1899 lines
64 KiB
C#
Raw Normal View History

// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*=============================================================================
**
** Struct: BigInteger
**
** Purpose: Represents an arbitrary precision integer.
**
=============================================================================*/
using System;
using System.Diagnostics.Contracts;
using System.Collections.Generic;
using System.Globalization;
using System.Numerics;
using System.Text;
using Conditional = System.Diagnostics.ConditionalAttribute;
namespace System.Numerics
{
#if !SILVERLIGHT
[Serializable]
#endif // !SILVERLIGHT
public struct BigInteger : IFormattable, IComparable, IComparable<BigInteger>, IEquatable<BigInteger>
{
// ---- SECTION: members supporting exposed properties -------------*
#region members supporting exposed properties
private const int knMaskHighBit = int.MinValue;
private const uint kuMaskHighBit = unchecked((uint)int.MinValue);
private const int kcbitUint = 32;
private const int kcbitUlong = 64;
private const int DecimalScaleFactorMask = 0x00FF0000;
private const int DecimalSignMask = unchecked((int)0x80000000);
// For values int.MinValue < n <= int.MaxValue, the value is stored in sign
// and _bits is null. For all other values, sign is +1 or -1 and the bits are in _bits
internal int _sign;
internal uint[] _bits;
// We have to make a choice of how to represent int.MinValue. This is the one
// value that fits in an int, but whose negation does not fit in an int.
// We choose to use a large representation, so we're symmetric with respect to negation.
private static readonly BigInteger s_bnMinInt = new BigInteger(-1, new uint[] { kuMaskHighBit });
private static readonly BigInteger s_bnOneInt = new BigInteger(1);
private static readonly BigInteger s_bnZeroInt = new BigInteger(0);
private static readonly BigInteger s_bnMinusOneInt = new BigInteger(-1);
#if CONTRACTS_FULL
[ContractInvariantMethod]
private void ObjectInvariant()
{
Contract.Invariant((_bits == null) ? _sign > Int32.MinValue :
((_sign == 1 || _sign == -1) && Length(_bits) > 0));
Contract.Invariant(_bits == null || Length(_bits) > 1 || _bits[0] >= kuMaskHighBit
, "One element array stores integers whose absolute value is between 0x80000000 and 0xFFFFFFFF");
}
#endif
[Conditional("DEBUG")]
private void AssertValid()
{
if (_bits != null)
{
Contract.Assert(_sign == 1 || _sign == -1 /*, "_sign must be +1 or -1 when _bits is non-null"*/);
Contract.Assert(Length(_bits) > 0 /*, "_bits must contain at least 1 element or be null"*/);
if (Length(_bits) == 1)
Contract.Assert(_bits[0] >= kuMaskHighBit /*, "Wasted space _bits[0] could have been packed into _sign"*/);
}
else
Contract.Assert(_sign > int.MinValue /*, "Int32.MinValue should not be stored in the _sign field"*/);
}
#endregion members supporting exposed properties
// ---- SECTION: public properties --------------*
#region public properties
public static BigInteger Zero
{
get { return s_bnZeroInt; }
}
public static BigInteger One
{
get { return s_bnOneInt; }
}
public static BigInteger MinusOne
{
get { return s_bnMinusOneInt; }
}
public bool IsPowerOfTwo
{
get
{
AssertValid();
if (_bits == null)
return (_sign & (_sign - 1)) == 0 && _sign != 0;
if (_sign != 1)
return false;
int iu = Length(_bits) - 1;
if ((_bits[iu] & (_bits[iu] - 1)) != 0)
return false;
while (--iu >= 0)
{
if (_bits[iu] != 0)
return false;
}
return true;
}
}
public bool IsZero { get { AssertValid(); return _sign == 0; } }
public bool IsOne { get { AssertValid(); return _sign == 1 && _bits == null; } }
public bool IsEven { get { AssertValid(); return _bits == null ? (_sign & 1) == 0 : (_bits[0] & 1) == 0; } }
public int Sign
{
get { AssertValid(); return (_sign >> (kcbitUint - 1)) - (-_sign >> (kcbitUint - 1)); }
}
#endregion public properties
// ---- SECTION: public instance methods --------------*
#region public instance methods
public override bool Equals(object obj)
{
AssertValid();
if (!(obj is BigInteger))
return false;
return Equals((BigInteger)obj);
}
public override int GetHashCode()
{
AssertValid();
if (_bits == null)
return _sign;
int hash = _sign;
for (int iv = Length(_bits); --iv >= 0; )
hash = NumericsHelpers.CombineHash(hash, (int)_bits[iv]);
return hash;
}
public bool Equals(Int64 other)
{
AssertValid();
if (_bits == null)
return _sign == other;
int cu;
if ((_sign ^ other) < 0 || (cu = Length(_bits)) > 2)
return false;
ulong uu = other < 0 ? (ulong)-other : (ulong)other;
if (cu == 1)
return _bits[0] == uu;
return NumericsHelpers.MakeUlong(_bits[1], _bits[0]) == uu;
}
[CLSCompliant(false)]
public bool Equals(UInt64 other)
{
AssertValid();
if (_sign < 0)
return false;
if (_bits == null)
return (ulong)_sign == other;
int cu = Length(_bits);
if (cu > 2)
return false;
if (cu == 1)
return _bits[0] == other;
return NumericsHelpers.MakeUlong(_bits[1], _bits[0]) == other;
}
public bool Equals(BigInteger other)
{
AssertValid();
other.AssertValid();
if (_sign != other._sign)
return false;
if (_bits == other._bits)
// _sign == other._sign && _bits == null && other._bits == null
return true;
if (_bits == null || other._bits == null)
return false;
int cu = Length(_bits);
if (cu != Length(other._bits))
return false;
int cuDiff = GetDiffLength(_bits, other._bits, cu);
return cuDiff == 0;
}
public int CompareTo(Int64 other)
{
AssertValid();
if (_bits == null)
return ((long)_sign).CompareTo(other);
int cu;
if ((_sign ^ other) < 0 || (cu = Length(_bits)) > 2)
return _sign;
ulong uu = other < 0 ? (ulong)-other : (ulong)other;
ulong uuTmp = cu == 2 ? NumericsHelpers.MakeUlong(_bits[1], _bits[0]) : _bits[0];
return _sign * uuTmp.CompareTo(uu);
}
[CLSCompliant(false)]
public int CompareTo(UInt64 other)
{
AssertValid();
if (_sign < 0)
return -1;
if (_bits == null)
return ((ulong)_sign).CompareTo(other);
int cu = Length(_bits);
if (cu > 2)
return +1;
ulong uuTmp = cu == 2 ? NumericsHelpers.MakeUlong(_bits[1], _bits[0]) : _bits[0];
return uuTmp.CompareTo(other);
}
public int CompareTo(BigInteger other)
{
AssertValid();
other.AssertValid();
if ((_sign ^ other._sign) < 0)
{
// Different signs, so the comparison is easy.
return _sign < 0 ? -1 : +1;
}
// Same signs
if (_bits == null)
{
if (other._bits == null)
return _sign < other._sign ? -1 : _sign > other._sign ? +1 : 0;
return -other._sign;
}
int cuThis, cuOther;
if (other._bits == null || (cuThis = Length(_bits)) > (cuOther = Length(other._bits)))
return _sign;
if (cuThis < cuOther)
return -_sign;
int cuDiff = GetDiffLength(_bits, other._bits, cuThis);
if (cuDiff == 0)
return 0;
return _bits[cuDiff - 1] < other._bits[cuDiff - 1] ? -_sign : _sign;
}
public int CompareTo(Object obj)
{
if (obj == null)
return 1;
if (!(obj is BigInteger))
throw new ArgumentException(SR.GetString(SR.Argument_MustBeBigInt));
return this.CompareTo((BigInteger)obj);
}
// Return the value of this BigInteger as a little-endian twos-complement
// byte array, using the fewest number of bytes possible. If the value is zero,
// return an array of one byte whose element is 0x00.
public byte[] ToByteArray() {
if (_bits == null && _sign == 0)
return new byte[] { 0 };
// We could probably make this more efficient by eliminating one of the passes.
// The current code does one pass for uint array -> byte array conversion,
// and then another pass to remove unneeded bytes at the top of the array.
uint[] dwords;
byte highByte;
if (_bits == null) {
dwords = new uint[] { (uint)_sign };
highByte = (byte)((_sign < 0) ? 0xff : 0x00);
}
else if(_sign == -1) {
dwords = (uint[])_bits.Clone();
NumericsHelpers.DangerousMakeTwosComplement(dwords); // mutates dwords
highByte = 0xff;
} else {
dwords = _bits;
highByte = 0x00;
}
byte[] bytes = new byte[checked(4 * dwords.Length)];
int curByte = 0;
uint dword;
for (int i = 0; i < dwords.Length; i++) {
dword = dwords[i];
for (int j = 0; j < 4; j++) {
bytes[curByte++] = (byte)(dword & 0xff);
dword >>= 8;
}
}
// find highest significant byte
int msb;
for (msb = bytes.Length - 1; msb > 0; msb--) {
if (bytes[msb] != highByte) break;
}
// ensure high bit is 0 if positive, 1 if negative
bool needExtraByte = (bytes[msb] & 0x80) != (highByte & 0x80);
byte[] trimmedBytes = new byte[msb + 1 + (needExtraByte ? 1 : 0)];
Array.Copy(bytes, trimmedBytes, msb + 1);
if (needExtraByte) trimmedBytes[trimmedBytes.Length - 1] = highByte;
return trimmedBytes;
}
// Return the value of this BigInteger as a little-endian twos-complement
// uint array, using the fewest number of uints possible. If the value is zero,
// return an array of one uint whose element is 0.
private UInt32[] ToUInt32Array() {
if (_bits == null && _sign == 0)
return new uint[] { 0 };
uint[] dwords;
uint highDWord;
if (_bits == null) {
dwords = new uint[] { (uint)_sign };
highDWord = (_sign < 0) ? UInt32.MaxValue : 0;
}
else if(_sign == -1) {
dwords = (uint[])_bits.Clone();
NumericsHelpers.DangerousMakeTwosComplement(dwords); // mutates dwords
highDWord = UInt32.MaxValue;
} else {
dwords = _bits;
highDWord = 0;
}
// find highest significant byte
int msb;
for (msb = dwords.Length - 1; msb > 0; msb--) {
if (dwords[msb] != highDWord) break;
}
// ensure high bit is 0 if positive, 1 if negative
bool needExtraByte = (dwords[msb] & 0x80000000) != (highDWord & 0x80000000);
uint[] trimmed = new uint[msb + 1 + (needExtraByte ? 1 : 0)];
Array.Copy(dwords, trimmed, msb + 1);
if (needExtraByte) trimmed[trimmed.Length - 1] = highDWord;
return trimmed;
}
public override String ToString() {
return BigNumber.FormatBigInteger(this, null, NumberFormatInfo.CurrentInfo);
}
public String ToString(IFormatProvider provider) {
return BigNumber.FormatBigInteger(this, null, NumberFormatInfo.GetInstance(provider));
}
public String ToString(String format) {
return BigNumber.FormatBigInteger(this, format, NumberFormatInfo.CurrentInfo);
}
public String ToString(String format, IFormatProvider provider) {
return BigNumber.FormatBigInteger(this, format, NumberFormatInfo.GetInstance(provider));
}
#endregion public instance methods
// -------- SECTION: constructors -----------------*
#region constructors
public BigInteger(int value)
{
if (value == Int32.MinValue)
this = s_bnMinInt;
else {
_sign = value;
_bits = null;
}
AssertValid();
}
[CLSCompliant(false)]
public BigInteger(uint value)
{
if (value <= Int32.MaxValue)
{
_sign = (int)value;
_bits = null;
}
else
{
_sign = +1;
_bits = new uint[1];
_bits[0] = value;
}
AssertValid();
}
public BigInteger(Int64 value)
{
if (Int32.MinValue <= value && value <= Int32.MaxValue)
{
if (value == Int32.MinValue)
this = s_bnMinInt;
else
{
_sign = (int)value;
_bits = null;
}
AssertValid();
return;
}
ulong x = 0;
if (value < 0)
{
x = (ulong)-value;
_sign = -1;
}
else
{
Contract.Assert(value != 0);
x = (ulong)value;
_sign = +1;
}
_bits = new uint[2];
_bits[0] = (uint)x;
_bits[1] = (uint)(x >> kcbitUint);
AssertValid();
}
[CLSCompliant(false)]
public BigInteger(UInt64 value)
{
if (value <= Int32.MaxValue)
{
_sign = (int)value;
_bits = null;
}
else
{
_sign = +1;
_bits = new uint[2];
_bits[0] = (uint)value;
_bits[1] = (uint)(value >> kcbitUint);
}
AssertValid();
}
public BigInteger(Single value)
{
if (Single.IsInfinity(value))
throw new OverflowException(SR.GetString(SR.Overflow_BigIntInfinity));
if (Single.IsNaN(value))
throw new OverflowException(SR.GetString(SR.Overflow_NotANumber));
Contract.EndContractBlock();
_sign = 0;
_bits = null;
SetBitsFromDouble(value);
AssertValid();
}
public BigInteger(Double value)
{
if (Double.IsInfinity(value))
throw new OverflowException(SR.GetString(SR.Overflow_BigIntInfinity));
if (Double.IsNaN(value))
throw new OverflowException(SR.GetString(SR.Overflow_NotANumber));
Contract.EndContractBlock();
_sign = 0;
_bits = null;
SetBitsFromDouble(value);
AssertValid();
}
public BigInteger(Decimal value)
{
// First truncate to get scale to 0 and extract bits
int[] bits = Decimal.GetBits(Decimal.Truncate(value));
Contract.Assert(bits.Length == 4 && (bits[3] & DecimalScaleFactorMask) == 0);
int size = 3;
while (size > 0 && bits[size - 1] == 0)
size--;
if (size == 0) {
this = s_bnZeroInt;
}
else if (size == 1 && bits[0] > 0) {
// bits[0] is the absolute value of this decimal
// if bits[0] < 0 then it is too large to be packed into _sign
_sign = bits[0];
_sign *= ((bits[3] & DecimalSignMask) != 0) ? -1 : +1;
_bits = null;
}
else {
_bits = new UInt32[size];
_bits[0] = (UInt32)bits[0];
if (size > 1)
_bits[1] = (UInt32)bits[1];
if (size > 2)
_bits[2] = (UInt32)bits[2];
_sign = ((bits[3] & DecimalSignMask) != 0) ? -1 : +1;
}
AssertValid();
}
[CLSCompliant(false)]
//
// Create a BigInteger from a little-endian twos-complement byte array
//
public BigInteger(Byte[] value)
{
if (value == null)
throw new ArgumentNullException("value");
Contract.EndContractBlock();
int byteCount = value.Length;
bool isNegative = byteCount > 0 && ((value[byteCount - 1] & 0x80) == 0x80);
// Try to conserve space as much as possible by checking for wasted leading byte[] entries
while (byteCount > 0 && value[byteCount-1] == 0) byteCount--;
if (byteCount == 0)
{
// BigInteger.Zero
_sign = 0;
_bits = null;
AssertValid();
return;
}
if (byteCount <= 4)
{
if (isNegative)
_sign = unchecked((int)0xffffffff);
else
_sign = 0;
for (int i = byteCount - 1; i >= 0; i--)
{
_sign <<= 8;
_sign |= value[i];
}
_bits = null;
if (_sign < 0 && !isNegative)
{
// int32 overflow
// example: Int64 value 2362232011 (0xCB, 0xCC, 0xCC, 0x8C, 0x0)
// can be naively packed into 4 bytes (due to the leading 0x0)
// it overflows into the int32 sign bit
_bits = new uint[1];
_bits[0] = (uint)_sign;
_sign = +1;
}
if (_sign == Int32.MinValue)
this = s_bnMinInt;
}
else
{
int unalignedBytes = byteCount % 4;
int dwordCount = byteCount / 4 + (unalignedBytes == 0 ? 0 : 1);
bool isZero = true;
uint[] val = new uint[dwordCount];
// Copy all dwords, except but don't do the last one if it's not a full four bytes
int curDword, curByte, byteInDword;
curByte = 3;
for (curDword = 0; curDword < dwordCount - (unalignedBytes == 0 ? 0 : 1); curDword++) {
byteInDword = 0;
while (byteInDword < 4) {
if (value[curByte] != 0x00) isZero = false;
val[curDword] <<= 8;
val[curDword] |= value[curByte];
curByte--;
byteInDword++;
}
curByte += 8;
}
// Copy the last dword specially if it's not aligned
if (unalignedBytes != 0) {
if (isNegative) val[dwordCount - 1] = 0xffffffff;
for (curByte = byteCount - 1; curByte >= byteCount - unalignedBytes; curByte--) {
if (value[curByte] != 0x00) isZero = false;
val[curDword] <<= 8;
val[curDword] |= value[curByte];
}
}
if (isZero) {
this = s_bnZeroInt;
}
else if (isNegative) {
NumericsHelpers.DangerousMakeTwosComplement(val); // mutates val
// pack _bits to remove any wasted space after the twos complement
int len = val.Length;
while (len > 0 && val[len - 1] == 0)
len--;
if (len == 1 && ((int)(val[0])) > 0) {
if (val[0] == 1 /* abs(-1) */) {
this = s_bnMinusOneInt;
}
else if (val[0] == kuMaskHighBit /* abs(Int32.MinValue) */) {
this = s_bnMinInt;
}
else {
_sign = (-1) * ((int)val[0]);
_bits = null;
}
}
else if (len != val.Length) {
_sign = -1;
_bits = new uint[len];
Array.Copy(val, _bits, len);
}
else {
_sign = -1;
_bits = val;
}
}
else
{
_sign = +1;
_bits = val;
}
}
AssertValid();
}
internal BigInteger(int n, uint[] rgu)
{
_sign = n;
_bits = rgu;
AssertValid();
}
//
// BigInteger(uint[] value, bool negative)
//
// Constructor used during bit manipulation and arithmetic
//
// The uint[] value is expected to be the absolute value of the number
// with the bool negative indicating the Sign of the value.
//
// When possible the uint[] will be packed into _sign to conserve space
//
internal BigInteger(uint[] value, bool negative)
{
if (value == null)
throw new ArgumentNullException("value");
Contract.EndContractBlock();
int len;
// Try to conserve space as much as possible by checking for wasted leading uint[] entries
// sometimes the uint[] has leading zeros from bit manipulation operations & and ^
for(len = value.Length; len > 0 && value[len-1] == 0; len--);
if (len == 0)
this = s_bnZeroInt;
// values like (Int32.MaxValue+1) are stored as "0x80000000" and as such cannot be packed into _sign
else if (len == 1 && value[0] < kuMaskHighBit)
{
_sign = (negative ? -(int)value[0] : (int)value[0]);
_bits = null;
// Although Int32.MinValue fits in _sign, we represent this case differently for negate
if (_sign == Int32.MinValue)
this = s_bnMinInt;
}
else
{
_sign = negative ? -1 : +1;
_bits = new uint[len];
Array.Copy(value, _bits, len);
}
AssertValid();
}
//
// Create a BigInteger from a little-endian twos-complement UInt32 array
// When possible, value is assigned directly to this._bits without an array copy
// so use this ctor with care
//
private BigInteger(uint[] value)
{
if (value == null)
throw new ArgumentNullException("value");
int dwordCount = value.Length;
bool isNegative = dwordCount > 0 && ((value[dwordCount - 1] & 0x80000000) == 0x80000000);
// Try to conserve space as much as possible by checking for wasted leading uint[] entries
while (dwordCount > 0 && value[dwordCount-1] == 0) dwordCount--;
if (dwordCount == 0)
{
// BigInteger.Zero
this = s_bnZeroInt;
AssertValid();
return;
}
if (dwordCount == 1)
{
if ((int)value[0] < 0 && !isNegative) {
_bits = new uint[1];
_bits[0] = value[0];
_sign = +1;
}
// handle the special cases where the BigInteger likely fits into _sign
else if (Int32.MinValue == (int)value[0]) {
this = s_bnMinInt;
}
else {
_sign = (int)value[0];
_bits = null;
}
AssertValid();
return;
}
if (!isNegative) {
// handle the simple postive value cases where the input is already in sign magnitude
if (dwordCount != value.Length) {
_sign = +1;
_bits = new uint[dwordCount];
Array.Copy(value, _bits, dwordCount);
}
// no trimming is possible. Assign value directly to _bits.
else {
_sign = +1;
_bits = value;
}
AssertValid();
return;
}
// finally handle the more complex cases where we must transform the input into sign magnitude
NumericsHelpers.DangerousMakeTwosComplement(value); // mutates val
// pack _bits to remove any wasted space after the twos complement
int len = value.Length;
while (len > 0 && value[len - 1] == 0) len--;
// the number is represented by a single dword
if (len == 1 && ((int)(value[0])) > 0) {
if (value[0] == 1 /* abs(-1) */) {
this = s_bnMinusOneInt;
}
else if (value[0] == kuMaskHighBit /* abs(Int32.MinValue) */) {
this = s_bnMinInt;
}
else {
_sign = (-1) * ((int)value[0]);
_bits = null;
}
}
// the number is represented by multiple dwords
// trim off any wasted uint values when possible
else if (len != value.Length) {
_sign = -1;
_bits = new uint[len];
Array.Copy(value, _bits, len);
}
// no trimming is possible. Assign value directly to _bits.
else {
_sign = -1;
_bits = value;
}
AssertValid();
return;
}
#endregion constructors
// -------- SECTION: public static methods -----------------*
#region public static methods
#if !SILVERLIGHT || FEATURE_NETCORE
public static BigInteger Parse(String value) {
return BigNumber.ParseBigInteger(value, NumberStyles.Integer, NumberFormatInfo.CurrentInfo);
}
public static BigInteger Parse(String value, NumberStyles style) {
return BigNumber.ParseBigInteger(value, style, NumberFormatInfo.CurrentInfo);
}
public static BigInteger Parse(String value, IFormatProvider provider) {
return BigNumber.ParseBigInteger(value, NumberStyles.Integer, NumberFormatInfo.GetInstance(provider));
}
public static BigInteger Parse(String value, NumberStyles style, IFormatProvider provider) {
return BigNumber.ParseBigInteger(value, style, NumberFormatInfo.GetInstance(provider));
}
public static Boolean TryParse(String value, out BigInteger result) {
return BigNumber.TryParseBigInteger(value, NumberStyles.Integer, NumberFormatInfo.CurrentInfo, out result);
}
public static Boolean TryParse(String value, NumberStyles style, IFormatProvider provider, out BigInteger result) {
return BigNumber.TryParseBigInteger(value, style, NumberFormatInfo.GetInstance(provider), out result);
}
#endif //!SILVERLIGHT || FEATURE_NETCORE
public static Int32 Compare(BigInteger left, BigInteger right)
{
return left.CompareTo(right);
}
public static BigInteger Abs(BigInteger value)
{
return (value >= BigInteger.Zero) ? value : -value;
}
public static BigInteger Add(BigInteger left, BigInteger right)
{
return left + right;
}
public static BigInteger Subtract(BigInteger left, BigInteger right)
{
return left - right;
}
public static BigInteger Multiply(BigInteger left, BigInteger right)
{
return left * right;
}
public static BigInteger Divide(BigInteger dividend, BigInteger divisor)
{
return dividend / divisor;
}
public static BigInteger Remainder(BigInteger dividend, BigInteger divisor)
{
return dividend % divisor;
}
public static BigInteger DivRem(BigInteger dividend, BigInteger divisor, out BigInteger remainder)
{
dividend.AssertValid();
divisor.AssertValid();
int signNum = +1;
int signDen = +1;
BigIntegerBuilder regNum = new BigIntegerBuilder(dividend, ref signNum);
BigIntegerBuilder regDen = new BigIntegerBuilder(divisor, ref signDen);
BigIntegerBuilder regQuo = new BigIntegerBuilder();
// regNum and regQuo are overwritten with the remainder and quotient, respectively
regNum.ModDiv(ref regDen, ref regQuo);
remainder = regNum.GetInteger(signNum);
return regQuo.GetInteger(signNum * signDen);
}
public static BigInteger Negate(BigInteger value)
{
return -value;
}
// Returns the natural (base e) logarithm of a specified number.
public static Double Log(BigInteger value)
{
return BigInteger.Log(value, Math.E);
}
public static Double Log(BigInteger value, Double baseValue)
{
if (value._sign < 0 || baseValue == 1.0D)
return Double.NaN;
if (baseValue == Double.PositiveInfinity)
return value.IsOne ? 0.0D : Double.NaN;
if (baseValue == 0.0D && !value.IsOne)
return Double.NaN;
if (value._bits == null)
return Math.Log((double)value._sign, baseValue);
Double c = 0, d = 0.5D;
const Double log2 = 0.69314718055994529D;
int uintLength = Length(value._bits);
int topbits = BitLengthOfUInt(value._bits[uintLength - 1]);
int bitlen = (uintLength - 1) * kcbitUint + topbits;
uint indbit = (uint)(1 << (topbits - 1));
for(int index = uintLength -1; index >= 0; --index)
{
while (indbit != 0)
{
if ((value._bits[index] & indbit) != 0)
c += d;
d *= 0.5;
indbit >>= 1;
}
indbit = 0x80000000;
}
return (Math.Log(c) + log2 * bitlen) / Math.Log(baseValue);
}
public static Double Log10(BigInteger value)
{
return BigInteger.Log(value, 10);
}
public static BigInteger GreatestCommonDivisor(BigInteger left, BigInteger right)
{
left.AssertValid();
right.AssertValid();
// gcd(0, 0) = 0
// gcd(a, 0) = |a|, for a != 0, since any number is a divisor of 0, and the greatest divisor of a is |a|
if (left._sign == 0) return BigInteger.Abs(right);
if (right._sign == 0) return BigInteger.Abs(left);
BigIntegerBuilder reg1 = new BigIntegerBuilder(left);
BigIntegerBuilder reg2 = new BigIntegerBuilder(right);
BigIntegerBuilder.GCD(ref reg1, ref reg2);
return reg1.GetInteger(+1);
}
public static BigInteger Max(BigInteger left, BigInteger right)
{
if (left.CompareTo(right) < 0)
return right;
return left;
}
public static BigInteger Min(BigInteger left, BigInteger right)
{
if (left.CompareTo(right) <= 0)
return left;
return right;
}
private static void ModPowUpdateResult(ref BigIntegerBuilder regRes, ref BigIntegerBuilder regVal, ref BigIntegerBuilder regMod, ref BigIntegerBuilder regTmp)
{
NumericsHelpers.Swap(ref regRes, ref regTmp);
regRes.Mul(ref regTmp, ref regVal); // result = result * value;
regRes.Mod(ref regMod); // result = result % modulus;
}
private static void ModPowSquareModValue(ref BigIntegerBuilder regVal, ref BigIntegerBuilder regMod, ref BigIntegerBuilder regTmp)
{
NumericsHelpers.Swap(ref regVal, ref regTmp);
regVal.Mul(ref regTmp, ref regTmp); // value = value * value;
regVal.Mod(ref regMod); // value = value % modulus;
}
private static void ModPowInner(uint exp, ref BigIntegerBuilder regRes, ref BigIntegerBuilder regVal, ref BigIntegerBuilder regMod, ref BigIntegerBuilder regTmp)
{
while (exp != 0) // !(Exponent.IsZero)
{
if ((exp & 1) == 1) // !(Exponent.IsEven)
ModPowUpdateResult(ref regRes, ref regVal, ref regMod, ref regTmp);
if (exp == 1) // Exponent.IsOne - we can exit early
break;
ModPowSquareModValue(ref regVal, ref regMod, ref regTmp);
exp >>= 1;
}
}
private static void ModPowInner32(uint exp, ref BigIntegerBuilder regRes, ref BigIntegerBuilder regVal, ref BigIntegerBuilder regMod, ref BigIntegerBuilder regTmp)
{
for (int i = 0; i < 32; i++)
{
if ((exp & 1) == 1) // !(Exponent.IsEven)
ModPowUpdateResult(ref regRes, ref regVal, ref regMod, ref regTmp);
ModPowSquareModValue(ref regVal, ref regMod, ref regTmp);
exp >>= 1;
}
}
public static BigInteger ModPow(BigInteger value, BigInteger exponent, BigInteger modulus)
{
if (exponent.Sign < 0)
throw new ArgumentOutOfRangeException("exponent", SR.GetString(SR.ArgumentOutOfRange_MustBeNonNeg));
Contract.EndContractBlock();
value.AssertValid();
exponent.AssertValid();
modulus.AssertValid();
int signRes = +1;
int signVal = +1;
int signMod = +1;
bool expIsEven = exponent.IsEven;
BigIntegerBuilder regRes = new BigIntegerBuilder(BigInteger.One, ref signRes);
BigIntegerBuilder regVal = new BigIntegerBuilder(value, ref signVal);
BigIntegerBuilder regMod = new BigIntegerBuilder(modulus, ref signMod);
BigIntegerBuilder regTmp = new BigIntegerBuilder(regVal.Size);
regRes.Mod(ref regMod); // Handle special case of exponent=0, modulus=1
if (exponent._bits == null)
{ // exponent fits into an Int32
ModPowInner((uint) exponent._sign, ref regRes, ref regVal, ref regMod, ref regTmp);
}
else
{ // very large exponent
int len = Length(exponent._bits);
for (int i = 0; i < len - 1; i++)
{
uint exp = exponent._bits[i];
ModPowInner32(exp, ref regRes, ref regVal, ref regMod, ref regTmp);
}
ModPowInner(exponent._bits[len - 1], ref regRes, ref regVal, ref regMod, ref regTmp);
}
return regRes.GetInteger(value._sign > 0 ? +1 : expIsEven ? +1 : -1);
}
public static BigInteger Pow(BigInteger value, Int32 exponent)
{
if (exponent < 0)
throw new ArgumentOutOfRangeException("exponent", SR.GetString(SR.ArgumentOutOfRange_MustBeNonNeg));
Contract.EndContractBlock();
value.AssertValid();
if (exponent == 0)
return BigInteger.One;
if (exponent == 1)
return value;
if (value._bits == null)
{
if (value._sign == 1)
return value;
if (value._sign == -1)
return (exponent & 1) != 0 ? value : 1;
if (value._sign == 0)
return value;
}
int sign = +1;
BigIntegerBuilder regSquare = new BigIntegerBuilder(value, ref sign);
// Get an estimate of the size needed for regSquare and regRes, so we can minimize allocations.
int cuSquareMin = regSquare.Size;
int cuSquareMax = cuSquareMin;
uint uSquareMin = regSquare.High;
uint uSquareMax = uSquareMin + 1;
if (uSquareMax == 0)
{
cuSquareMax++;
uSquareMax = 1;
}
int cuResMin = 1;
int cuResMax = 1;
uint uResMin = 1;
uint uResMax = 1;
for (int expTmp = exponent; ; )
{
if ((expTmp & 1) != 0)
{
MulUpper(ref uResMax, ref cuResMax, uSquareMax, cuSquareMax);
MulLower(ref uResMin, ref cuResMin, uSquareMin, cuSquareMin);
}
if ((expTmp >>= 1) == 0)
break;
MulUpper(ref uSquareMax, ref cuSquareMax, uSquareMax, cuSquareMax);
MulLower(ref uSquareMin, ref cuSquareMin, uSquareMin, cuSquareMin);
}
if (cuResMax > 1)
regSquare.EnsureWritable(cuResMax, 0);
BigIntegerBuilder regTmp = new BigIntegerBuilder(cuResMax);
BigIntegerBuilder regRes = new BigIntegerBuilder(cuResMax);
regRes.Set(1);
if ((exponent & 1) == 0)
sign = +1;
for (int expTmp = exponent; ; )
{
if ((expTmp & 1) != 0)
{
NumericsHelpers.Swap(ref regRes, ref regTmp);
regRes.Mul(ref regSquare, ref regTmp);
}
if ((expTmp >>= 1) == 0)
break;
NumericsHelpers.Swap(ref regSquare, ref regTmp);
regSquare.Mul(ref regTmp, ref regTmp);
}
return regRes.GetInteger(sign);
}
#endregion public static methods
// -------- SECTION: public static operators -----------------*
#region public static operators
public static implicit operator BigInteger(Byte value)
{
return new BigInteger(value);
}
[CLSCompliant(false)]
public static implicit operator BigInteger(SByte value)
{
return new BigInteger(value);
}
public static implicit operator BigInteger(Int16 value)
{
return new BigInteger(value);
}
[CLSCompliant(false)]
public static implicit operator BigInteger(UInt16 value)
{
return new BigInteger(value);
}
public static implicit operator BigInteger(int value)
{
return new BigInteger(value);
}
[CLSCompliant(false)]
public static implicit operator BigInteger(uint value)
{
return new BigInteger(value);
}
public static implicit operator BigInteger(long value)
{
return new BigInteger(value);
}
[CLSCompliant(false)]
public static implicit operator BigInteger(ulong value)
{
return new BigInteger(value);
}
public static explicit operator BigInteger(Single value)
{
return new BigInteger(value);
}
public static explicit operator BigInteger(Double value)
{
return new BigInteger(value);
}
public static explicit operator BigInteger(Decimal value)
{
return new BigInteger(value);
}
public static explicit operator Byte(BigInteger value)
{
return checked((byte)((int)value));
}
[CLSCompliant(false)]
public static explicit operator SByte(BigInteger value)
{
return checked((sbyte)((int)value));
}
public static explicit operator Int16(BigInteger value)
{
return checked((short)((int)value));
}
[CLSCompliant(false)]
public static explicit operator UInt16(BigInteger value)
{
return checked((ushort)((int)value));
}
public static explicit operator Int32(BigInteger value)
{
value.AssertValid();
if (value._bits == null) {
return value._sign; // value packed into int32 sign
}
else if (Length(value._bits) > 1) { // more than 32 bits
throw new OverflowException(SR.GetString(SR.Overflow_Int32));
}
else if (value._sign > 0) {
return checked((int)value._bits[0]);
}
else {
if (value._bits[0] > kuMaskHighBit) { // value > Int32.MinValue
throw new OverflowException(SR.GetString(SR.Overflow_Int32));
}
return unchecked(-(int)value._bits[0]);
}
}
[CLSCompliant(false)]
public static explicit operator UInt32(BigInteger value)
{
value.AssertValid();
if (value._bits == null) {
return checked((uint)value._sign);
}
else if (Length(value._bits) > 1 || value._sign < 0) {
throw new OverflowException(SR.GetString(SR.Overflow_UInt32));
}
else {
return value._bits[0];
}
}
public static explicit operator Int64(BigInteger value)
{
value.AssertValid();
if (value._bits == null) {
return value._sign;
}
int len = Length(value._bits);
if (len > 2) {
throw new OverflowException(SR.GetString(SR.Overflow_Int64));
}
ulong uu;
if (len > 1) {
uu = NumericsHelpers.MakeUlong(value._bits[1], value._bits[0]);
}
else {
uu = (ulong)value._bits[0];
}
long ll = value._sign > 0 ? (long)uu : -(long)uu;
if ((ll > 0 && value._sign > 0) || (ll < 0 && value._sign < 0)) {
// signs match, no overflow
return ll;
}
throw new OverflowException(SR.GetString(SR.Overflow_Int64));
}
[CLSCompliant(false)]
public static explicit operator UInt64(BigInteger value)
{
value.AssertValid();
if (value._bits == null) {
return checked((ulong)value._sign);
}
int len = Length(value._bits);
if (len > 2 || value._sign < 0) {
throw new OverflowException(SR.GetString(SR.Overflow_UInt64));
}
if (len > 1) {
return NumericsHelpers.MakeUlong(value._bits[1], value._bits[0]);
}
else {
return value._bits[0];
}
}
public static explicit operator Single(BigInteger value)
{
return (Single)((Double)value);
}
public static explicit operator Double(BigInteger value)
{
value.AssertValid();
if (value._bits == null)
return value._sign;
ulong man;
int exp;
int sign = +1;
BigIntegerBuilder reg = new BigIntegerBuilder(value, ref sign);
reg.GetApproxParts(out exp, out man);
return NumericsHelpers.GetDoubleFromParts(sign, exp, man);
}
public static explicit operator Decimal(BigInteger value)
{
value.AssertValid();
if (value._bits == null)
return (Decimal)value._sign;
int length = Length(value._bits);
if (length > 3) throw new OverflowException(SR.GetString(SR.Overflow_Decimal));
int lo = 0, mi = 0, hi = 0;
if (length > 2) hi = (Int32)value._bits[2];
if (length > 1) mi = (Int32)value._bits[1];
if (length > 0) lo = (Int32)value._bits[0];
return new Decimal(lo, mi, hi, value._sign < 0, 0);
}
public static BigInteger operator &(BigInteger left, BigInteger right) {
if (left.IsZero || right.IsZero) {
return BigInteger.Zero;
}
uint[] x = left.ToUInt32Array();
uint[] y = right.ToUInt32Array();
uint[] z = new uint[Math.Max(x.Length, y.Length)];
uint xExtend = (left._sign < 0) ? UInt32.MaxValue : 0;
uint yExtend = (right._sign < 0) ? UInt32.MaxValue : 0;
for (int i = 0; i < z.Length; i++) {
uint xu = (i < x.Length) ? x[i] : xExtend;
uint yu = (i < y.Length) ? y[i] : yExtend;
z[i] = xu & yu;
}
return new BigInteger(z);
}
public static BigInteger operator |(BigInteger left, BigInteger right) {
if (left.IsZero)
return right;
if (right.IsZero)
return left;
uint[] x = left.ToUInt32Array();
uint[] y = right.ToUInt32Array();
uint[] z = new uint[Math.Max(x.Length, y.Length)];
uint xExtend = (left._sign < 0) ? UInt32.MaxValue : 0;
uint yExtend = (right._sign < 0) ? UInt32.MaxValue : 0;
for (int i = 0; i < z.Length; i++) {
uint xu = (i < x.Length) ? x[i] : xExtend;
uint yu = (i < y.Length) ? y[i] : yExtend;
z[i] = xu | yu;
}
return new BigInteger(z);
}
public static BigInteger operator ^(BigInteger left, BigInteger right) {
uint[] x = left.ToUInt32Array();
uint[] y = right.ToUInt32Array();
uint[] z = new uint[Math.Max(x.Length, y.Length)];
uint xExtend = (left._sign < 0) ? UInt32.MaxValue : 0;
uint yExtend = (right._sign < 0) ? UInt32.MaxValue : 0;
for (int i = 0; i < z.Length; i++) {
uint xu = (i < x.Length) ? x[i] : xExtend;
uint yu = (i < y.Length) ? y[i] : yExtend;
z[i] = xu ^ yu;
}
return new BigInteger(z);
}
public static BigInteger operator <<(BigInteger value, int shift) {
if (shift == 0) return value;
else if (shift == Int32.MinValue) return ((value >> Int32.MaxValue) >> 1);
else if (shift < 0) return value >> -shift;
int digitShift = shift / kcbitUint;
int smallShift = shift - (digitShift * kcbitUint);
uint[] xd; int xl; bool negx;
negx = GetPartsForBitManipulation(ref value, out xd, out xl);
int zl = xl + digitShift + 1;
uint[] zd = new uint[zl];
if (smallShift == 0) {
for (int i = 0; i < xl; i++) {
zd[i + digitShift] = xd[i];
}
} else {
int carryShift = kcbitUint - smallShift;
uint carry = 0;
int i;
for (i = 0; i < xl; i++) {
uint rot = xd[i];
zd[i + digitShift] = rot << smallShift | carry;
carry = rot >> carryShift;
}
zd[i + digitShift] = carry;
}
return new BigInteger(zd, negx);
}
public static BigInteger operator >>(BigInteger value, int shift) {
if (shift == 0) return value;
else if (shift == Int32.MinValue) return ((value << Int32.MaxValue) << 1);
else if (shift < 0) return value << -shift;
int digitShift = shift / kcbitUint;
int smallShift = shift - (digitShift * kcbitUint);
uint[] xd; int xl; bool negx;
negx = GetPartsForBitManipulation(ref value, out xd, out xl);
if (negx) {
if (shift >= (kcbitUint * xl)) {
return BigInteger.MinusOne;
}
uint[] temp = new uint[xl];
Array.Copy(xd /* sourceArray */, temp /* destinationArray */, xl /* length */); // make a copy of immutable value._bits
xd = temp;
NumericsHelpers.DangerousMakeTwosComplement(xd); // mutates xd
}
int zl = xl - digitShift;
if (zl < 0) zl = 0;
uint[] zd = new uint[zl];
if (smallShift == 0) {
for (int i = xl - 1; i >= digitShift; i--) {
zd[i - digitShift] = xd[i];
}
} else {
int carryShift = kcbitUint - smallShift;
uint carry = 0;
for (int i = xl - 1; i >= digitShift; i--) {
uint rot = xd[i];
if (negx && i == xl - 1)
// sign-extend the first shift for negative ints then let the carry propagate
zd[i - digitShift] = (rot >> smallShift) | (0xFFFFFFFF << carryShift);
else
zd[i - digitShift] = (rot >> smallShift) | carry;
carry = rot << carryShift;
}
}
if (negx) {
NumericsHelpers.DangerousMakeTwosComplement(zd); // mutates zd
}
return new BigInteger(zd, negx);
}
public static BigInteger operator ~(BigInteger value) {
return -(value + BigInteger.One);
}
public static BigInteger operator -(BigInteger value)
{
value.AssertValid();
value._sign = -value._sign;
value.AssertValid();
return value;
}
public static BigInteger operator +(BigInteger value)
{
value.AssertValid();
return value;
}
public static BigInteger operator ++(BigInteger value)
{
return value + BigInteger.One;
}
public static BigInteger operator --(BigInteger value)
{
return value - BigInteger.One;
}
public static BigInteger operator +(BigInteger left, BigInteger right)
{
left.AssertValid();
right.AssertValid();
if (right.IsZero) return left;
if (left.IsZero) return right;
int sign1 = +1;
int sign2 = +1;
BigIntegerBuilder reg1 = new BigIntegerBuilder(left, ref sign1);
BigIntegerBuilder reg2 = new BigIntegerBuilder(right, ref sign2);
if (sign1 == sign2)
reg1.Add(ref reg2);
else
reg1.Sub(ref sign1, ref reg2);
return reg1.GetInteger(sign1);
}
public static BigInteger operator -(BigInteger left, BigInteger right)
{
left.AssertValid();
right.AssertValid();
if (right.IsZero) return left;
if (left.IsZero) return -right;
int sign1 = +1;
int sign2 = -1;
BigIntegerBuilder reg1 = new BigIntegerBuilder(left, ref sign1);
BigIntegerBuilder reg2 = new BigIntegerBuilder(right, ref sign2);
if (sign1 == sign2)
reg1.Add(ref reg2);
else
reg1.Sub(ref sign1, ref reg2);
return reg1.GetInteger(sign1);
}
public static BigInteger operator *(BigInteger left, BigInteger right)
{
left.AssertValid();
right.AssertValid();
int sign = +1;
BigIntegerBuilder reg1 = new BigIntegerBuilder(left, ref sign);
BigIntegerBuilder reg2 = new BigIntegerBuilder(right, ref sign);
reg1.Mul(ref reg2);
return reg1.GetInteger(sign);
}
public static BigInteger operator /(BigInteger dividend, BigInteger divisor)
{
dividend.AssertValid();
divisor.AssertValid();
int sign = +1;
BigIntegerBuilder regNum = new BigIntegerBuilder(dividend, ref sign);
BigIntegerBuilder regDen = new BigIntegerBuilder(divisor, ref sign);
regNum.Div(ref regDen);
return regNum.GetInteger(sign);
}
public static BigInteger operator %(BigInteger dividend, BigInteger divisor)
{
dividend.AssertValid();
divisor.AssertValid();
int signNum = +1;
int signDen = +1;
BigIntegerBuilder regNum = new BigIntegerBuilder(dividend, ref signNum);
BigIntegerBuilder regDen = new BigIntegerBuilder(divisor, ref signDen);
regNum.Mod(ref regDen);
return regNum.GetInteger(signNum);
}
public static bool operator <(BigInteger left, BigInteger right)
{
return left.CompareTo(right) < 0;
}
public static bool operator <=(BigInteger left, BigInteger right)
{
return left.CompareTo(right) <= 0;
}
public static bool operator >(BigInteger left, BigInteger right)
{
return left.CompareTo(right) > 0;
}
public static bool operator >=(BigInteger left, BigInteger right)
{
return left.CompareTo(right) >= 0;
}
public static bool operator ==(BigInteger left, BigInteger right)
{
return left.Equals(right);
}
public static bool operator !=(BigInteger left, BigInteger right)
{
return !left.Equals(right);
}
public static bool operator <(BigInteger left, Int64 right)
{
return left.CompareTo(right) < 0;
}
public static bool operator <=(BigInteger left, Int64 right)
{
return left.CompareTo(right) <= 0;
}
public static bool operator >(BigInteger left, Int64 right)
{
return left.CompareTo(right) > 0;
}
public static bool operator >=(BigInteger left, Int64 right)
{
return left.CompareTo(right) >= 0;
}
public static bool operator ==(BigInteger left, Int64 right)
{
return left.Equals(right);
}
public static bool operator !=(BigInteger left, Int64 right)
{
return !left.Equals(right);
}
public static bool operator <(Int64 left, BigInteger right)
{
return right.CompareTo(left) > 0;
}
public static bool operator <=(Int64 left, BigInteger right)
{
return right.CompareTo(left) >= 0;
}
public static bool operator >(Int64 left, BigInteger right)
{
return right.CompareTo(left) < 0;
}
public static bool operator >=(Int64 left, BigInteger right)
{
return right.CompareTo(left) <= 0;
}
public static bool operator ==(Int64 left, BigInteger right)
{
return right.Equals(left);
}
public static bool operator !=(Int64 left, BigInteger right)
{
return !right.Equals(left);
}
[CLSCompliant(false)]
public static bool operator <(BigInteger left, UInt64 right)
{
return left.CompareTo(right) < 0;
}
[CLSCompliant(false)]
public static bool operator <=(BigInteger left, UInt64 right)
{
return left.CompareTo(right) <= 0;
}
[CLSCompliant(false)]
public static bool operator >(BigInteger left, UInt64 right)
{
return left.CompareTo(right) > 0;
}
[CLSCompliant(false)]
public static bool operator >=(BigInteger left, UInt64 right)
{
return left.CompareTo(right) >= 0;
}
[CLSCompliant(false)]
public static bool operator ==(BigInteger left, UInt64 right)
{
return left.Equals(right);
}
[CLSCompliant(false)]
public static bool operator !=(BigInteger left, UInt64 right)
{
return !left.Equals(right);
}
[CLSCompliant(false)]
public static bool operator <(UInt64 left, BigInteger right)
{
return right.CompareTo(left) > 0;
}
[CLSCompliant(false)]
public static bool operator <=(UInt64 left, BigInteger right)
{
return right.CompareTo(left) >= 0;
}
[CLSCompliant(false)]
public static bool operator >(UInt64 left, BigInteger right)
{
return right.CompareTo(left) < 0;
}
[CLSCompliant(false)]
public static bool operator >=(UInt64 left, BigInteger right)
{
return right.CompareTo(left) <= 0;
}
[CLSCompliant(false)]
public static bool operator ==(UInt64 left, BigInteger right)
{
return right.Equals(left);
}
[CLSCompliant(false)]
public static bool operator !=(UInt64 left, BigInteger right)
{
return !right.Equals(left);
}
#endregion public static operators
// ----- SECTION: private serialization instance methods ----------------
#region private serialization instance methods
#endregion private serialization instance methods
// ----- SECTION: internal instance utility methods ----------------*
#region internal instance utility methods
private void SetBitsFromDouble(Double value)
{
int sign, exp;
ulong man;
bool fFinite;
NumericsHelpers.GetDoubleParts(value, out sign, out exp, out man, out fFinite);
Contract.Assert(sign == +1 || sign == -1);
if (man == 0)
{
this = BigInteger.Zero;
return;
}
Contract.Assert(man < (1UL << 53));
Contract.Assert(exp <= 0 || man >= (1UL << 52));
if (exp <= 0)
{
if (exp <= -kcbitUlong)
{
this = BigInteger.Zero;
return;
}
this = man >> -exp;
if (sign < 0)
_sign = -_sign;
}
else if (exp <= 11)
{
this = man << exp;
if (sign < 0)
_sign = -_sign;
}
else
{
// Overflow into at least 3 uints.
// Move the leading 1 to the high bit.
man <<= 11;
exp -= 11;
// Compute cu and cbit so that exp == 32 * cu - cbit and 0 <= cbit < 32.
int cu = (exp - 1) / kcbitUint + 1;
int cbit = cu * kcbitUint - exp;
Contract.Assert(0 <= cbit && cbit < kcbitUint);
Contract.Assert(cu >= 1);
// Populate the uints.
_bits = new uint[cu + 2];
_bits[cu + 1] = (uint)(man >> (cbit + kcbitUint));
_bits[cu] = (uint)(man >> cbit);
if (cbit > 0)
_bits[cu - 1] = (uint)man << (kcbitUint - cbit);
_sign = sign;
}
}
#endregion internal instance utility methods
// ----- SECTION: internal static utility methods ----------------*
#region internal static utility methods
[Pure]
internal static int Length(uint[] rgu)
{
int cu = rgu.Length;
if (rgu[cu - 1] != 0)
return cu;
Contract.Assert(cu >= 2 && rgu[cu - 2] != 0);
return cu - 1;
}
internal int _Sign { get { return _sign; } }
internal uint[] _Bits { get { return _bits; } }
internal static int BitLengthOfUInt(uint x)
{
int numBits = 0;
while (x > 0)
{
x >>= 1;
numBits++;
}
return numBits;
}
//
// GetPartsForBitManipulation -
//
// Encapsulate the logic of normalizing the "small" and "large" forms of BigInteger
// into the "large" form so that Bit Manipulation algorithms can be simplified
//
// uint[] xd = the UInt32 array containing the entire big integer in "large" (denormalized) form
// E.g., the number one (1) and negative one (-1) are both stored as 0x00000001
// BigInteger values Int32.MinValue < x <= Int32.MaxValue are converted to this
// format for convenience.
// int xl = the length of xd
// return bool = true for negative numbers
//
private static bool GetPartsForBitManipulation(ref BigInteger x, out uint[] xd, out int xl) {
if (x._bits == null) {
if (x._sign < 0) {
xd = new uint[] {(uint)-x._sign};
}
else {
xd = new uint[] {(uint)x._sign};
}
}
else {
xd = x._bits;
}
xl = (x._bits == null ? 1 : x._bits.Length);
return x._sign < 0;
}
// Gets an upper bound on the product of uHiRes * (2^32)^(cuRes-1) and uHiMul * (2^32)^(cuMul-1).
// The result is put int uHiRes and cuRes.
private static void MulUpper(ref uint uHiRes, ref int cuRes, uint uHiMul, int cuMul)
{
ulong uu = (ulong)uHiRes * uHiMul;
uint uHi = NumericsHelpers.GetHi(uu);
if (uHi != 0)
{
if (NumericsHelpers.GetLo(uu) != 0 && ++uHi == 0)
{
uHi = 1;
cuRes++;
}
uHiRes = uHi;
cuRes += cuMul;
}
else
{
uHiRes = NumericsHelpers.GetLo(uu);
cuRes += cuMul - 1;
}
}
// Gets a lower bound on the product of uHiRes * (2^32)^(cuRes-1) and uHiMul * (2^32)^(cuMul-1).
// The result is put int uHiRes and cuRes.
private static void MulLower(ref uint uHiRes, ref int cuRes, uint uHiMul, int cuMul)
{
ulong uu = (ulong)uHiRes * uHiMul;
uint uHi = NumericsHelpers.GetHi(uu);
if (uHi != 0)
{
uHiRes = uHi;
cuRes += cuMul;
}
else
{
uHiRes = NumericsHelpers.GetLo(uu);
cuRes += cuMul - 1;
}
}
internal static int GetDiffLength(uint[] rgu1, uint[] rgu2, int cu)
{
for (int iv = cu; --iv >= 0; )
{
if (rgu1[iv] != rgu2[iv])
return iv + 1;
}
return 0;
}
#endregion internal static utility methods
}
}