You've already forked linux-packaging-mono
							
							
		
			
	
	
		
			596 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			TableGen
		
	
	
	
	
	
		
		
			
		
	
	
			596 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			TableGen
		
	
	
	
	
	
|   | //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
 | ||
|  | //
 | ||
|  | //                     The LLVM Compiler Infrastructure
 | ||
|  | //
 | ||
|  | // This file is distributed under the University of Illinois Open Source
 | ||
|  | // License. See LICENSE.TXT for details.
 | ||
|  | //
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Class definitions
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | class ImmediateAsmOperand<string name> | ||
|  |   : AsmOperandClass { | ||
|  |   let Name = name; | ||
|  |   let RenderMethod = "addImmOperands"; | ||
|  | } | ||
|  | class ImmediateTLSAsmOperand<string name> | ||
|  |   : AsmOperandClass { | ||
|  |   let Name = name; | ||
|  |   let RenderMethod = "addImmTLSOperands"; | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs both a DAG pattern and instruction operand for an immediate
 | ||
|  | // of type VT.  PRED returns true if a node is acceptable and XFORM returns
 | ||
|  | // the operand value associated with the node.  ASMOP is the name of the
 | ||
|  | // associated asm operand, and also forms the basis of the asm print method.
 | ||
|  | class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> | ||
|  |   : PatLeaf<(vt imm), pred, xform>, Operand<vt> { | ||
|  |   let PrintMethod = "print"##asmop##"Operand"; | ||
|  |   let DecoderMethod = "decode"##asmop##"Operand"; | ||
|  |   let ParserMatchClass = !cast<AsmOperandClass>(asmop); | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs an asm operand for a PC-relative address.  SIZE says how
 | ||
|  | // many bits there are.
 | ||
|  | class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> { | ||
|  |   let PredicateMethod = "isImm"; | ||
|  |   let ParserMethod = "parsePCRel"##size; | ||
|  | } | ||
|  | class PCRelTLSAsmOperand<string size> | ||
|  |   : ImmediateTLSAsmOperand<"PCRelTLS"##size> { | ||
|  |   let PredicateMethod = "isImmTLS"; | ||
|  |   let ParserMethod = "parsePCRelTLS"##size; | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs an operand for a PC-relative address with address type VT.
 | ||
|  | // ASMOP is the associated asm operand.
 | ||
|  | class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { | ||
|  |   let PrintMethod = "printPCRelOperand"; | ||
|  |   let ParserMatchClass = asmop; | ||
|  | } | ||
|  | class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { | ||
|  |   let PrintMethod = "printPCRelTLSOperand"; | ||
|  |   let ParserMatchClass = asmop; | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs both a DAG pattern and instruction operand for a PC-relative
 | ||
|  | // address with address size VT.  SELF is the name of the operand and
 | ||
|  | // ASMOP is the associated asm operand.
 | ||
|  | class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop> | ||
|  |   : ComplexPattern<vt, 1, "selectPCRelAddress", | ||
|  |                    [z_pcrel_wrapper, z_pcrel_offset]>, | ||
|  |     PCRelOperand<vt, asmop> { | ||
|  |   let MIOperandInfo = (ops !cast<Operand>(self)); | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs an AsmOperandClass for addressing mode FORMAT, treating the
 | ||
|  | // registers as having BITSIZE bits and displacements as having DISPSIZE bits.
 | ||
|  | // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
 | ||
|  | // is "".
 | ||
|  | class AddressAsmOperand<string format, string bitsize, string dispsize, | ||
|  |                         string length = ""> | ||
|  |   : AsmOperandClass { | ||
|  |   let Name = format##bitsize##"Disp"##dispsize##length; | ||
|  |   let ParserMethod = "parse"##format##bitsize; | ||
|  |   let RenderMethod = "add"##format##"Operands"; | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs an instruction operand for an addressing mode.  FORMAT,
 | ||
|  | // BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
 | ||
|  | // AddressAsmOperand.  OPERANDS is a list of individual operands
 | ||
|  | // (base register, displacement, etc.).
 | ||
|  | class AddressOperand<string bitsize, string dispsize, string length, | ||
|  |                      string format, dag operands> | ||
|  |   : Operand<!cast<ValueType>("i"##bitsize)> { | ||
|  |   let PrintMethod = "print"##format##"Operand"; | ||
|  |   let EncoderMethod = "get"##format##dispsize##length##"Encoding"; | ||
|  |   let DecoderMethod = | ||
|  |     "decode"##format##bitsize##"Disp"##dispsize##length##"Operand"; | ||
|  |   let MIOperandInfo = operands; | ||
|  |   let ParserMatchClass = | ||
|  |     !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length); | ||
|  | } | ||
|  | 
 | ||
|  | // Constructs both a DAG pattern and instruction operand for an addressing mode.
 | ||
|  | // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
 | ||
|  | // AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
 | ||
|  | // (base register, displacement, etc.).  SELTYPE is the type of the memory
 | ||
|  | // operand for selection purposes; sometimes we want different selection
 | ||
|  | // choices for the same underlying addressing mode.  SUFFIX is similarly
 | ||
|  | // a suffix appended to the displacement for selection purposes;
 | ||
|  | // e.g. we want to reject small 20-bit displacements if a 12-bit form
 | ||
|  | // also exists, but we want to accept them otherwise.
 | ||
|  | class AddressingMode<string seltype, string bitsize, string dispsize, | ||
|  |                      string suffix, string length, int numops, string format, | ||
|  |                      dag operands> | ||
|  |   : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, | ||
|  |                    "select"##seltype##dispsize##suffix##length, | ||
|  |                    [add, sub, or, frameindex, z_adjdynalloc]>, | ||
|  |     AddressOperand<bitsize, dispsize, length, format, operands>; | ||
|  | 
 | ||
|  | // An addressing mode with a base and displacement but no index.
 | ||
|  | class BDMode<string type, string bitsize, string dispsize, string suffix> | ||
|  |   : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr", | ||
|  |                    (ops !cast<RegisterOperand>("ADDR"##bitsize), | ||
|  |                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; | ||
|  | 
 | ||
|  | // An addressing mode with a base, displacement and index.
 | ||
|  | class BDXMode<string type, string bitsize, string dispsize, string suffix> | ||
|  |   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr", | ||
|  |                    (ops !cast<RegisterOperand>("ADDR"##bitsize), | ||
|  |                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize), | ||
|  |                         !cast<RegisterOperand>("ADDR"##bitsize))>; | ||
|  | 
 | ||
|  | // A BDMode paired with an immediate length operand of LENSIZE bits.
 | ||
|  | class BDLMode<string type, string bitsize, string dispsize, string suffix, | ||
|  |               string lensize> | ||
|  |   : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3, | ||
|  |                    "BDLAddr", | ||
|  |                    (ops !cast<RegisterOperand>("ADDR"##bitsize), | ||
|  |                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize), | ||
|  |                         !cast<Immediate>("imm"##bitsize))>; | ||
|  | 
 | ||
|  | // A BDMode paired with a register length operand.
 | ||
|  | class BDRMode<string type, string bitsize, string dispsize, string suffix> | ||
|  |   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr", | ||
|  |                    (ops !cast<RegisterOperand>("ADDR"##bitsize), | ||
|  |                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize), | ||
|  |                         !cast<RegisterOperand>("GR"##bitsize))>; | ||
|  | 
 | ||
|  | // An addressing mode with a base, displacement and a vector index.
 | ||
|  | class BDVMode<string bitsize, string dispsize> | ||
|  |   : AddressOperand<bitsize, dispsize, "", "BDVAddr", | ||
|  |                    (ops !cast<RegisterOperand>("ADDR"##bitsize), | ||
|  |                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize), | ||
|  |                         !cast<RegisterOperand>("VR128"))>; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Extracting immediate operands from nodes
 | ||
|  | // These all create MVT::i64 nodes to ensure the value is not sign-extended
 | ||
|  | // when converted from an SDNode to a MachineOperand later on.
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // Bits 0-15 (counting from the lsb).
 | ||
|  | def LL16 : SDNodeXForm<imm, [{ | ||
|  |   uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; | ||
|  |   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Bits 16-31 (counting from the lsb).
 | ||
|  | def LH16 : SDNodeXForm<imm, [{ | ||
|  |   uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; | ||
|  |   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Bits 32-47 (counting from the lsb).
 | ||
|  | def HL16 : SDNodeXForm<imm, [{ | ||
|  |   uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; | ||
|  |   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Bits 48-63 (counting from the lsb).
 | ||
|  | def HH16 : SDNodeXForm<imm, [{ | ||
|  |   uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; | ||
|  |   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Low 32 bits.
 | ||
|  | def LF32 : SDNodeXForm<imm, [{ | ||
|  |   uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; | ||
|  |   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // High 32 bits.
 | ||
|  | def HF32 : SDNodeXForm<imm, [{ | ||
|  |   uint64_t Value = N->getZExtValue() >> 32; | ||
|  |   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 8-bit signed quantity.
 | ||
|  | def SIMM8 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 8-bit unsigned quantity.
 | ||
|  | def UIMM8 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
 | ||
|  | def UIMM8EVEN : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 12-bit unsigned quantity.
 | ||
|  | def UIMM12 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 16-bit signed quantity.
 | ||
|  | def SIMM16 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 16-bit unsigned quantity.
 | ||
|  | def UIMM16 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 32-bit signed quantity.
 | ||
|  | def SIMM32 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 32-bit unsigned quantity.
 | ||
|  | def UIMM32 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Truncate an immediate to a 48-bit unsigned quantity.
 | ||
|  | def UIMM48 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff, | ||
|  |                                    SDLoc(N), MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | // Negate and then truncate an immediate to a 32-bit unsigned quantity.
 | ||
|  | def NEGIMM32 : SDNodeXForm<imm, [{ | ||
|  |   return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N), | ||
|  |                                    MVT::i64); | ||
|  | }]>; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Immediate asm operands.
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | def U1Imm  : ImmediateAsmOperand<"U1Imm">; | ||
|  | def U2Imm  : ImmediateAsmOperand<"U2Imm">; | ||
|  | def U3Imm  : ImmediateAsmOperand<"U3Imm">; | ||
|  | def U4Imm  : ImmediateAsmOperand<"U4Imm">; | ||
|  | def U6Imm  : ImmediateAsmOperand<"U6Imm">; | ||
|  | def S8Imm  : ImmediateAsmOperand<"S8Imm">; | ||
|  | def U8Imm  : ImmediateAsmOperand<"U8Imm">; | ||
|  | def U12Imm : ImmediateAsmOperand<"U12Imm">; | ||
|  | def S16Imm : ImmediateAsmOperand<"S16Imm">; | ||
|  | def U16Imm : ImmediateAsmOperand<"U16Imm">; | ||
|  | def S32Imm : ImmediateAsmOperand<"S32Imm">; | ||
|  | def U32Imm : ImmediateAsmOperand<"U32Imm">; | ||
|  | def U48Imm : ImmediateAsmOperand<"U48Imm">; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // i32 immediates
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // Immediates for the lower and upper 16 bits of an i32, with the other
 | ||
|  | // bits of the i32 being zero.
 | ||
|  | def imm32ll16 : Immediate<i32, [{ | ||
|  |   return SystemZ::isImmLL(N->getZExtValue()); | ||
|  | }], LL16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm32lh16 : Immediate<i32, [{ | ||
|  |   return SystemZ::isImmLH(N->getZExtValue()); | ||
|  | }], LH16, "U16Imm">; | ||
|  | 
 | ||
|  | // Immediates for the lower and upper 16 bits of an i32, with the other
 | ||
|  | // bits of the i32 being one.
 | ||
|  | def imm32ll16c : Immediate<i32, [{ | ||
|  |   return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); | ||
|  | }], LL16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm32lh16c : Immediate<i32, [{ | ||
|  |   return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); | ||
|  | }], LH16, "U16Imm">; | ||
|  | 
 | ||
|  | // Short immediates
 | ||
|  | def imm32zx1 : Immediate<i32, [{ | ||
|  |   return isUInt<1>(N->getZExtValue()); | ||
|  | }], NOOP_SDNodeXForm, "U1Imm">; | ||
|  | 
 | ||
|  | def imm32zx2 : Immediate<i32, [{ | ||
|  |   return isUInt<2>(N->getZExtValue()); | ||
|  | }], NOOP_SDNodeXForm, "U2Imm">; | ||
|  | 
 | ||
|  | def imm32zx3 : Immediate<i32, [{ | ||
|  |   return isUInt<3>(N->getZExtValue()); | ||
|  | }], NOOP_SDNodeXForm, "U3Imm">; | ||
|  | 
 | ||
|  | def imm32zx4 : Immediate<i32, [{ | ||
|  |   return isUInt<4>(N->getZExtValue()); | ||
|  | }], NOOP_SDNodeXForm, "U4Imm">; | ||
|  | 
 | ||
|  | // Note: this enforces an even value during code generation only.
 | ||
|  | // When used from the assembler, any 4-bit value is allowed.
 | ||
|  | def imm32zx4even : Immediate<i32, [{ | ||
|  |   return isUInt<4>(N->getZExtValue()); | ||
|  | }], UIMM8EVEN, "U4Imm">; | ||
|  | 
 | ||
|  | def imm32zx6 : Immediate<i32, [{ | ||
|  |   return isUInt<6>(N->getZExtValue()); | ||
|  | }], NOOP_SDNodeXForm, "U6Imm">; | ||
|  | 
 | ||
|  | def imm32sx8 : Immediate<i32, [{ | ||
|  |   return isInt<8>(N->getSExtValue()); | ||
|  | }], SIMM8, "S8Imm">; | ||
|  | 
 | ||
|  | def imm32zx8 : Immediate<i32, [{ | ||
|  |   return isUInt<8>(N->getZExtValue()); | ||
|  | }], UIMM8, "U8Imm">; | ||
|  | 
 | ||
|  | def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; | ||
|  | 
 | ||
|  | def imm32zx12 : Immediate<i32, [{ | ||
|  |   return isUInt<12>(N->getZExtValue()); | ||
|  | }], UIMM12, "U12Imm">; | ||
|  | 
 | ||
|  | def imm32sx16 : Immediate<i32, [{ | ||
|  |   return isInt<16>(N->getSExtValue()); | ||
|  | }], SIMM16, "S16Imm">; | ||
|  | 
 | ||
|  | def imm32zx16 : Immediate<i32, [{ | ||
|  |   return isUInt<16>(N->getZExtValue()); | ||
|  | }], UIMM16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; | ||
|  | 
 | ||
|  | // Full 32-bit immediates.  we need both signed and unsigned versions
 | ||
|  | // because the assembler is picky.  E.g. AFI requires signed operands
 | ||
|  | // while NILF requires unsigned ones.
 | ||
|  | def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; | ||
|  | def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; | ||
|  | 
 | ||
|  | def imm32 : ImmLeaf<i32, [{}]>; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // 64-bit immediates
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // Immediates for 16-bit chunks of an i64, with the other bits of the
 | ||
|  | // i32 being zero.
 | ||
|  | def imm64ll16 : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmLL(N->getZExtValue()); | ||
|  | }], LL16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64lh16 : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmLH(N->getZExtValue()); | ||
|  | }], LH16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64hl16 : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmHL(N->getZExtValue()); | ||
|  | }], HL16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64hh16 : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmHH(N->getZExtValue()); | ||
|  | }], HH16, "U16Imm">; | ||
|  | 
 | ||
|  | // Immediates for 16-bit chunks of an i64, with the other bits of the
 | ||
|  | // i32 being one.
 | ||
|  | def imm64ll16c : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); | ||
|  | }], LL16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64lh16c : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); | ||
|  | }], LH16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64hl16c : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); | ||
|  | }], HL16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64hh16c : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); | ||
|  | }], HH16, "U16Imm">; | ||
|  | 
 | ||
|  | // Immediates for the lower and upper 32 bits of an i64, with the other
 | ||
|  | // bits of the i32 being zero.
 | ||
|  | def imm64lf32 : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmLF(N->getZExtValue()); | ||
|  | }], LF32, "U32Imm">; | ||
|  | 
 | ||
|  | def imm64hf32 : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmHF(N->getZExtValue()); | ||
|  | }], HF32, "U32Imm">; | ||
|  | 
 | ||
|  | // Immediates for the lower and upper 32 bits of an i64, with the other
 | ||
|  | // bits of the i32 being one.
 | ||
|  | def imm64lf32c : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); | ||
|  | }], LF32, "U32Imm">; | ||
|  | 
 | ||
|  | def imm64hf32c : Immediate<i64, [{ | ||
|  |   return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); | ||
|  | }], HF32, "U32Imm">; | ||
|  | 
 | ||
|  | // Short immediates.
 | ||
|  | def imm64sx8 : Immediate<i64, [{ | ||
|  |   return isInt<8>(N->getSExtValue()); | ||
|  | }], SIMM8, "S8Imm">; | ||
|  | 
 | ||
|  | def imm64zx8 : Immediate<i64, [{ | ||
|  |   return isUInt<8>(N->getSExtValue()); | ||
|  | }], UIMM8, "U8Imm">; | ||
|  | 
 | ||
|  | def imm64sx16 : Immediate<i64, [{ | ||
|  |   return isInt<16>(N->getSExtValue()); | ||
|  | }], SIMM16, "S16Imm">; | ||
|  | 
 | ||
|  | def imm64zx16 : Immediate<i64, [{ | ||
|  |   return isUInt<16>(N->getZExtValue()); | ||
|  | }], UIMM16, "U16Imm">; | ||
|  | 
 | ||
|  | def imm64sx32 : Immediate<i64, [{ | ||
|  |   return isInt<32>(N->getSExtValue()); | ||
|  | }], SIMM32, "S32Imm">; | ||
|  | 
 | ||
|  | def imm64zx32 : Immediate<i64, [{ | ||
|  |   return isUInt<32>(N->getZExtValue()); | ||
|  | }], UIMM32, "U32Imm">; | ||
|  | 
 | ||
|  | def imm64zx32n : Immediate<i64, [{ | ||
|  |   return isUInt<32>(-N->getSExtValue()); | ||
|  | }], NEGIMM32, "U32Imm">; | ||
|  | 
 | ||
|  | def imm64zx48 : Immediate<i64, [{ | ||
|  |   return isUInt<64>(N->getZExtValue()); | ||
|  | }], UIMM48, "U48Imm">; | ||
|  | 
 | ||
|  | def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Floating-point immediates
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // Floating-point zero.
 | ||
|  | def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; | ||
|  | 
 | ||
|  | // Floating point negative zero.
 | ||
|  | def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Symbolic address operands
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // PC-relative asm operands.
 | ||
|  | def PCRel12 : PCRelAsmOperand<"12">; | ||
|  | def PCRel16 : PCRelAsmOperand<"16">; | ||
|  | def PCRel24 : PCRelAsmOperand<"24">; | ||
|  | def PCRel32 : PCRelAsmOperand<"32">; | ||
|  | def PCRelTLS16 : PCRelTLSAsmOperand<"16">; | ||
|  | def PCRelTLS32 : PCRelTLSAsmOperand<"32">; | ||
|  | 
 | ||
|  | // PC-relative offsets of a basic block.  The offset is sign-extended
 | ||
|  | // and multiplied by 2.
 | ||
|  | def brtarget16 : PCRelOperand<OtherVT, PCRel16> { | ||
|  |   let EncoderMethod = "getPC16DBLEncoding"; | ||
|  |   let DecoderMethod = "decodePC16DBLBranchOperand"; | ||
|  | } | ||
|  | def brtarget32 : PCRelOperand<OtherVT, PCRel32> { | ||
|  |   let EncoderMethod = "getPC32DBLEncoding"; | ||
|  |   let DecoderMethod = "decodePC32DBLBranchOperand"; | ||
|  | } | ||
|  | 
 | ||
|  | // Variants of brtarget for use with branch prediction preload.
 | ||
|  | def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> { | ||
|  |   let EncoderMethod = "getPC12DBLBPPEncoding"; | ||
|  |   let DecoderMethod = "decodePC12DBLBranchOperand"; | ||
|  | } | ||
|  | def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> { | ||
|  |   let EncoderMethod = "getPC16DBLBPPEncoding"; | ||
|  |   let DecoderMethod = "decodePC16DBLBranchOperand"; | ||
|  | } | ||
|  | def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> { | ||
|  |   let EncoderMethod = "getPC24DBLBPPEncoding"; | ||
|  |   let DecoderMethod = "decodePC24DBLBranchOperand"; | ||
|  | } | ||
|  | 
 | ||
|  | // Variants of brtarget16/32 with an optional additional TLS symbol.
 | ||
|  | // These are used to annotate calls to __tls_get_offset.
 | ||
|  | def tlssym : Operand<i64> { } | ||
|  | def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> { | ||
|  |   let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym); | ||
|  |   let EncoderMethod = "getPC16DBLTLSEncoding"; | ||
|  |   let DecoderMethod = "decodePC16DBLBranchOperand"; | ||
|  | } | ||
|  | def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> { | ||
|  |   let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym); | ||
|  |   let EncoderMethod = "getPC32DBLTLSEncoding"; | ||
|  |   let DecoderMethod = "decodePC32DBLBranchOperand"; | ||
|  | } | ||
|  | 
 | ||
|  | // A PC-relative offset of a global value.  The offset is sign-extended
 | ||
|  | // and multiplied by 2.
 | ||
|  | def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> { | ||
|  |   let EncoderMethod = "getPC32DBLEncoding"; | ||
|  |   let DecoderMethod = "decodePC32DBLOperand"; | ||
|  | } | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Addressing modes
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // 12-bit displacement operands.
 | ||
|  | def disp12imm32 : Operand<i32>; | ||
|  | def disp12imm64 : Operand<i64>; | ||
|  | 
 | ||
|  | // 20-bit displacement operands.
 | ||
|  | def disp20imm32 : Operand<i32>; | ||
|  | def disp20imm64 : Operand<i64>; | ||
|  | 
 | ||
|  | def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">; | ||
|  | def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">; | ||
|  | def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">; | ||
|  | def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">; | ||
|  | def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">; | ||
|  | def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">; | ||
|  | def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">; | ||
|  | def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">; | ||
|  | def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">; | ||
|  | def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">; | ||
|  | 
 | ||
|  | // DAG patterns and operands for addressing modes.  Each mode has
 | ||
|  | // the form <type><range><group>[<len>] where:
 | ||
|  | //
 | ||
|  | // <type> is one of:
 | ||
|  | //   shift    : base + displacement (32-bit)
 | ||
|  | //   bdaddr   : base + displacement
 | ||
|  | //   mviaddr  : like bdaddr, but reject cases with a natural index
 | ||
|  | //   bdxaddr  : base + displacement + index
 | ||
|  | //   laaddr   : like bdxaddr, but used for Load Address operations
 | ||
|  | //   dynalloc : base + displacement + index + ADJDYNALLOC
 | ||
|  | //   bdladdr  : base + displacement with a length field
 | ||
|  | //   bdvaddr  : base + displacement with a vector index
 | ||
|  | //
 | ||
|  | // <range> is one of:
 | ||
|  | //   12       : the displacement is an unsigned 12-bit value
 | ||
|  | //   20       : the displacement is a signed 20-bit value
 | ||
|  | //
 | ||
|  | // <group> is one of:
 | ||
|  | //   pair     : used when there is an equivalent instruction with the opposite
 | ||
|  | //              range value (12 or 20)
 | ||
|  | //   only     : used when there is no equivalent instruction with the opposite
 | ||
|  | //              range value
 | ||
|  | //
 | ||
|  | // <len> is one of:
 | ||
|  | //
 | ||
|  | //   <empty>  : there is no length field
 | ||
|  | //   len8     : the length field is 8 bits, with a range of [1, 0x100].
 | ||
|  | def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">; | ||
|  | def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">; | ||
|  | def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">; | ||
|  | def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">; | ||
|  | def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">; | ||
|  | def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">; | ||
|  | def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">; | ||
|  | def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">; | ||
|  | def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">; | ||
|  | def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">; | ||
|  | def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">; | ||
|  | def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">; | ||
|  | def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">; | ||
|  | def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">; | ||
|  | def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">; | ||
|  | def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">; | ||
|  | def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">; | ||
|  | def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">; | ||
|  | def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">; | ||
|  | def bdvaddr12only     : BDVMode<            "64", "12">; | ||
|  | 
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | // Miscellaneous
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | // A 4-bit condition-code mask.
 | ||
|  | def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>, | ||
|  |             Operand<i32> { | ||
|  |   let PrintMethod = "printCond4Operand"; | ||
|  | } |