ||
|  |     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N); | ||
|  |     case HexagonISD::VROR:        return SelectHvxRor(N); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   SelectCode(N); | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel:: | ||
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, | ||
|  |                              std::vector<SDValue> &OutOps) { | ||
|  |   SDValue Inp = Op, Res; | ||
|  | 
 | ||
|  |   switch (ConstraintID) { | ||
|  |   default: | ||
|  |     return true; | ||
|  |   case InlineAsm::Constraint_i: | ||
|  |   case InlineAsm::Constraint_o: // Offsetable.
 | ||
|  |   case InlineAsm::Constraint_v: // Not offsetable.
 | ||
|  |   case InlineAsm::Constraint_m: // Memory.
 | ||
|  |     if (SelectAddrFI(Inp, Res)) | ||
|  |       OutOps.push_back(Res); | ||
|  |     else | ||
|  |       OutOps.push_back(Inp); | ||
|  |     break; | ||
|  |   } | ||
|  | 
 | ||
|  |   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static bool isMemOPCandidate(SDNode *I, SDNode *U) { | ||
|  |   // I is an operand of U. Check if U is an arithmetic (binary) operation
 | ||
|  |   // usable in a memop, where the other operand is a loaded value, and the
 | ||
|  |   // result of U is stored in the same location.
 | ||
|  | 
 | ||
|  |   if (!U->hasOneUse()) | ||
|  |     return false; | ||
|  |   unsigned Opc = U->getOpcode(); | ||
|  |   switch (Opc) { | ||
|  |     case ISD::ADD: | ||
|  |     case ISD::SUB: | ||
|  |     case ISD::AND: | ||
|  |     case ISD::OR: | ||
|  |       break; | ||
|  |     default: | ||
|  |       return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   SDValue S0 = U->getOperand(0); | ||
|  |   SDValue S1 = U->getOperand(1); | ||
|  |   SDValue SY = (S0.getNode() == I) ? S1 : S0; | ||
|  | 
 | ||
|  |   SDNode *UUse = *U->use_begin(); | ||
|  |   if (UUse->getNumValues() != 1) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   // Check if one of the inputs to U is a load instruction and the output
 | ||
|  |   // is used by a store instruction. If so and they also have the same
 | ||
|  |   // base pointer, then don't preoprocess this node sequence as it
 | ||
|  |   // can be matched to a memop.
 | ||
|  |   SDNode *SYNode = SY.getNode(); | ||
|  |   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { | ||
|  |     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); | ||
|  |     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); | ||
|  |     if (LDBasePtr == STBasePtr) | ||
|  |       return true; | ||
|  |   } | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
 | ||
|  | //            (or (select c 0 y) z)  ->  (select c z (or y z))
 | ||
|  | void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { | ||
|  |   SelectionDAG &DAG = *CurDAG; | ||
|  | 
 | ||
|  |   for (auto I : Nodes) { | ||
|  |     if (I->getOpcode() != ISD::OR) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     auto IsZero = [] (const SDValue &V) -> bool { | ||
|  |       if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode())) | ||
|  |         return SC->isNullValue(); | ||
|  |       return false; | ||
|  |     }; | ||
|  |     auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool { | ||
|  |       if (Op.getOpcode() != ISD::SELECT) | ||
|  |         return false; | ||
|  |       return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2)); | ||
|  |     }; | ||
|  | 
 | ||
|  |     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); | ||
|  |     EVT VT = I->getValueType(0); | ||
|  |     bool SelN0 = IsSelect0(N0); | ||
|  |     SDValue SOp = SelN0 ? N0 : N1; | ||
|  |     SDValue VOp = SelN0 ? N1 : N0; | ||
|  | 
 | ||
|  |     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { | ||
|  |       SDValue SC = SOp.getOperand(0); | ||
|  |       SDValue SX = SOp.getOperand(1); | ||
|  |       SDValue SY = SOp.getOperand(2); | ||
|  |       SDLoc DLS = SOp; | ||
|  |       if (IsZero(SY)) { | ||
|  |         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); | ||
|  |         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); | ||
|  |         DAG.ReplaceAllUsesWith(I, NewSel.getNode()); | ||
|  |       } else if (IsZero(SX)) { | ||
|  |         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); | ||
|  |         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); | ||
|  |         DAG.ReplaceAllUsesWith(I, NewSel.getNode()); | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | // Transform: (store ch val (add x (add (shl y c) e)))
 | ||
|  | //        to: (store ch val (add x (shl (add y d) c))),
 | ||
|  | // where e = (shl d c) for some integer d.
 | ||
|  | // The purpose of this is to enable generation of loads/stores with
 | ||
|  | // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
 | ||
|  | // value c must be 0, 1 or 2.
 | ||
|  | void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { | ||
|  |   SelectionDAG &DAG = *CurDAG; | ||
|  | 
 | ||
|  |   for (auto I : Nodes) { | ||
|  |     if (I->getOpcode() != ISD::STORE) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     // I matched: (store ch val Off)
 | ||
|  |     SDValue Off = I->getOperand(2); | ||
|  |     // Off needs to match: (add x (add (shl y c) (shl d c))))
 | ||
|  |     if (Off.getOpcode() != ISD::ADD) | ||
|  |       continue; | ||
|  |     // Off matched: (add x T0)
 | ||
|  |     SDValue T0 = Off.getOperand(1); | ||
|  |     // T0 needs to match: (add T1 T2):
 | ||
|  |     if (T0.getOpcode() != ISD::ADD) | ||
|  |       continue; | ||
|  |     // T0 matched: (add T1 T2)
 | ||
|  |     SDValue T1 = T0.getOperand(0); | ||
|  |     SDValue T2 = T0.getOperand(1); | ||
|  |     // T1 needs to match: (shl y c)
 | ||
|  |     if (T1.getOpcode() != ISD::SHL) | ||
|  |       continue; | ||
|  |     SDValue C = T1.getOperand(1); | ||
|  |     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); | ||
|  |     if (CN == nullptr) | ||
|  |       continue; | ||
|  |     unsigned CV = CN->getZExtValue(); | ||
|  |     if (CV > 2) | ||
|  |       continue; | ||
|  |     // T2 needs to match e, where e = (shl d c) for some d.
 | ||
|  |     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); | ||
|  |     if (EN == nullptr) | ||
|  |       continue; | ||
|  |     unsigned EV = EN->getZExtValue(); | ||
|  |     if (EV % (1 << CV) != 0) | ||
|  |       continue; | ||
|  |     unsigned DV = EV / (1 << CV); | ||
|  | 
 | ||
|  |     // Replace T0 with: (shl (add y d) c)
 | ||
|  |     SDLoc DL = SDLoc(I); | ||
|  |     EVT VT = T0.getValueType(); | ||
|  |     SDValue D = DAG.getConstant(DV, DL, VT); | ||
|  |     // NewAdd = (add y d)
 | ||
|  |     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); | ||
|  |     // NewShl = (shl NewAdd c)
 | ||
|  |     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); | ||
|  |     ReplaceNode(T0.getNode(), NewShl.getNode()); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | // Transform: (load ch (add x (and (srl y c) Mask)))
 | ||
|  | //        to: (load ch (add x (shl (srl y d) d-c)))
 | ||
|  | // where
 | ||
|  | // Mask = 00..0 111..1 0.0
 | ||
|  | //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
 | ||
|  | //          |     +-------- 1s
 | ||
|  | //          +-------------- at most c 0s
 | ||
|  | // Motivating example:
 | ||
|  | // DAG combiner optimizes (add x (shl (srl y 5) 2))
 | ||
|  | //                     to (add x (and (srl y 3) 1FFFFFFC))
 | ||
|  | // which results in a constant-extended and(##...,lsr). This transformation
 | ||
|  | // undoes this simplification for cases where the shl can be folded into
 | ||
|  | // an addressing mode.
 | ||
|  | void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { | ||
|  |   SelectionDAG &DAG = *CurDAG; | ||
|  | 
 | ||
|  |   for (SDNode *N : Nodes) { | ||
|  |     unsigned Opc = N->getOpcode(); | ||
|  |     if (Opc != ISD::LOAD && Opc != ISD::STORE) | ||
|  |       continue; | ||
|  |     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); | ||
|  |     // Addr must match: (add x T0)
 | ||
|  |     if (Addr.getOpcode() != ISD::ADD) | ||
|  |       continue; | ||
|  |     SDValue T0 = Addr.getOperand(1); | ||
|  |     // T0 must match: (and T1 Mask)
 | ||
|  |     if (T0.getOpcode() != ISD::AND) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     // We have an AND.
 | ||
|  |     //
 | ||
|  |     // Check the first operand. It must be: (srl y c).
 | ||
|  |     SDValue S = T0.getOperand(0); | ||
|  |     if (S.getOpcode() != ISD::SRL) | ||
|  |       continue; | ||
|  |     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); | ||
|  |     if (SN == nullptr) | ||
|  |       continue; | ||
|  |     if (SN->getAPIntValue().getBitWidth() != 32) | ||
|  |       continue; | ||
|  |     uint32_t CV = SN->getZExtValue(); | ||
|  | 
 | ||
|  |     // Check the second operand: the supposed mask.
 | ||
|  |     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); | ||
|  |     if (MN == nullptr) | ||
|  |       continue; | ||
|  |     if (MN->getAPIntValue().getBitWidth() != 32) | ||
|  |       continue; | ||
|  |     uint32_t Mask = MN->getZExtValue(); | ||
|  |     // Examine the mask.
 | ||
|  |     uint32_t TZ = countTrailingZeros(Mask); | ||
|  |     uint32_t M1 = countTrailingOnes(Mask >> TZ); | ||
|  |     uint32_t LZ = countLeadingZeros(Mask); | ||
|  |     // Trailing zeros + middle ones + leading zeros must equal the width.
 | ||
|  |     if (TZ + M1 + LZ != 32) | ||
|  |       continue; | ||
|  |     // The number of trailing zeros will be encoded in the addressing mode.
 | ||
|  |     if (TZ > 2) | ||
|  |       continue; | ||
|  |     // The number of leading zeros must be at most c.
 | ||
|  |     if (LZ > CV) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     // All looks good.
 | ||
|  |     SDValue Y = S.getOperand(0); | ||
|  |     EVT VT = Addr.getValueType(); | ||
|  |     SDLoc dl(S); | ||
|  |     // TZ = D-C, so D = TZ+C.
 | ||
|  |     SDValue D = DAG.getConstant(TZ+CV, dl, VT); | ||
|  |     SDValue DC = DAG.getConstant(TZ, dl, VT); | ||
|  |     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); | ||
|  |     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); | ||
|  |     ReplaceNode(T0.getNode(), NewShl.getNode()); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
 | ||
|  | //                                                  (op ... 1 ...))
 | ||
|  | void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { | ||
|  |   SelectionDAG &DAG = *CurDAG; | ||
|  | 
 | ||
|  |   for (SDNode *N : Nodes) { | ||
|  |     unsigned Opc = N->getOpcode(); | ||
|  |     if (Opc != ISD::ZERO_EXTEND) | ||
|  |       continue; | ||
|  |     SDValue OpI1 = N->getOperand(0); | ||
|  |     EVT OpVT = OpI1.getValueType(); | ||
|  |     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) | ||
|  |       continue; | ||
|  |     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { | ||
|  |       SDNode *U = *I; | ||
|  |       if (U->getNumValues() != 1) | ||
|  |         continue; | ||
|  |       EVT UVT = U->getValueType(0); | ||
|  |       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) | ||
|  |         continue; | ||
|  |       if (isMemOPCandidate(N, U)) | ||
|  |         continue; | ||
|  | 
 | ||
|  |       // Potentially simplifiable operation.
 | ||
|  |       unsigned I1N = I.getOperandNo(); | ||
|  |       SmallVector<SDValue,2> Ops(U->getNumOperands()); | ||
|  |       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) | ||
|  |         Ops[i] = U->getOperand(i); | ||
|  |       EVT BVT = Ops[I1N].getValueType(); | ||
|  | 
 | ||
|  |       SDLoc dl(U); | ||
|  |       SDValue C0 = DAG.getConstant(0, dl, BVT); | ||
|  |       SDValue C1 = DAG.getConstant(1, dl, BVT); | ||
|  |       SDValue If0, If1; | ||
|  | 
 | ||
|  |       if (isa<MachineSDNode>(U)) { | ||
|  |         unsigned UseOpc = U->getMachineOpcode(); | ||
|  |         Ops[I1N] = C0; | ||
|  |         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); | ||
|  |         Ops[I1N] = C1; | ||
|  |         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); | ||
|  |       } else { | ||
|  |         unsigned UseOpc = U->getOpcode(); | ||
|  |         Ops[I1N] = C0; | ||
|  |         If0 = DAG.getNode(UseOpc, dl, UVT, Ops); | ||
|  |         Ops[I1N] = C1; | ||
|  |         If1 = DAG.getNode(UseOpc, dl, UVT, Ops); | ||
|  |       } | ||
|  |       SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0); | ||
|  |       DAG.ReplaceAllUsesWith(U, Sel.getNode()); | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::PreprocessISelDAG() { | ||
|  |   // Repack all nodes before calling each preprocessing function,
 | ||
|  |   // because each of them can modify the set of nodes.
 | ||
|  |   auto getNodes = [this] () -> std::vector<SDNode*> { | ||
|  |     std::vector<SDNode*> T; | ||
|  |     T.reserve(CurDAG->allnodes_size()); | ||
|  |     for (SDNode &N : CurDAG->allnodes()) | ||
|  |       T.push_back(&N); | ||
|  |     return T; | ||
|  |   }; | ||
|  | 
 | ||
|  |   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
 | ||
|  |   //            (or (select c 0 y) z)  ->  (select c z (or y z))
 | ||
|  |   ppSimplifyOrSelect0(getNodes()); | ||
|  | 
 | ||
|  |   // Transform: (store ch val (add x (add (shl y c) e)))
 | ||
|  |   //        to: (store ch val (add x (shl (add y d) c))),
 | ||
|  |   // where e = (shl d c) for some integer d.
 | ||
|  |   // The purpose of this is to enable generation of loads/stores with
 | ||
|  |   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
 | ||
|  |   // value c must be 0, 1 or 2.
 | ||
|  |   ppAddrReorderAddShl(getNodes()); | ||
|  | 
 | ||
|  |   // Transform: (load ch (add x (and (srl y c) Mask)))
 | ||
|  |   //        to: (load ch (add x (shl (srl y d) d-c)))
 | ||
|  |   // where
 | ||
|  |   // Mask = 00..0 111..1 0.0
 | ||
|  |   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
 | ||
|  |   //          |     +-------- 1s
 | ||
|  |   //          +-------------- at most c 0s
 | ||
|  |   // Motivating example:
 | ||
|  |   // DAG combiner optimizes (add x (shl (srl y 5) 2))
 | ||
|  |   //                     to (add x (and (srl y 3) 1FFFFFFC))
 | ||
|  |   // which results in a constant-extended and(##...,lsr). This transformation
 | ||
|  |   // undoes this simplification for cases where the shl can be folded into
 | ||
|  |   // an addressing mode.
 | ||
|  |   ppAddrRewriteAndSrl(getNodes()); | ||
|  | 
 | ||
|  |   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
 | ||
|  |   //                                                  (op ... 1 ...))
 | ||
|  |   ppHoistZextI1(getNodes()); | ||
|  | 
 | ||
|  |   DEBUG_WITH_TYPE("isel", { | ||
|  |     dbgs() << "Preprocessed (Hexagon) selection DAG:"; | ||
|  |     CurDAG->dump(); | ||
|  |   }); | ||
|  | 
 | ||
|  |   if (EnableAddressRebalancing) { | ||
|  |     rebalanceAddressTrees(); | ||
|  | 
 | ||
|  |     DEBUG_WITH_TYPE("isel", { | ||
|  |       dbgs() << "Address tree balanced selection DAG:"; | ||
|  |       CurDAG->dump(); | ||
|  |     }); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::EmitFunctionEntryCode() { | ||
|  |   auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget()); | ||
|  |   auto &HFI = *HST.getFrameLowering(); | ||
|  |   if (!HFI.needsAligna(*MF)) | ||
|  |     return; | ||
|  | 
 | ||
|  |   MachineFrameInfo &MFI = MF->getFrameInfo(); | ||
|  |   MachineBasicBlock *EntryBB = &MF->front(); | ||
|  |   unsigned AR = FuncInfo->CreateReg(MVT::i32); | ||
|  |   unsigned MaxA = MFI.getMaxAlignment(); | ||
|  |   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR) | ||
|  |       .addImm(MaxA); | ||
|  |   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR); | ||
|  | } | ||
|  | 
 | ||
|  | // Match a frame index that can be used in an addressing mode.
 | ||
|  | bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { | ||
|  |   if (N.getOpcode() != ISD::FrameIndex) | ||
|  |     return false; | ||
|  |   auto &HFI = *HST->getFrameLowering(); | ||
|  |   MachineFrameInfo &MFI = MF->getFrameInfo(); | ||
|  |   int FX = cast<FrameIndexSDNode>(N)->getIndex(); | ||
|  |   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) | ||
|  |     return false; | ||
|  |   R = CurDAG->getTargetFrameIndex(FX, MVT::i32); | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { | ||
|  |   return SelectGlobalAddress(N, R, false, 0); | ||
|  | } | ||
|  | 
 | ||
|  | inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { | ||
|  |   return SelectGlobalAddress(N, R, true, 0); | ||
|  | } | ||
|  | 
 | ||
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { | ||
|  |   return SelectAnyImmediate(N, R, 0); | ||
|  | } | ||
|  | 
 | ||
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { | ||
|  |   return SelectAnyImmediate(N, R, 0); | ||
|  | } | ||
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { | ||
|  |   return SelectAnyImmediate(N, R, 1); | ||
|  | } | ||
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { | ||
|  |   return SelectAnyImmediate(N, R, 2); | ||
|  | } | ||
|  | inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { | ||
|  |   return SelectAnyImmediate(N, R, 3); | ||
|  | } | ||
|  | 
 | ||
|  | inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { | ||
|  |   EVT T = N.getValueType(); | ||
|  |   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) | ||
|  |     return false; | ||
|  |   R = N; | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, | ||
|  |                                              uint32_t LogAlign) { | ||
|  |   auto IsAligned = [LogAlign] (uint64_t V) -> bool { | ||
|  |     return alignTo(V, (uint64_t)1 << LogAlign) == V; | ||
|  |   }; | ||
|  | 
 | ||
|  |   switch (N.getOpcode()) { | ||
|  |   case ISD::Constant: { | ||
|  |     if (N.getValueType() != MVT::i32) | ||
|  |       return false; | ||
|  |     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); | ||
|  |     if (!IsAligned(V)) | ||
|  |       return false; | ||
|  |     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); | ||
|  |     return true; | ||
|  |   } | ||
|  |   case HexagonISD::JT: | ||
|  |   case HexagonISD::CP: | ||
|  |     // These are assumed to always be aligned at at least 8-byte boundary.
 | ||
|  |     if (LogAlign > 3) | ||
|  |       return false; | ||
|  |     R = N.getOperand(0); | ||
|  |     return true; | ||
|  |   case ISD::ExternalSymbol: | ||
|  |     // Symbols may be aligned at any boundary.
 | ||
|  |     if (LogAlign > 0) | ||
|  |       return false; | ||
|  |     R = N; | ||
|  |     return true; | ||
|  |   case ISD::BlockAddress: | ||
|  |     // Block address is always aligned at at least 4-byte boundary.
 | ||
|  |     if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset())) | ||
|  |       return false; | ||
|  |     R = N; | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (SelectGlobalAddress(N, R, false, LogAlign) || | ||
|  |       SelectGlobalAddress(N, R, true, LogAlign)) | ||
|  |     return true; | ||
|  | 
 | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, | ||
|  |                                               bool UseGP, uint32_t LogAlign) { | ||
|  |   auto IsAligned = [LogAlign] (uint64_t V) -> bool { | ||
|  |     return alignTo(V, (uint64_t)1 << LogAlign) == V; | ||
|  |   }; | ||
|  | 
 | ||
|  |   switch (N.getOpcode()) { | ||
|  |   case ISD::ADD: { | ||
|  |     SDValue N0 = N.getOperand(0); | ||
|  |     SDValue N1 = N.getOperand(1); | ||
|  |     unsigned GAOpc = N0.getOpcode(); | ||
|  |     if (UseGP && GAOpc != HexagonISD::CONST32_GP) | ||
|  |       return false; | ||
|  |     if (!UseGP && GAOpc != HexagonISD::CONST32) | ||
|  |       return false; | ||
|  |     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { | ||
|  |       SDValue Addr = N0.getOperand(0); | ||
|  |       // For the purpose of alignment, sextvalue and zextvalue are the same.
 | ||
|  |       if (!IsAligned(Const->getZExtValue())) | ||
|  |         return false; | ||
|  |       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { | ||
|  |         if (GA->getOpcode() == ISD::TargetGlobalAddress) { | ||
|  |           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); | ||
|  |           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), | ||
|  |                                              N.getValueType(), NewOff); | ||
|  |           return true; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  |     break; | ||
|  |   } | ||
|  |   case HexagonISD::CP: | ||
|  |   case HexagonISD::JT: | ||
|  |   case HexagonISD::CONST32: | ||
|  |     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
 | ||
|  |     // want in the instruction.
 | ||
|  |     if (!UseGP) | ||
|  |       R = N.getOperand(0); | ||
|  |     return !UseGP; | ||
|  |   case HexagonISD::CONST32_GP: | ||
|  |     if (UseGP) | ||
|  |       R = N.getOperand(0); | ||
|  |     return UseGP; | ||
|  |   default: | ||
|  |     return false; | ||
|  |   } | ||
|  | 
 | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { | ||
|  |   // This (complex pattern) function is meant to detect a sign-extension
 | ||
|  |   // i32->i64 on a per-operand basis. This would allow writing single
 | ||
|  |   // patterns that would cover a number of combinations of different ways
 | ||
|  |   // a sign-extensions could be written. For example:
 | ||
|  |   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
 | ||
|  |   // could match either one of these:
 | ||
|  |   //   (mul (sext x) (sext_inreg y))
 | ||
|  |   //   (mul (sext-load *p) (sext_inreg y))
 | ||
|  |   //   (mul (sext_inreg x) (sext y))
 | ||
|  |   // etc.
 | ||
|  |   //
 | ||
|  |   // The returned value will have type i64 and its low word will
 | ||
|  |   // contain the value being extended. The high bits are not specified.
 | ||
|  |   // The returned type is i64 because the original type of N was i64,
 | ||
|  |   // but the users of this function should only use the low-word of the
 | ||
|  |   // result, e.g.
 | ||
|  |   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
 | ||
|  | 
 | ||
|  |   if (N.getValueType() != MVT::i64) | ||
|  |     return false; | ||
|  |   unsigned Opc = N.getOpcode(); | ||
|  |   switch (Opc) { | ||
|  |     case ISD::SIGN_EXTEND: | ||
|  |     case ISD::SIGN_EXTEND_INREG: { | ||
|  |       // sext_inreg has the source type as a separate operand.
 | ||
|  |       EVT T = Opc == ISD::SIGN_EXTEND | ||
|  |                 ? N.getOperand(0).getValueType() | ||
|  |                 : cast<VTSDNode>(N.getOperand(1))->getVT(); | ||
|  |       if (T.getSizeInBits() != 32) | ||
|  |         return false; | ||
|  |       R = N.getOperand(0); | ||
|  |       break; | ||
|  |     } | ||
|  |     case ISD::LOAD: { | ||
|  |       LoadSDNode *L = cast<LoadSDNode>(N); | ||
|  |       if (L->getExtensionType() != ISD::SEXTLOAD) | ||
|  |         return false; | ||
|  |       // All extending loads extend to i32, so even if the value in
 | ||
|  |       // memory is shorter than 32 bits, it will be i32 after the load.
 | ||
|  |       if (L->getMemoryVT().getSizeInBits() > 32) | ||
|  |         return false; | ||
|  |       R = N; | ||
|  |       break; | ||
|  |     } | ||
|  |     default: | ||
|  |       return false; | ||
|  |   } | ||
|  |   EVT RT = R.getValueType(); | ||
|  |   if (RT == MVT::i64) | ||
|  |     return true; | ||
|  |   assert(RT == MVT::i32); | ||
|  |   // This is only to produce a value of type i64. Do not rely on the
 | ||
|  |   // high bits produced by this.
 | ||
|  |   const SDLoc &dl(N); | ||
|  |   SDValue Ops[] = { | ||
|  |     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), | ||
|  |     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), | ||
|  |     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) | ||
|  |   }; | ||
|  |   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, | ||
|  |                                      MVT::i64, Ops); | ||
|  |   R = SDValue(T, 0); | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, | ||
|  |       SDValue &Src) { | ||
|  |   unsigned Opc = Val.getOpcode(); | ||
|  |   switch (Opc) { | ||
|  |   case ISD::SIGN_EXTEND: | ||
|  |   case ISD::ZERO_EXTEND: | ||
|  |   case ISD::ANY_EXTEND: { | ||
|  |     const SDValue &Op0 = Val.getOperand(0); | ||
|  |     EVT T = Op0.getValueType(); | ||
|  |     if (T.isInteger() && T.getSizeInBits() == NumBits) { | ||
|  |       Src = Op0; | ||
|  |       return true; | ||
|  |     } | ||
|  |     break; | ||
|  |   } | ||
|  |   case ISD::SIGN_EXTEND_INREG: | ||
|  |   case ISD::AssertSext: | ||
|  |   case ISD::AssertZext: | ||
|  |     if (Val.getOperand(0).getValueType().isInteger()) { | ||
|  |       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); | ||
|  |       if (T->getVT().getSizeInBits() == NumBits) { | ||
|  |         Src = Val.getOperand(0); | ||
|  |         return true; | ||
|  |       } | ||
|  |     } | ||
|  |     break; | ||
|  |   case ISD::AND: { | ||
|  |     // Check if this is an AND with NumBits of lower bits set to 1.
 | ||
|  |     uint64_t Mask = (1 << NumBits) - 1; | ||
|  |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { | ||
|  |       if (C->getZExtValue() == Mask) { | ||
|  |         Src = Val.getOperand(1); | ||
|  |         return true; | ||
|  |       } | ||
|  |     } | ||
|  |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { | ||
|  |       if (C->getZExtValue() == Mask) { | ||
|  |         Src = Val.getOperand(0); | ||
|  |         return true; | ||
|  |       } | ||
|  |     } | ||
|  |     break; | ||
|  |   } | ||
|  |   case ISD::OR: | ||
|  |   case ISD::XOR: { | ||
|  |     // OR/XOR with the lower NumBits bits set to 0.
 | ||
|  |     uint64_t Mask = (1 << NumBits) - 1; | ||
|  |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { | ||
|  |       if ((C->getZExtValue() & Mask) == 0) { | ||
|  |         Src = Val.getOperand(1); | ||
|  |         return true; | ||
|  |       } | ||
|  |     } | ||
|  |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { | ||
|  |       if ((C->getZExtValue() & Mask) == 0) { | ||
|  |         Src = Val.getOperand(0); | ||
|  |         return true; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   default: | ||
|  |     break; | ||
|  |   } | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { | ||
|  |   return N->getAlignment() >= N->getMemoryVT().getStoreSize(); | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { | ||
|  |   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); | ||
|  |   switch (N->getMemoryVT().getStoreSize()) { | ||
|  |     case 1: | ||
|  |       return StackSize <= 56;   // 1*2^6 - 8
 | ||
|  |     case 2: | ||
|  |       return StackSize <= 120;  // 2*2^6 - 8
 | ||
|  |     case 4: | ||
|  |       return StackSize <= 248;  // 4*2^6 - 8
 | ||
|  |     default: | ||
|  |       return false; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | // Return true when the given node fits in a positive half word.
 | ||
|  | bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { | ||
|  |   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { | ||
|  |     int64_t V = CN->getSExtValue(); | ||
|  |     return V > 0 && isInt<16>(V); | ||
|  |   } | ||
|  |   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { | ||
|  |     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); | ||
|  |     return VN->getVT().getSizeInBits() <= 16; | ||
|  |   } | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { | ||
|  |   return !CheckSingleUse || N->hasOneUse(); | ||
|  | } | ||
|  | 
 | ||
|  | ////////////////////////////////////////////////////////////////////////////////
 | ||
|  | // Rebalancing of address calculation trees
 | ||
|  | 
 | ||
|  | static bool isOpcodeHandled(const SDNode *N) { | ||
|  |   switch (N->getOpcode()) { | ||
|  |     case ISD::ADD: | ||
|  |     case ISD::MUL: | ||
|  |       return true; | ||
|  |     case ISD::SHL: | ||
|  |       // We only handle constant shifts because these can be easily flattened
 | ||
|  |       // into multiplications by 2^Op1.
 | ||
|  |       return isa<ConstantSDNode>(N->getOperand(1).getNode()); | ||
|  |     default: | ||
|  |       return false; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /// \brief Return the weight of an SDNode
 | ||
|  | int HexagonDAGToDAGISel::getWeight(SDNode *N) { | ||
|  |   if (!isOpcodeHandled(N)) | ||
|  |     return 1; | ||
|  |   assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); | ||
|  |   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); | ||
|  |   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); | ||
|  |   return RootWeights[N]; | ||
|  | } | ||
|  | 
 | ||
|  | int HexagonDAGToDAGISel::getHeight(SDNode *N) { | ||
|  |   if (!isOpcodeHandled(N)) | ||
|  |     return 0; | ||
|  |   assert(RootWeights.count(N) && RootWeights[N] >= 0 && | ||
|  |       "Cannot query height of unvisited/RAUW'd node!"); | ||
|  |   return RootHeights[N]; | ||
|  | } | ||
|  | 
 | ||
|  | namespace { | ||
|  | struct WeightedLeaf { | ||
|  |   SDValue Value; | ||
|  |   int Weight; | ||
|  |   int InsertionOrder; | ||
|  | 
 | ||
|  |   WeightedLeaf() : Value(SDValue()) { } | ||
|  | 
 | ||
|  |   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : | ||
|  |     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { | ||
|  |     assert(Weight >= 0 && "Weight must be >= 0"); | ||
|  |   } | ||
|  | 
 | ||
|  |   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { | ||
|  |     assert(A.Value.getNode() && B.Value.getNode()); | ||
|  |     return A.Weight == B.Weight ? | ||
|  |             (A.InsertionOrder > B.InsertionOrder) : | ||
|  |             (A.Weight > B.Weight); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /// A specialized priority queue for WeigthedLeaves. It automatically folds
 | ||
|  | /// constants and allows removal of non-top elements while maintaining the
 | ||
|  | /// priority order.
 | ||
|  | class LeafPrioQueue { | ||
|  |   SmallVector<WeightedLeaf, 8> Q; | ||
|  |   bool HaveConst; | ||
|  |   WeightedLeaf ConstElt; | ||
|  |   unsigned Opcode; | ||
|  | 
 | ||
|  | public: | ||
|  |   bool empty() { | ||
|  |     return (!HaveConst && Q.empty()); | ||
|  |   } | ||
|  | 
 | ||
|  |   size_t size() { | ||
|  |     return Q.size() + HaveConst; | ||
|  |   } | ||
|  | 
 | ||
|  |   bool hasConst() { | ||
|  |     return HaveConst; | ||
|  |   } | ||
|  | 
 | ||
|  |   const WeightedLeaf &top() { | ||
|  |     if (HaveConst) | ||
|  |       return ConstElt; | ||
|  |     return Q.front(); | ||
|  |   } | ||
|  | 
 | ||
|  |   WeightedLeaf pop() { | ||
|  |     if (HaveConst) { | ||
|  |       HaveConst = false; | ||
|  |       return ConstElt; | ||
|  |     } | ||
|  |     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | ||
|  |     return Q.pop_back_val(); | ||
|  |   } | ||
|  | 
 | ||
|  |   void push(WeightedLeaf L, bool SeparateConst=true) { | ||
|  |     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { | ||
|  |       if (Opcode == ISD::MUL && | ||
|  |           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) | ||
|  |         return; | ||
|  |       if (Opcode == ISD::ADD && | ||
|  |           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) | ||
|  |         return; | ||
|  | 
 | ||
|  |       HaveConst = true; | ||
|  |       ConstElt = L; | ||
|  |     } else { | ||
|  |       Q.push_back(L); | ||
|  |       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Push L to the bottom of the queue regardless of its weight. If L is
 | ||
|  |   /// constant, it will not be folded with other constants in the queue.
 | ||
|  |   void pushToBottom(WeightedLeaf L) { | ||
|  |     L.Weight = 1000; | ||
|  |     push(L, false); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
 | ||
|  |   /// lowest weight and remove it from the queue.
 | ||
|  |   WeightedLeaf findSHL(uint64_t MaxAmount); | ||
|  | 
 | ||
|  |   WeightedLeaf findMULbyConst(); | ||
|  | 
 | ||
|  |   LeafPrioQueue(unsigned Opcode) : | ||
|  |     HaveConst(false), Opcode(Opcode) { } | ||
|  | }; | ||
|  | } // end anonymous namespace
 | ||
|  | 
 | ||
|  | WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { | ||
|  |   int ResultPos; | ||
|  |   WeightedLeaf Result; | ||
|  | 
 | ||
|  |   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { | ||
|  |     const WeightedLeaf &L = Q[Pos]; | ||
|  |     const SDValue &Val = L.Value; | ||
|  |     if (Val.getOpcode() != ISD::SHL || | ||
|  |         !isa<ConstantSDNode>(Val.getOperand(1)) || | ||
|  |         Val.getConstantOperandVal(1) > MaxAmount) | ||
|  |       continue; | ||
|  |     if (!Result.Value.getNode() || Result.Weight > L.Weight || | ||
|  |         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) | ||
|  |     { | ||
|  |       Result = L; | ||
|  |       ResultPos = Pos; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (Result.Value.getNode()) { | ||
|  |     Q.erase(&Q[ResultPos]); | ||
|  |     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | ||
|  |   } | ||
|  | 
 | ||
|  |   return Result; | ||
|  | } | ||
|  | 
 | ||
|  | WeightedLeaf LeafPrioQueue::findMULbyConst() { | ||
|  |   int ResultPos; | ||
|  |   WeightedLeaf Result; | ||
|  | 
 | ||
|  |   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { | ||
|  |     const WeightedLeaf &L = Q[Pos]; | ||
|  |     const SDValue &Val = L.Value; | ||
|  |     if (Val.getOpcode() != ISD::MUL || | ||
|  |         !isa<ConstantSDNode>(Val.getOperand(1)) || | ||
|  |         Val.getConstantOperandVal(1) > 127) | ||
|  |       continue; | ||
|  |     if (!Result.Value.getNode() || Result.Weight > L.Weight || | ||
|  |         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) | ||
|  |     { | ||
|  |       Result = L; | ||
|  |       ResultPos = Pos; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (Result.Value.getNode()) { | ||
|  |     Q.erase(&Q[ResultPos]); | ||
|  |     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); | ||
|  |   } | ||
|  | 
 | ||
|  |   return Result; | ||
|  | } | ||
|  | 
 | ||
|  | SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { | ||
|  |   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); | ||
|  |   return CurDAG->getConstant(MulFactor, SDLoc(N), | ||
|  |                              N->getOperand(1).getValueType()); | ||
|  | } | ||
|  | 
 | ||
|  | /// @returns the value x for which 2^x is a factor of Val
 | ||
|  | static unsigned getPowerOf2Factor(SDValue Val) { | ||
|  |   if (Val.getOpcode() == ISD::MUL) { | ||
|  |     unsigned MaxFactor = 0; | ||
|  |     for (int i = 0; i < 2; ++i) { | ||
|  |       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); | ||
|  |       if (!C) | ||
|  |         continue; | ||
|  |       const APInt &CInt = C->getAPIntValue(); | ||
|  |       if (CInt.getBoolValue()) | ||
|  |         MaxFactor = CInt.countTrailingZeros(); | ||
|  |     } | ||
|  |     return MaxFactor; | ||
|  |   } | ||
|  |   if (Val.getOpcode() == ISD::SHL) { | ||
|  |     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) | ||
|  |       return 0; | ||
|  |     return (unsigned) Val.getConstantOperandVal(1); | ||
|  |   } | ||
|  | 
 | ||
|  |   return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /// @returns true if V>>Amount will eliminate V's operation on its child
 | ||
|  | static bool willShiftRightEliminate(SDValue V, unsigned Amount) { | ||
|  |   if (V.getOpcode() == ISD::MUL) { | ||
|  |     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; | ||
|  |     for (int i = 0; i < 2; ++i) | ||
|  |       if (isa<ConstantSDNode>(Ops[i].getNode()) && | ||
|  |           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { | ||
|  |         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; | ||
|  |         return (NewConst == 1); | ||
|  |       } | ||
|  |   } else if (V.getOpcode() == ISD::SHL) { | ||
|  |     return (Amount == V.getConstantOperandVal(1)); | ||
|  |   } | ||
|  | 
 | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { | ||
|  |   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; | ||
|  |   if (V.getOpcode() == ISD::MUL) { | ||
|  |     for (int i=0; i < 2; ++i) { | ||
|  |       if (isa<ConstantSDNode>(Ops[i].getNode()) && | ||
|  |           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { | ||
|  |         uint64_t NewConst = V.getConstantOperandVal(i) >> Power; | ||
|  |         if (NewConst == 1) | ||
|  |           return Ops[!i]; | ||
|  |         Ops[i] = CurDAG->getConstant(NewConst, | ||
|  |                                      SDLoc(V), V.getValueType()); | ||
|  |         break; | ||
|  |       } | ||
|  |     } | ||
|  |   } else if (V.getOpcode() == ISD::SHL) { | ||
|  |     uint64_t ShiftAmount = V.getConstantOperandVal(1); | ||
|  |     if (ShiftAmount == Power) | ||
|  |       return Ops[0]; | ||
|  |     Ops[1] = CurDAG->getConstant(ShiftAmount - Power, | ||
|  |                                  SDLoc(V), V.getValueType()); | ||
|  |   } | ||
|  | 
 | ||
|  |   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); | ||
|  | } | ||
|  | 
 | ||
|  | static bool isTargetConstant(const SDValue &V) { | ||
|  |   return V.getOpcode() == HexagonISD::CONST32 || | ||
|  |          V.getOpcode() == HexagonISD::CONST32_GP; | ||
|  | } | ||
|  | 
 | ||
|  | unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { | ||
|  |   if (GAUsesInFunction.count(V)) | ||
|  |     return GAUsesInFunction[V]; | ||
|  | 
 | ||
|  |   unsigned Result = 0; | ||
|  |   const Function &CurF = CurDAG->getMachineFunction().getFunction(); | ||
|  |   for (const User *U : V->users()) { | ||
|  |     if (isa<Instruction>(U) && | ||
|  |         cast<Instruction>(U)->getParent()->getParent() == &CurF) | ||
|  |       ++Result; | ||
|  |   } | ||
|  | 
 | ||
|  |   GAUsesInFunction[V] = Result; | ||
|  | 
 | ||
|  |   return Result; | ||
|  | } | ||
|  | 
 | ||
|  | /// Note - After calling this, N may be dead. It may have been replaced by a
 | ||
|  | /// new node, so always use the returned value in place of N.
 | ||
|  | ///
 | ||
|  | /// @returns The SDValue taking the place of N (which could be N if it is
 | ||
|  | /// unchanged)
 | ||
|  | SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { | ||
|  |   assert(RootWeights.count(N) && "Cannot balance non-root node."); | ||
|  |   assert(RootWeights[N] != -2 && "This node was RAUW'd!"); | ||
|  |   assert(!TopLevel || N->getOpcode() == ISD::ADD); | ||
|  | 
 | ||
|  |   // Return early if this node was already visited
 | ||
|  |   if (RootWeights[N] != -1) | ||
|  |     return SDValue(N, 0); | ||
|  | 
 | ||
|  |   assert(isOpcodeHandled(N)); | ||
|  | 
 | ||
|  |   SDValue Op0 = N->getOperand(0); | ||
|  |   SDValue Op1 = N->getOperand(1); | ||
|  | 
 | ||
|  |   // Return early if the operands will remain unchanged or are all roots
 | ||
|  |   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && | ||
|  |       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { | ||
|  |     SDNode *Op0N = Op0.getNode(); | ||
|  |     int Weight; | ||
|  |     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { | ||
|  |       Weight = getWeight(balanceSubTree(Op0N).getNode()); | ||
|  |       // Weight = calculateWeight(Op0N);
 | ||
|  |     } else | ||
|  |       Weight = getWeight(Op0N); | ||
|  | 
 | ||
|  |     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
 | ||
|  |     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { | ||
|  |       Weight += getWeight(balanceSubTree(Op1N).getNode()); | ||
|  |       // Weight += calculateWeight(Op1N);
 | ||
|  |     } else | ||
|  |       Weight += getWeight(Op1N); | ||
|  | 
 | ||
|  |     RootWeights[N] = Weight; | ||
|  |     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), | ||
|  |                               getHeight(N->getOperand(1).getNode())) + 1; | ||
|  | 
 | ||
|  |     DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight | ||
|  |                  << " Height=" << RootHeights[N] << "): "); | ||
|  |     DEBUG(N->dump()); | ||
|  | 
 | ||
|  |     return SDValue(N, 0); | ||
|  |   } | ||
|  | 
 | ||
|  |   DEBUG(dbgs() << "** Balancing root node: "); | ||
|  |   DEBUG(N->dump()); | ||
|  | 
 | ||
|  |   unsigned NOpcode = N->getOpcode(); | ||
|  | 
 | ||
|  |   LeafPrioQueue Leaves(NOpcode); | ||
|  |   SmallVector<SDValue, 4> Worklist; | ||
|  |   Worklist.push_back(SDValue(N, 0)); | ||
|  | 
 | ||
|  |   // SHL nodes will be converted to MUL nodes
 | ||
|  |   if (NOpcode == ISD::SHL) | ||
|  |     NOpcode = ISD::MUL; | ||
|  | 
 | ||
|  |   bool CanFactorize = false; | ||
|  |   WeightedLeaf Mul1, Mul2; | ||
|  |   unsigned MaxPowerOf2 = 0; | ||
|  |   WeightedLeaf GA; | ||
|  | 
 | ||
|  |   // Do not try to factor out a shift if there is already a shift at the tip of
 | ||
|  |   // the tree.
 | ||
|  |   bool HaveTopLevelShift = false; | ||
|  |   if (TopLevel && | ||
|  |       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && | ||
|  |                         Op0.getConstantOperandVal(1) < 4) || | ||
|  |        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && | ||
|  |                         Op1.getConstantOperandVal(1) < 4))) | ||
|  |     HaveTopLevelShift = true; | ||
|  | 
 | ||
|  |   // Flatten the subtree into an ordered list of leaves; at the same time
 | ||
|  |   // determine whether the tree is already balanced.
 | ||
|  |   int InsertionOrder = 0; | ||
|  |   SmallDenseMap<SDValue, int> NodeHeights; | ||
|  |   bool Imbalanced = false; | ||
|  |   int CurrentWeight = 0; | ||
|  |   while (!Worklist.empty()) { | ||
|  |     SDValue Child = Worklist.pop_back_val(); | ||
|  | 
 | ||
|  |     if (Child.getNode() != N && RootWeights.count(Child.getNode())) { | ||
|  |       // CASE 1: Child is a root note
 | ||
|  | 
 | ||
|  |       int Weight = RootWeights[Child.getNode()]; | ||
|  |       if (Weight == -1) { | ||
|  |         Child = balanceSubTree(Child.getNode()); | ||
|  |         // calculateWeight(Child.getNode());
 | ||
|  |         Weight = getWeight(Child.getNode()); | ||
|  |       } else if (Weight == -2) { | ||
|  |         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
 | ||
|  |         // made. Our worklist isn't up to date anymore.
 | ||
|  |         // Restart the whole process.
 | ||
|  |         DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); | ||
|  |         return balanceSubTree(N, TopLevel); | ||
|  |       } | ||
|  | 
 | ||
|  |       NodeHeights[Child] = 1; | ||
|  |       CurrentWeight += Weight; | ||
|  | 
 | ||
|  |       unsigned PowerOf2; | ||
|  |       if (TopLevel && !CanFactorize && !HaveTopLevelShift && | ||
|  |           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && | ||
|  |           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { | ||
|  |         // Try to identify two factorizable MUL/SHL children greedily. Leave
 | ||
|  |         // them out of the priority queue for now so we can deal with them
 | ||
|  |         // after.
 | ||
|  |         if (!Mul1.Value.getNode()) { | ||
|  |           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); | ||
|  |           MaxPowerOf2 = PowerOf2; | ||
|  |         } else { | ||
|  |           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); | ||
|  |           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); | ||
|  | 
 | ||
|  |           // Our addressing modes can only shift by a maximum of 3
 | ||
|  |           if (MaxPowerOf2 > 3) | ||
|  |             MaxPowerOf2 = 3; | ||
|  | 
 | ||
|  |           CanFactorize = true; | ||
|  |         } | ||
|  |       } else | ||
|  |         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); | ||
|  |     } else if (!isOpcodeHandled(Child.getNode())) { | ||
|  |       // CASE 2: Child is an unhandled kind of node (e.g. constant)
 | ||
|  |       int Weight = getWeight(Child.getNode()); | ||
|  | 
 | ||
|  |       NodeHeights[Child] = getHeight(Child.getNode()); | ||
|  |       CurrentWeight += Weight; | ||
|  | 
 | ||
|  |       if (isTargetConstant(Child) && !GA.Value.getNode()) | ||
|  |         GA = WeightedLeaf(Child, Weight, InsertionOrder++); | ||
|  |       else | ||
|  |         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); | ||
|  |     } else { | ||
|  |       // CASE 3: Child is a subtree of same opcode
 | ||
|  |       // Visit children first, then flatten.
 | ||
|  |       unsigned ChildOpcode = Child.getOpcode(); | ||
|  |       assert(ChildOpcode == NOpcode || | ||
|  |              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); | ||
|  | 
 | ||
|  |       // Convert SHL to MUL
 | ||
|  |       SDValue Op1; | ||
|  |       if (ChildOpcode == ISD::SHL) | ||
|  |         Op1 = getMultiplierForSHL(Child.getNode()); | ||
|  |       else | ||
|  |         Op1 = Child->getOperand(1); | ||
|  | 
 | ||
|  |       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { | ||
|  |         assert(!NodeHeights.count(Child) && "Parent visited before children?"); | ||
|  |         // Visit children first, then re-visit this node
 | ||
|  |         Worklist.push_back(Child); | ||
|  |         Worklist.push_back(Op1); | ||
|  |         Worklist.push_back(Child->getOperand(0)); | ||
|  |       } else { | ||
|  |         // Back at this node after visiting the children
 | ||
|  |         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) | ||
|  |           Imbalanced = true; | ||
|  | 
 | ||
|  |         NodeHeights[Child] = std::max(NodeHeights[Op1], | ||
|  |                                       NodeHeights[Child->getOperand(0)]) + 1; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] | ||
|  |                << " weight=" << CurrentWeight << " imbalanced=" | ||
|  |                << Imbalanced << "\n"); | ||
|  | 
 | ||
|  |   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
 | ||
|  |   //  This factors out a shift in order to match memw(a<<Y+b).
 | ||
|  |   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || | ||
|  |                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { | ||
|  |     DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); | ||
|  |     int Weight = Mul1.Weight + Mul2.Weight; | ||
|  |     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; | ||
|  |     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); | ||
|  |     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); | ||
|  |     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), | ||
|  |                                   Mul1Factored, Mul2Factored); | ||
|  |     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), | ||
|  |                                         Mul1.Value.getValueType()); | ||
|  |     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), | ||
|  |                                   Sum, Const); | ||
|  |     NodeHeights[New] = Height; | ||
|  |     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); | ||
|  |   } else if (Mul1.Value.getNode()) { | ||
|  |     // We failed to factorize two MULs, so now the Muls are left outside the
 | ||
|  |     // queue... add them back.
 | ||
|  |     Leaves.push(Mul1); | ||
|  |     if (Mul2.Value.getNode()) | ||
|  |       Leaves.push(Mul2); | ||
|  |     CanFactorize = false; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
 | ||
|  |   // and the root node itself is not used more than twice. This reduces the
 | ||
|  |   // amount of additional constant extenders introduced by this optimization.
 | ||
|  |   bool CombinedGA = false; | ||
|  |   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && | ||
|  |       GA.Value.hasOneUse() && N->use_size() < 3) { | ||
|  |     GlobalAddressSDNode *GANode = | ||
|  |       cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); | ||
|  |     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); | ||
|  | 
 | ||
|  |     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && | ||
|  |         getTargetLowering()->isOffsetFoldingLegal(GANode)) { | ||
|  |       DEBUG(dbgs() << "--> Combining GA and offset (" << Offset->getSExtValue() | ||
|  |           << "): "); | ||
|  |       DEBUG(GANode->dump()); | ||
|  | 
 | ||
|  |       SDValue NewTGA = | ||
|  |         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), | ||
|  |             GANode->getValueType(0), | ||
|  |             GANode->getOffset() + (uint64_t)Offset->getSExtValue()); | ||
|  |       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), | ||
|  |           GA.Value.getValueType(), NewTGA); | ||
|  |       GA.Weight += Leaves.top().Weight; | ||
|  | 
 | ||
|  |       NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); | ||
|  |       CombinedGA = true; | ||
|  | 
 | ||
|  |       Leaves.pop(); // Remove the offset constant from the queue
 | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || | ||
|  |       (RebalanceOnlyImbalancedTrees && !Imbalanced)) { | ||
|  |     RootWeights[N] = CurrentWeight; | ||
|  |     RootHeights[N] = NodeHeights[SDValue(N, 0)]; | ||
|  | 
 | ||
|  |     return SDValue(N, 0); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
 | ||
|  |   if (NOpcode == ISD::ADD && GA.Value.getNode()) { | ||
|  |     WeightedLeaf SHL = Leaves.findSHL(31); | ||
|  |     if (SHL.Value.getNode()) { | ||
|  |       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; | ||
|  |       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), | ||
|  |                                  GA.Value.getValueType(), | ||
|  |                                  GA.Value, SHL.Value); | ||
|  |       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
 | ||
|  |       NodeHeights[GA.Value] = Height; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (GA.Value.getNode()) | ||
|  |     Leaves.push(GA); | ||
|  | 
 | ||
|  |   // If this is the top level and we haven't factored out a shift, we should try
 | ||
|  |   // to move a constant to the bottom to match addressing modes like memw(rX+C)
 | ||
|  |   if (TopLevel && !CanFactorize && Leaves.hasConst()) { | ||
|  |     DEBUG(dbgs() << "--> Pushing constant to tip of tree."); | ||
|  |     Leaves.pushToBottom(Leaves.pop()); | ||
|  |   } | ||
|  | 
 | ||
|  |   const DataLayout &DL = CurDAG->getDataLayout(); | ||
|  |   const TargetLowering &TLI = *getTargetLowering(); | ||
|  | 
 | ||
|  |   // Rebuild the tree using Huffman's algorithm
 | ||
|  |   while (Leaves.size() > 1) { | ||
|  |     WeightedLeaf L0 = Leaves.pop(); | ||
|  | 
 | ||
|  |     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
 | ||
|  |     // otherwise just get the next leaf
 | ||
|  |     WeightedLeaf L1 = Leaves.findMULbyConst(); | ||
|  |     if (!L1.Value.getNode()) | ||
|  |       L1 = Leaves.pop(); | ||
|  | 
 | ||
|  |     assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); | ||
|  | 
 | ||
|  |     SDValue V0 = L0.Value; | ||
|  |     int V0Weight = L0.Weight; | ||
|  |     SDValue V1 = L1.Value; | ||
|  |     int V1Weight = L1.Weight; | ||
|  | 
 | ||
|  |     // Make sure that none of these nodes have been RAUW'd
 | ||
|  |     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || | ||
|  |         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { | ||
|  |       DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); | ||
|  |       return balanceSubTree(N, TopLevel); | ||
|  |     } | ||
|  | 
 | ||
|  |     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); | ||
|  |     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); | ||
|  |     EVT VT = N->getValueType(0); | ||
|  |     SDValue NewNode; | ||
|  | 
 | ||
|  |     if (V0C && !V1C) { | ||
|  |       std::swap(V0, V1); | ||
|  |       std::swap(V0C, V1C); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Calculate height of this node
 | ||
|  |     assert(NodeHeights.count(V0) && NodeHeights.count(V1) && | ||
|  |            "Children must have been visited before re-combining them!"); | ||
|  |     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; | ||
|  | 
 | ||
|  |     // Rebuild this node (and restore SHL from MUL if needed)
 | ||
|  |     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) | ||
|  |       NewNode = CurDAG->getNode( | ||
|  |           ISD::SHL, SDLoc(V0), VT, V0, | ||
|  |           CurDAG->getConstant( | ||
|  |               V1C->getAPIntValue().logBase2(), SDLoc(N), | ||
|  |               TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); | ||
|  |     else | ||
|  |       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); | ||
|  | 
 | ||
|  |     NodeHeights[NewNode] = Height; | ||
|  | 
 | ||
|  |     int Weight = V0Weight + V1Weight; | ||
|  |     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); | ||
|  | 
 | ||
|  |     DEBUG(dbgs() << "--> Built new node (Weight=" << Weight << ",Height=" | ||
|  |                  << Height << "):\n"); | ||
|  |     DEBUG(NewNode.dump()); | ||
|  |   } | ||
|  | 
 | ||
|  |   assert(Leaves.size() == 1); | ||
|  |   SDValue NewRoot = Leaves.top().Value; | ||
|  | 
 | ||
|  |   assert(NodeHeights.count(NewRoot)); | ||
|  |   int Height = NodeHeights[NewRoot]; | ||
|  | 
 | ||
|  |   // Restore SHL if we earlier converted it to a MUL
 | ||
|  |   if (NewRoot.getOpcode() == ISD::MUL) { | ||
|  |     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); | ||
|  |     if (V1C && V1C->getAPIntValue().isPowerOf2()) { | ||
|  |       EVT VT = NewRoot.getValueType(); | ||
|  |       SDValue V0 = NewRoot.getOperand(0); | ||
|  |       NewRoot = CurDAG->getNode( | ||
|  |           ISD::SHL, SDLoc(NewRoot), VT, V0, | ||
|  |           CurDAG->getConstant( | ||
|  |               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), | ||
|  |               TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (N != NewRoot.getNode()) { | ||
|  |     DEBUG(dbgs() << "--> Root is now: "); | ||
|  |     DEBUG(NewRoot.dump()); | ||
|  | 
 | ||
|  |     // Replace all uses of old root by new root
 | ||
|  |     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); | ||
|  |     // Mark that we have RAUW'd N
 | ||
|  |     RootWeights[N] = -2; | ||
|  |   } else { | ||
|  |     DEBUG(dbgs() << "--> Root unchanged.\n"); | ||
|  |   } | ||
|  | 
 | ||
|  |   RootWeights[NewRoot.getNode()] = Leaves.top().Weight; | ||
|  |   RootHeights[NewRoot.getNode()] = Height; | ||
|  | 
 | ||
|  |   return NewRoot; | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::rebalanceAddressTrees() { | ||
|  |   for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) { | ||
|  |     SDNode *N = &*I++; | ||
|  |     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); | ||
|  |     if (BasePtr.getOpcode() != ISD::ADD) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     // We've already processed this node
 | ||
|  |     if (RootWeights.count(BasePtr.getNode())) | ||
|  |       continue; | ||
|  | 
 | ||
|  |     DEBUG(dbgs() << "** Rebalancing address calculation in node: "); | ||
|  |     DEBUG(N->dump()); | ||
|  | 
 | ||
|  |     // FindRoots
 | ||
|  |     SmallVector<SDNode *, 4> Worklist; | ||
|  | 
 | ||
|  |     Worklist.push_back(BasePtr.getOperand(0).getNode()); | ||
|  |     Worklist.push_back(BasePtr.getOperand(1).getNode()); | ||
|  | 
 | ||
|  |     while (!Worklist.empty()) { | ||
|  |       SDNode *N = Worklist.pop_back_val(); | ||
|  |       unsigned Opcode = N->getOpcode(); | ||
|  | 
 | ||
|  |       if (!isOpcodeHandled(N)) | ||
|  |         continue; | ||
|  | 
 | ||
|  |       Worklist.push_back(N->getOperand(0).getNode()); | ||
|  |       Worklist.push_back(N->getOperand(1).getNode()); | ||
|  | 
 | ||
|  |       // Not a root if it has only one use and same opcode as its parent
 | ||
|  |       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) | ||
|  |         continue; | ||
|  | 
 | ||
|  |       // This root node has already been processed
 | ||
|  |       if (RootWeights.count(N)) | ||
|  |         continue; | ||
|  | 
 | ||
|  |       RootWeights[N] = -1; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Balance node itself
 | ||
|  |     RootWeights[BasePtr.getNode()] = -1; | ||
|  |     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); | ||
|  | 
 | ||
|  |     if (N->getOpcode() == ISD::LOAD) | ||
|  |       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), | ||
|  |             NewBasePtr, N->getOperand(2)); | ||
|  |     else | ||
|  |       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), | ||
|  |             NewBasePtr, N->getOperand(3)); | ||
|  | 
 | ||
|  |     DEBUG(dbgs() << "--> Final node: "); | ||
|  |     DEBUG(N->dump()); | ||
|  |   } | ||
|  | 
 | ||
|  |   CurDAG->RemoveDeadNodes(); | ||
|  |   GAUsesInFunction.clear(); | ||
|  |   RootHeights.clear(); | ||
|  |   RootWeights.clear(); | ||
|  | } | ||
|  | 
 |