You've already forked linux-packaging-mono
							
							
		
			
	
	
		
			414 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			414 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
 | ||
|  | //
 | ||
|  | //                     The LLVM Compiler Infrastructure
 | ||
|  | //
 | ||
|  | // This file is distributed under the University of Illinois Open Source
 | ||
|  | // License. See LICENSE.TXT for details.
 | ||
|  | //
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // When profitable, replace GPR targeting i64 instructions with their
 | ||
|  | // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
 | ||
|  | // as minimizing the number of cross-class register copies.
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // TODO: Graph based predicate heuristics.
 | ||
|  | // Walking the instruction list linearly will get many, perhaps most, of
 | ||
|  | // the cases, but to do a truly thorough job of this, we need a more
 | ||
|  | // wholistic approach.
 | ||
|  | //
 | ||
|  | // This optimization is very similar in spirit to the register allocator's
 | ||
|  | // spill placement, only here we're determining where to place cross-class
 | ||
|  | // register copies rather than spills. As such, a similar approach is
 | ||
|  | // called for.
 | ||
|  | //
 | ||
|  | // We want to build up a set of graphs of all instructions which are candidates
 | ||
|  | // for transformation along with instructions which generate their inputs and
 | ||
|  | // consume their outputs. For each edge in the graph, we assign a weight
 | ||
|  | // based on whether there is a copy required there (weight zero if not) and
 | ||
|  | // the block frequency of the block containing the defining or using
 | ||
|  | // instruction, whichever is less. Our optimization is then a graph problem
 | ||
|  | // to minimize the total weight of all the graphs, then transform instructions
 | ||
|  | // and add or remove copy instructions as called for to implement the
 | ||
|  | // solution.
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | #include "AArch64.h"
 | ||
|  | #include "AArch64InstrInfo.h"
 | ||
|  | #include "AArch64RegisterInfo.h"
 | ||
|  | #include "llvm/ADT/Statistic.h"
 | ||
|  | #include "llvm/CodeGen/MachineFunction.h"
 | ||
|  | #include "llvm/CodeGen/MachineFunctionPass.h"
 | ||
|  | #include "llvm/CodeGen/MachineInstr.h"
 | ||
|  | #include "llvm/CodeGen/MachineInstrBuilder.h"
 | ||
|  | #include "llvm/CodeGen/MachineRegisterInfo.h"
 | ||
|  | #include "llvm/Support/CommandLine.h"
 | ||
|  | #include "llvm/Support/Debug.h"
 | ||
|  | #include "llvm/Support/raw_ostream.h"
 | ||
|  | using namespace llvm; | ||
|  | 
 | ||
|  | #define DEBUG_TYPE "aarch64-simd-scalar"
 | ||
|  | 
 | ||
|  | // Allow forcing all i64 operations with equivalent SIMD instructions to use
 | ||
|  | // them. For stress-testing the transformation function.
 | ||
|  | static cl::opt<bool> | ||
|  | TransformAll("aarch64-simd-scalar-force-all", | ||
|  |              cl::desc("Force use of AdvSIMD scalar instructions everywhere"), | ||
|  |              cl::init(false), cl::Hidden); | ||
|  | 
 | ||
|  | STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used"); | ||
|  | STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted"); | ||
|  | STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted"); | ||
|  | 
 | ||
|  | #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
 | ||
|  | 
 | ||
|  | namespace { | ||
|  | class AArch64AdvSIMDScalar : public MachineFunctionPass { | ||
|  |   MachineRegisterInfo *MRI; | ||
|  |   const TargetInstrInfo *TII; | ||
|  | 
 | ||
|  | private: | ||
|  |   // isProfitableToTransform - Predicate function to determine whether an
 | ||
|  |   // instruction should be transformed to its equivalent AdvSIMD scalar
 | ||
|  |   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
 | ||
|  |   bool isProfitableToTransform(const MachineInstr &MI) const; | ||
|  | 
 | ||
|  |   // transformInstruction - Perform the transformation of an instruction
 | ||
|  |   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
 | ||
|  |   // to be the correct register class, minimizing cross-class copies.
 | ||
|  |   void transformInstruction(MachineInstr &MI); | ||
|  | 
 | ||
|  |   // processMachineBasicBlock - Main optimzation loop.
 | ||
|  |   bool processMachineBasicBlock(MachineBasicBlock *MBB); | ||
|  | 
 | ||
|  | public: | ||
|  |   static char ID; // Pass identification, replacement for typeid.
 | ||
|  |   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) { | ||
|  |     initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry()); | ||
|  |   } | ||
|  | 
 | ||
|  |   bool runOnMachineFunction(MachineFunction &F) override; | ||
|  | 
 | ||
|  |   StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; } | ||
|  | 
 | ||
|  |   void getAnalysisUsage(AnalysisUsage &AU) const override { | ||
|  |     AU.setPreservesCFG(); | ||
|  |     MachineFunctionPass::getAnalysisUsage(AU); | ||
|  |   } | ||
|  | }; | ||
|  | char AArch64AdvSIMDScalar::ID = 0; | ||
|  | } // end anonymous namespace
 | ||
|  | 
 | ||
|  | INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar", | ||
|  |                 AARCH64_ADVSIMD_NAME, false, false) | ||
|  | 
 | ||
|  | static bool isGPR64(unsigned Reg, unsigned SubReg, | ||
|  |                     const MachineRegisterInfo *MRI) { | ||
|  |   if (SubReg) | ||
|  |     return false; | ||
|  |   if (TargetRegisterInfo::isVirtualRegister(Reg)) | ||
|  |     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass); | ||
|  |   return AArch64::GPR64RegClass.contains(Reg); | ||
|  | } | ||
|  | 
 | ||
|  | static bool isFPR64(unsigned Reg, unsigned SubReg, | ||
|  |                     const MachineRegisterInfo *MRI) { | ||
|  |   if (TargetRegisterInfo::isVirtualRegister(Reg)) | ||
|  |     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) && | ||
|  |             SubReg == 0) || | ||
|  |            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) && | ||
|  |             SubReg == AArch64::dsub); | ||
|  |   // Physical register references just check the register class directly.
 | ||
|  |   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) || | ||
|  |          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub); | ||
|  | } | ||
|  | 
 | ||
|  | // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
 | ||
|  | // copy instruction. Return zero_reg if the instruction is not a copy.
 | ||
|  | static MachineOperand *getSrcFromCopy(MachineInstr *MI, | ||
|  |                                       const MachineRegisterInfo *MRI, | ||
|  |                                       unsigned &SubReg) { | ||
|  |   SubReg = 0; | ||
|  |   // The "FMOV Xd, Dn" instruction is the typical form.
 | ||
|  |   if (MI->getOpcode() == AArch64::FMOVDXr || | ||
|  |       MI->getOpcode() == AArch64::FMOVXDr) | ||
|  |     return &MI->getOperand(1); | ||
|  |   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
 | ||
|  |   // these at this stage, but it's easy to check for.
 | ||
|  |   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) { | ||
|  |     SubReg = AArch64::dsub; | ||
|  |     return &MI->getOperand(1); | ||
|  |   } | ||
|  |   // Or just a plain COPY instruction. This can be directly to/from FPR64,
 | ||
|  |   // or it can be a dsub subreg reference to an FPR128.
 | ||
|  |   if (MI->getOpcode() == AArch64::COPY) { | ||
|  |     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), | ||
|  |                 MRI) && | ||
|  |         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) | ||
|  |       return &MI->getOperand(1); | ||
|  |     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), | ||
|  |                 MRI) && | ||
|  |         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), | ||
|  |                 MRI)) { | ||
|  |       SubReg = MI->getOperand(1).getSubReg(); | ||
|  |       return &MI->getOperand(1); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // Otherwise, this is some other kind of instruction.
 | ||
|  |   return nullptr; | ||
|  | } | ||
|  | 
 | ||
|  | // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
 | ||
|  | // that we're considering transforming to, return that AdvSIMD opcode. For all
 | ||
|  | // others, return the original opcode.
 | ||
|  | static unsigned getTransformOpcode(unsigned Opc) { | ||
|  |   switch (Opc) { | ||
|  |   default: | ||
|  |     break; | ||
|  |   // FIXME: Lots more possibilities.
 | ||
|  |   case AArch64::ADDXrr: | ||
|  |     return AArch64::ADDv1i64; | ||
|  |   case AArch64::SUBXrr: | ||
|  |     return AArch64::SUBv1i64; | ||
|  |   case AArch64::ANDXrr: | ||
|  |     return AArch64::ANDv8i8; | ||
|  |   case AArch64::EORXrr: | ||
|  |     return AArch64::EORv8i8; | ||
|  |   case AArch64::ORRXrr: | ||
|  |     return AArch64::ORRv8i8; | ||
|  |   } | ||
|  |   // No AdvSIMD equivalent, so just return the original opcode.
 | ||
|  |   return Opc; | ||
|  | } | ||
|  | 
 | ||
|  | static bool isTransformable(const MachineInstr &MI) { | ||
|  |   unsigned Opc = MI.getOpcode(); | ||
|  |   return Opc != getTransformOpcode(Opc); | ||
|  | } | ||
|  | 
 | ||
|  | // isProfitableToTransform - Predicate function to determine whether an
 | ||
|  | // instruction should be transformed to its equivalent AdvSIMD scalar
 | ||
|  | // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
 | ||
|  | bool AArch64AdvSIMDScalar::isProfitableToTransform( | ||
|  |     const MachineInstr &MI) const { | ||
|  |   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
 | ||
|  |   // early exit since that's the common case.
 | ||
|  |   if (!isTransformable(MI)) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   // Count the number of copies we'll need to add and approximate the number
 | ||
|  |   // of copies that a transform will enable us to remove.
 | ||
|  |   unsigned NumNewCopies = 3; | ||
|  |   unsigned NumRemovableCopies = 0; | ||
|  | 
 | ||
|  |   unsigned OrigSrc0 = MI.getOperand(1).getReg(); | ||
|  |   unsigned OrigSrc1 = MI.getOperand(2).getReg(); | ||
|  |   unsigned SubReg0; | ||
|  |   unsigned SubReg1; | ||
|  |   if (!MRI->def_empty(OrigSrc0)) { | ||
|  |     MachineRegisterInfo::def_instr_iterator Def = | ||
|  |         MRI->def_instr_begin(OrigSrc0); | ||
|  |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | ||
|  |     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); | ||
|  |     // If the source was from a copy, we don't need to insert a new copy.
 | ||
|  |     if (MOSrc0) | ||
|  |       --NumNewCopies; | ||
|  |     // If there are no other users of the original source, we can delete
 | ||
|  |     // that instruction.
 | ||
|  |     if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0)) | ||
|  |       ++NumRemovableCopies; | ||
|  |   } | ||
|  |   if (!MRI->def_empty(OrigSrc1)) { | ||
|  |     MachineRegisterInfo::def_instr_iterator Def = | ||
|  |         MRI->def_instr_begin(OrigSrc1); | ||
|  |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | ||
|  |     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); | ||
|  |     if (MOSrc1) | ||
|  |       --NumNewCopies; | ||
|  |     // If there are no other users of the original source, we can delete
 | ||
|  |     // that instruction.
 | ||
|  |     if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1)) | ||
|  |       ++NumRemovableCopies; | ||
|  |   } | ||
|  | 
 | ||
|  |   // If any of the uses of the original instructions is a cross class copy,
 | ||
|  |   // that's a copy that will be removable if we transform. Likewise, if
 | ||
|  |   // any of the uses is a transformable instruction, it's likely the tranforms
 | ||
|  |   // will chain, enabling us to save a copy there, too. This is an aggressive
 | ||
|  |   // heuristic that approximates the graph based cost analysis described above.
 | ||
|  |   unsigned Dst = MI.getOperand(0).getReg(); | ||
|  |   bool AllUsesAreCopies = true; | ||
|  |   for (MachineRegisterInfo::use_instr_nodbg_iterator | ||
|  |            Use = MRI->use_instr_nodbg_begin(Dst), | ||
|  |            E = MRI->use_instr_nodbg_end(); | ||
|  |        Use != E; ++Use) { | ||
|  |     unsigned SubReg; | ||
|  |     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use)) | ||
|  |       ++NumRemovableCopies; | ||
|  |     // If the use is an INSERT_SUBREG, that's still something that can
 | ||
|  |     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
 | ||
|  |     // preferable to have it use the FPR64 in most cases, as if the source
 | ||
|  |     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
 | ||
|  |     // Ditto for a lane insert.
 | ||
|  |     else if (Use->getOpcode() == AArch64::INSERT_SUBREG || | ||
|  |              Use->getOpcode() == AArch64::INSvi64gpr) | ||
|  |       ; | ||
|  |     else | ||
|  |       AllUsesAreCopies = false; | ||
|  |   } | ||
|  |   // If all of the uses of the original destination register are copies to
 | ||
|  |   // FPR64, then we won't end up having a new copy back to GPR64 either.
 | ||
|  |   if (AllUsesAreCopies) | ||
|  |     --NumNewCopies; | ||
|  | 
 | ||
|  |   // If a transform will not increase the number of cross-class copies required,
 | ||
|  |   // return true.
 | ||
|  |   if (NumNewCopies <= NumRemovableCopies) | ||
|  |     return true; | ||
|  | 
 | ||
|  |   // Finally, even if we otherwise wouldn't transform, check if we're forcing
 | ||
|  |   // transformation of everything.
 | ||
|  |   return TransformAll; | ||
|  | } | ||
|  | 
 | ||
|  | static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI, | ||
|  |                                 unsigned Dst, unsigned Src, bool IsKill) { | ||
|  |   MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), | ||
|  |                                     TII->get(AArch64::COPY), Dst) | ||
|  |                                 .addReg(Src, getKillRegState(IsKill)); | ||
|  |   DEBUG(dbgs() << "    adding copy: " << *MIB); | ||
|  |   ++NumCopiesInserted; | ||
|  |   return MIB; | ||
|  | } | ||
|  | 
 | ||
|  | // transformInstruction - Perform the transformation of an instruction
 | ||
|  | // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
 | ||
|  | // to be the correct register class, minimizing cross-class copies.
 | ||
|  | void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) { | ||
|  |   DEBUG(dbgs() << "Scalar transform: " << MI); | ||
|  | 
 | ||
|  |   MachineBasicBlock *MBB = MI.getParent(); | ||
|  |   unsigned OldOpc = MI.getOpcode(); | ||
|  |   unsigned NewOpc = getTransformOpcode(OldOpc); | ||
|  |   assert(OldOpc != NewOpc && "transform an instruction to itself?!"); | ||
|  | 
 | ||
|  |   // Check if we need a copy for the source registers.
 | ||
|  |   unsigned OrigSrc0 = MI.getOperand(1).getReg(); | ||
|  |   unsigned OrigSrc1 = MI.getOperand(2).getReg(); | ||
|  |   unsigned Src0 = 0, SubReg0; | ||
|  |   unsigned Src1 = 0, SubReg1; | ||
|  |   bool KillSrc0 = false, KillSrc1 = false; | ||
|  |   if (!MRI->def_empty(OrigSrc0)) { | ||
|  |     MachineRegisterInfo::def_instr_iterator Def = | ||
|  |         MRI->def_instr_begin(OrigSrc0); | ||
|  |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | ||
|  |     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); | ||
|  |     // If there are no other users of the original source, we can delete
 | ||
|  |     // that instruction.
 | ||
|  |     if (MOSrc0) { | ||
|  |       Src0 = MOSrc0->getReg(); | ||
|  |       KillSrc0 = MOSrc0->isKill(); | ||
|  |       // Src0 is going to be reused, thus, it cannot be killed anymore.
 | ||
|  |       MOSrc0->setIsKill(false); | ||
|  |       if (MRI->hasOneNonDBGUse(OrigSrc0)) { | ||
|  |         assert(MOSrc0 && "Can't delete copy w/o a valid original source!"); | ||
|  |         Def->eraseFromParent(); | ||
|  |         ++NumCopiesDeleted; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   if (!MRI->def_empty(OrigSrc1)) { | ||
|  |     MachineRegisterInfo::def_instr_iterator Def = | ||
|  |         MRI->def_instr_begin(OrigSrc1); | ||
|  |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | ||
|  |     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); | ||
|  |     // If there are no other users of the original source, we can delete
 | ||
|  |     // that instruction.
 | ||
|  |     if (MOSrc1) { | ||
|  |       Src1 = MOSrc1->getReg(); | ||
|  |       KillSrc1 = MOSrc1->isKill(); | ||
|  |       // Src0 is going to be reused, thus, it cannot be killed anymore.
 | ||
|  |       MOSrc1->setIsKill(false); | ||
|  |       if (MRI->hasOneNonDBGUse(OrigSrc1)) { | ||
|  |         assert(MOSrc1 && "Can't delete copy w/o a valid original source!"); | ||
|  |         Def->eraseFromParent(); | ||
|  |         ++NumCopiesDeleted; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   // If we weren't able to reference the original source directly, create a
 | ||
|  |   // copy.
 | ||
|  |   if (!Src0) { | ||
|  |     SubReg0 = 0; | ||
|  |     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | ||
|  |     insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0); | ||
|  |     KillSrc0 = true; | ||
|  |   } | ||
|  |   if (!Src1) { | ||
|  |     SubReg1 = 0; | ||
|  |     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | ||
|  |     insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1); | ||
|  |     KillSrc1 = true; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Create a vreg for the destination.
 | ||
|  |   // FIXME: No need to do this if the ultimate user expects an FPR64.
 | ||
|  |   // Check for that and avoid the copy if possible.
 | ||
|  |   unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | ||
|  | 
 | ||
|  |   // For now, all of the new instructions have the same simple three-register
 | ||
|  |   // form, so no need to special case based on what instruction we're
 | ||
|  |   // building.
 | ||
|  |   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst) | ||
|  |       .addReg(Src0, getKillRegState(KillSrc0), SubReg0) | ||
|  |       .addReg(Src1, getKillRegState(KillSrc1), SubReg1); | ||
|  | 
 | ||
|  |   // Now copy the result back out to a GPR.
 | ||
|  |   // FIXME: Try to avoid this if all uses could actually just use the FPR64
 | ||
|  |   // directly.
 | ||
|  |   insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true); | ||
|  | 
 | ||
|  |   // Erase the old instruction.
 | ||
|  |   MI.eraseFromParent(); | ||
|  | 
 | ||
|  |   ++NumScalarInsnsUsed; | ||
|  | } | ||
|  | 
 | ||
|  | // processMachineBasicBlock - Main optimzation loop.
 | ||
|  | bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { | ||
|  |   bool Changed = false; | ||
|  |   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { | ||
|  |     MachineInstr &MI = *I++; | ||
|  |     if (isProfitableToTransform(MI)) { | ||
|  |       transformInstruction(MI); | ||
|  |       Changed = true; | ||
|  |     } | ||
|  |   } | ||
|  |   return Changed; | ||
|  | } | ||
|  | 
 | ||
|  | // runOnMachineFunction - Pass entry point from PassManager.
 | ||
|  | bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { | ||
|  |   bool Changed = false; | ||
|  |   DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n"); | ||
|  | 
 | ||
|  |   if (skipFunction(mf.getFunction())) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   MRI = &mf.getRegInfo(); | ||
|  |   TII = mf.getSubtarget().getInstrInfo(); | ||
|  | 
 | ||
|  |   // Just check things on a one-block-at-a-time basis.
 | ||
|  |   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) | ||
|  |     if (processMachineBasicBlock(&*I)) | ||
|  |       Changed = true; | ||
|  |   return Changed; | ||
|  | } | ||
|  | 
 | ||
|  | // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
 | ||
|  | // to add the pass to the PassManager.
 | ||
|  | FunctionPass *llvm::createAArch64AdvSIMDScalar() { | ||
|  |   return new AArch64AdvSIMDScalar(); | ||
|  | } |