288 lines
9.7 KiB
C#
288 lines
9.7 KiB
C#
|
// Crc32.cs
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// Copyright (c) 2006-2009 Dino Chiesa and Microsoft Corporation.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This code module is part of DotNetZip, a zipfile class library.
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// This code is licensed under the Microsoft Public License.
|
||
|
// See the file License.txt for the license details.
|
||
|
// More info on: http://dotnetzip.codeplex.com
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// last saved (in emacs):
|
||
|
// Time-stamp: <2010-January-16 13:16:27>
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// Implements the CRC algorithm, which is used in zip files. The zip format calls for
|
||
|
// the zipfile to contain a CRC for the unencrypted byte stream of each file.
|
||
|
//
|
||
|
// It is based on example source code published at
|
||
|
// http://www.vbaccelerator.com/home/net/code/libraries/CRC32/Crc32_zip_CRC32_CRC32_cs.asp
|
||
|
//
|
||
|
// This implementation adds a tweak of that code for use within zip creation. While
|
||
|
// computing the CRC we also compress the byte stream, in the same read loop. This
|
||
|
// avoids the need to read through the uncompressed stream twice - once to compute CRC
|
||
|
// and another time to compress.
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
using System;
|
||
|
using System.IO;
|
||
|
|
||
|
namespace SharpCompress.Compressor.Deflate
|
||
|
{
|
||
|
/// <summary>
|
||
|
/// Calculates a 32bit Cyclic Redundancy Checksum (CRC) using the same polynomial
|
||
|
/// used by Zip. This type is used internally by DotNetZip; it is generally not used
|
||
|
/// directly by applications wishing to create, read, or manipulate zip archive
|
||
|
/// files.
|
||
|
/// </summary>
|
||
|
internal class CRC32
|
||
|
{
|
||
|
private const int BUFFER_SIZE = 8192;
|
||
|
private static readonly UInt32[] crc32Table;
|
||
|
private UInt32 runningCrc32Result = 0xFFFFFFFF;
|
||
|
private Int64 totalBytesRead;
|
||
|
|
||
|
static CRC32()
|
||
|
{
|
||
|
unchecked
|
||
|
{
|
||
|
// PKZip specifies CRC32 with a polynomial of 0xEDB88320;
|
||
|
// This is also the CRC-32 polynomial used bby Ethernet, FDDI,
|
||
|
// bzip2, gzip, and others.
|
||
|
// Often the polynomial is shown reversed as 0x04C11DB7.
|
||
|
// For more details, see http://en.wikipedia.org/wiki/Cyclic_redundancy_check
|
||
|
UInt32 dwPolynomial = 0xEDB88320;
|
||
|
UInt32 i, j;
|
||
|
|
||
|
crc32Table = new UInt32[256];
|
||
|
|
||
|
UInt32 dwCrc;
|
||
|
for (i = 0; i < 256; i++)
|
||
|
{
|
||
|
dwCrc = i;
|
||
|
for (j = 8; j > 0; j--)
|
||
|
{
|
||
|
if ((dwCrc & 1) == 1)
|
||
|
{
|
||
|
dwCrc = (dwCrc >> 1) ^ dwPolynomial;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dwCrc >>= 1;
|
||
|
}
|
||
|
}
|
||
|
crc32Table[i] = dwCrc;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// indicates the total number of bytes read on the CRC stream.
|
||
|
/// This is used when writing the ZipDirEntry when compressing files.
|
||
|
/// </summary>
|
||
|
public Int64 TotalBytesRead
|
||
|
{
|
||
|
get { return totalBytesRead; }
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Indicates the current CRC for all blocks slurped in.
|
||
|
/// </summary>
|
||
|
public Int32 Crc32Result
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
// return one's complement of the running result
|
||
|
return unchecked((Int32) (~runningCrc32Result));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns the CRC32 for the specified stream.
|
||
|
/// </summary>
|
||
|
/// <param name="input">The stream over which to calculate the CRC32</param>
|
||
|
/// <returns>the CRC32 calculation</returns>
|
||
|
public Int32 GetCrc32(Stream input)
|
||
|
{
|
||
|
return GetCrc32AndCopy(input, null);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns the CRC32 for the specified stream, and writes the input into the
|
||
|
/// output stream.
|
||
|
/// </summary>
|
||
|
/// <param name="input">The stream over which to calculate the CRC32</param>
|
||
|
/// <param name="output">The stream into which to deflate the input</param>
|
||
|
/// <returns>the CRC32 calculation</returns>
|
||
|
public Int32 GetCrc32AndCopy(Stream input, Stream output)
|
||
|
{
|
||
|
if (input == null)
|
||
|
throw new ZlibException("The input stream must not be null.");
|
||
|
|
||
|
unchecked
|
||
|
{
|
||
|
//UInt32 crc32Result;
|
||
|
//crc32Result = 0xFFFFFFFF;
|
||
|
var buffer = new byte[BUFFER_SIZE];
|
||
|
int readSize = BUFFER_SIZE;
|
||
|
|
||
|
totalBytesRead = 0;
|
||
|
int count = input.Read(buffer, 0, readSize);
|
||
|
if (output != null) output.Write(buffer, 0, count);
|
||
|
totalBytesRead += count;
|
||
|
while (count > 0)
|
||
|
{
|
||
|
SlurpBlock(buffer, 0, count);
|
||
|
count = input.Read(buffer, 0, readSize);
|
||
|
if (output != null) output.Write(buffer, 0, count);
|
||
|
totalBytesRead += count;
|
||
|
}
|
||
|
|
||
|
return (Int32) (~runningCrc32Result);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Get the CRC32 for the given (word,byte) combo. This is a computation
|
||
|
/// defined by PKzip.
|
||
|
/// </summary>
|
||
|
/// <param name="W">The word to start with.</param>
|
||
|
/// <param name="B">The byte to combine it with.</param>
|
||
|
/// <returns>The CRC-ized result.</returns>
|
||
|
public Int32 ComputeCrc32(Int32 W, byte B)
|
||
|
{
|
||
|
return _InternalComputeCrc32((UInt32) W, B);
|
||
|
}
|
||
|
|
||
|
internal Int32 _InternalComputeCrc32(UInt32 W, byte B)
|
||
|
{
|
||
|
return (Int32) (crc32Table[(W ^ B) & 0xFF] ^ (W >> 8));
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Update the value for the running CRC32 using the given block of bytes.
|
||
|
/// This is useful when using the CRC32() class in a Stream.
|
||
|
/// </summary>
|
||
|
/// <param name="block">block of bytes to slurp</param>
|
||
|
/// <param name="offset">starting point in the block</param>
|
||
|
/// <param name="count">how many bytes within the block to slurp</param>
|
||
|
public void SlurpBlock(byte[] block, int offset, int count)
|
||
|
{
|
||
|
if (block == null)
|
||
|
throw new ZlibException("The data buffer must not be null.");
|
||
|
|
||
|
for (int i = 0; i < count; i++)
|
||
|
{
|
||
|
int x = offset + i;
|
||
|
runningCrc32Result = ((runningCrc32Result) >> 8) ^
|
||
|
crc32Table[(block[x]) ^ ((runningCrc32Result) & 0x000000FF)];
|
||
|
}
|
||
|
totalBytesRead += count;
|
||
|
}
|
||
|
|
||
|
|
||
|
// pre-initialize the crc table for speed of lookup.
|
||
|
|
||
|
|
||
|
private uint gf2_matrix_times(uint[] matrix, uint vec)
|
||
|
{
|
||
|
uint sum = 0;
|
||
|
int i = 0;
|
||
|
while (vec != 0)
|
||
|
{
|
||
|
if ((vec & 0x01) == 0x01)
|
||
|
sum ^= matrix[i];
|
||
|
vec >>= 1;
|
||
|
i++;
|
||
|
}
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
private void gf2_matrix_square(uint[] square, uint[] mat)
|
||
|
{
|
||
|
for (int i = 0; i < 32; i++)
|
||
|
square[i] = gf2_matrix_times(mat, mat[i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Combines the given CRC32 value with the current running total.
|
||
|
/// </summary>
|
||
|
/// <remarks>
|
||
|
/// This is useful when using a divide-and-conquer approach to calculating a CRC.
|
||
|
/// Multiple threads can each calculate a CRC32 on a segment of the data, and then
|
||
|
/// combine the individual CRC32 values at the end.
|
||
|
/// </remarks>
|
||
|
/// <param name="crc">the crc value to be combined with this one</param>
|
||
|
/// <param name="length">the length of data the CRC value was calculated on</param>
|
||
|
public void Combine(int crc, int length)
|
||
|
{
|
||
|
var even = new uint[32]; // even-power-of-two zeros operator
|
||
|
var odd = new uint[32]; // odd-power-of-two zeros operator
|
||
|
|
||
|
if (length == 0)
|
||
|
return;
|
||
|
|
||
|
uint crc1 = ~runningCrc32Result;
|
||
|
var crc2 = (uint) crc;
|
||
|
|
||
|
// put operator for one zero bit in odd
|
||
|
odd[0] = 0xEDB88320; // the CRC-32 polynomial
|
||
|
uint row = 1;
|
||
|
for (int i = 1; i < 32; i++)
|
||
|
{
|
||
|
odd[i] = row;
|
||
|
row <<= 1;
|
||
|
}
|
||
|
|
||
|
// put operator for two zero bits in even
|
||
|
gf2_matrix_square(even, odd);
|
||
|
|
||
|
// put operator for four zero bits in odd
|
||
|
gf2_matrix_square(odd, even);
|
||
|
|
||
|
var len2 = (uint) length;
|
||
|
|
||
|
// apply len2 zeros to crc1 (first square will put the operator for one
|
||
|
// zero byte, eight zero bits, in even)
|
||
|
do
|
||
|
{
|
||
|
// apply zeros operator for this bit of len2
|
||
|
gf2_matrix_square(even, odd);
|
||
|
|
||
|
if ((len2 & 1) == 1)
|
||
|
crc1 = gf2_matrix_times(even, crc1);
|
||
|
len2 >>= 1;
|
||
|
|
||
|
if (len2 == 0)
|
||
|
break;
|
||
|
|
||
|
// another iteration of the loop with odd and even swapped
|
||
|
gf2_matrix_square(odd, even);
|
||
|
if ((len2 & 1) == 1)
|
||
|
crc1 = gf2_matrix_times(odd, crc1);
|
||
|
len2 >>= 1;
|
||
|
} while (len2 != 0);
|
||
|
|
||
|
crc1 ^= crc2;
|
||
|
|
||
|
runningCrc32Result = ~crc1;
|
||
|
|
||
|
//return (int) crc1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
// private member vars
|
||
|
}
|
||
|
}
|