You've already forked linux-packaging-mono
							
							
		
			
	
	
		
			2105 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			2105 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
 | ||
|  | //
 | ||
|  | //                     The LLVM Compiler Infrastructure
 | ||
|  | //
 | ||
|  | // This file is distributed under the University of Illinois Open Source
 | ||
|  | // License. See LICENSE.TXT for details.
 | ||
|  | //
 | ||
|  | //===----------------------------------------------------------------------===//
 | ||
|  | 
 | ||
|  | #include "Hexagon.h"
 | ||
|  | #include "HexagonISelDAGToDAG.h"
 | ||
|  | #include "HexagonISelLowering.h"
 | ||
|  | #include "HexagonTargetMachine.h"
 | ||
|  | #include "llvm/CodeGen/MachineInstrBuilder.h"
 | ||
|  | #include "llvm/CodeGen/SelectionDAGISel.h"
 | ||
|  | #include "llvm/IR/Intrinsics.h"
 | ||
|  | #include "llvm/Support/CommandLine.h"
 | ||
|  | #include "llvm/Support/Debug.h"
 | ||
|  | 
 | ||
|  | #include <deque>
 | ||
|  | #include <map>
 | ||
|  | #include <set>
 | ||
|  | #include <utility>
 | ||
|  | #include <vector>
 | ||
|  | 
 | ||
|  | #define DEBUG_TYPE "hexagon-isel"
 | ||
|  | 
 | ||
|  | using namespace llvm; | ||
|  | 
 | ||
|  | namespace { | ||
|  | 
 | ||
|  | // --------------------------------------------------------------------
 | ||
|  | // Implementation of permutation networks.
 | ||
|  | 
 | ||
|  | // Implementation of the node routing through butterfly networks:
 | ||
|  | // - Forward delta.
 | ||
|  | // - Reverse delta.
 | ||
|  | // - Benes.
 | ||
|  | //
 | ||
|  | //
 | ||
|  | // Forward delta network consists of log(N) steps, where N is the number
 | ||
|  | // of inputs. In each step, an input can stay in place, or it can get
 | ||
|  | // routed to another position[1]. The step after that consists of two
 | ||
|  | // networks, each half in size in terms of the number of nodes. In those
 | ||
|  | // terms, in the given step, an input can go to either the upper or the
 | ||
|  | // lower network in the next step.
 | ||
|  | //
 | ||
|  | // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
 | ||
|  | // positions as long as there is no conflict.
 | ||
|  | 
 | ||
|  | // Here's a delta network for 8 inputs, only the switching routes are
 | ||
|  | // shown:
 | ||
|  | //
 | ||
|  | //         Steps:
 | ||
|  | //         |- 1 ---------------|- 2 -----|- 3 -|
 | ||
|  | //
 | ||
|  | // Inp[0] ***                 ***       ***   *** Out[0]
 | ||
|  | //           \               /   \     /   \ /
 | ||
|  | //            \             /     \   /     X
 | ||
|  | //             \           /       \ /     / \ | ||
|  | // Inp[1] ***   \         /   ***   X   ***   *** Out[1]
 | ||
|  | //           \   \       /   /   \ / \ /
 | ||
|  | //            \   \     /   /     X   X
 | ||
|  | //             \   \   /   /     / \ / \ | ||
|  | // Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
 | ||
|  | //           \   \   X   /   /     / \     \ /
 | ||
|  | //            \   \ / \ /   /     /   \     X
 | ||
|  | //             \   X   X   /     /     \   / \ | ||
|  | // Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
 | ||
|  | //           \   X   X   X   /
 | ||
|  | //            \ / \ / \ / \ /
 | ||
|  | //             X   X   X   X
 | ||
|  | //            / \ / \ / \ / \ | ||
|  | //           /   X   X   X   \ | ||
|  | // Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
 | ||
|  | //             /   X   X   \     \     /   \ /
 | ||
|  | //            /   / \ / \   \     \   /     X
 | ||
|  | //           /   /   X   \   \     \ /     / \ | ||
|  | // Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
 | ||
|  | //             /   /   \   \     \ / \ /
 | ||
|  | //            /   /     \   \     X   X
 | ||
|  | //           /   /       \   \   / \ / \ | ||
|  | // Inp[6] ***   /         \   ***   X   ***   *** Out[6]
 | ||
|  | //             /           \       / \     \ /
 | ||
|  | //            /             \     /   \     X
 | ||
|  | //           /               \   /     \   / \ | ||
|  | // Inp[7] ***                 ***       ***   *** Out[7]
 | ||
|  | //
 | ||
|  | //
 | ||
|  | // Reverse delta network is same as delta network, with the steps in
 | ||
|  | // the opposite order.
 | ||
|  | //
 | ||
|  | //
 | ||
|  | // Benes network is a forward delta network immediately followed by
 | ||
|  | // a reverse delta network.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // Graph coloring utility used to partition nodes into two groups:
 | ||
|  | // they will correspond to nodes routed to the upper and lower networks.
 | ||
|  | struct Coloring { | ||
|  |   enum : uint8_t { | ||
|  |     None = 0, | ||
|  |     Red, | ||
|  |     Black | ||
|  |   }; | ||
|  | 
 | ||
|  |   using Node = int; | ||
|  |   using MapType = std::map<Node,uint8_t>; | ||
|  |   static constexpr Node Ignore = Node(-1); | ||
|  | 
 | ||
|  |   Coloring(ArrayRef<Node> Ord) : Order(Ord) { | ||
|  |     build(); | ||
|  |     if (!color()) | ||
|  |       Colors.clear(); | ||
|  |   } | ||
|  | 
 | ||
|  |   const MapType &colors() const { | ||
|  |     return Colors; | ||
|  |   } | ||
|  | 
 | ||
|  |   uint8_t other(uint8_t Color) { | ||
|  |     if (Color == None) | ||
|  |       return Red; | ||
|  |     return Color == Red ? Black : Red; | ||
|  |   } | ||
|  | 
 | ||
|  |   void dump() const; | ||
|  | 
 | ||
|  | private: | ||
|  |   ArrayRef<Node> Order; | ||
|  |   MapType Colors; | ||
|  |   std::set<Node> Needed; | ||
|  | 
 | ||
|  |   using NodeSet = std::set<Node>; | ||
|  |   std::map<Node,NodeSet> Edges; | ||
|  | 
 | ||
|  |   Node conj(Node Pos) { | ||
|  |     Node Num = Order.size(); | ||
|  |     return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; | ||
|  |   } | ||
|  | 
 | ||
|  |   uint8_t getColor(Node N) { | ||
|  |     auto F = Colors.find(N); | ||
|  |     return F != Colors.end() ? F->second : (uint8_t)None; | ||
|  |   } | ||
|  | 
 | ||
|  |   std::pair<bool,uint8_t> getUniqueColor(const NodeSet &Nodes); | ||
|  | 
 | ||
|  |   void build(); | ||
|  |   bool color(); | ||
|  | }; | ||
|  | } // namespace
 | ||
|  | 
 | ||
|  | std::pair<bool,uint8_t> Coloring::getUniqueColor(const NodeSet &Nodes) { | ||
|  |   uint8_t Color = None; | ||
|  |   for (Node N : Nodes) { | ||
|  |     uint8_t ColorN = getColor(N); | ||
|  |     if (ColorN == None) | ||
|  |       continue; | ||
|  |     if (Color == None) | ||
|  |       Color = ColorN; | ||
|  |     else if (Color != None && Color != ColorN) | ||
|  |       return { false, None }; | ||
|  |   } | ||
|  |   return { true, Color }; | ||
|  | } | ||
|  | 
 | ||
|  | void Coloring::build() { | ||
|  |   // Add Order[P] and Order[conj(P)] to Edges.
 | ||
|  |   for (unsigned P = 0; P != Order.size(); ++P) { | ||
|  |     Node I = Order[P]; | ||
|  |     if (I != Ignore) { | ||
|  |       Needed.insert(I); | ||
|  |       Node PC = Order[conj(P)]; | ||
|  |       if (PC != Ignore && PC != I) | ||
|  |         Edges[I].insert(PC); | ||
|  |     } | ||
|  |   } | ||
|  |   // Add I and conj(I) to Edges.
 | ||
|  |   for (unsigned I = 0; I != Order.size(); ++I) { | ||
|  |     if (!Needed.count(I)) | ||
|  |       continue; | ||
|  |     Node C = conj(I); | ||
|  |     // This will create an entry in the edge table, even if I is not
 | ||
|  |     // connected to any other node. This is necessary, because it still
 | ||
|  |     // needs to be colored.
 | ||
|  |     NodeSet &Is = Edges[I]; | ||
|  |     if (Needed.count(C)) | ||
|  |       Is.insert(C); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | bool Coloring::color() { | ||
|  |   SetVector<Node> FirstQ; | ||
|  |   auto Enqueue = [this,&FirstQ] (Node N) { | ||
|  |     SetVector<Node> Q; | ||
|  |     Q.insert(N); | ||
|  |     for (unsigned I = 0; I != Q.size(); ++I) { | ||
|  |       NodeSet &Ns = Edges[Q[I]]; | ||
|  |       Q.insert(Ns.begin(), Ns.end()); | ||
|  |     } | ||
|  |     FirstQ.insert(Q.begin(), Q.end()); | ||
|  |   }; | ||
|  |   for (Node N : Needed) | ||
|  |     Enqueue(N); | ||
|  | 
 | ||
|  |   for (Node N : FirstQ) { | ||
|  |     if (Colors.count(N)) | ||
|  |       continue; | ||
|  |     NodeSet &Ns = Edges[N]; | ||
|  |     auto P = getUniqueColor(Ns); | ||
|  |     if (!P.first) | ||
|  |       return false; | ||
|  |     Colors[N] = other(P.second); | ||
|  |   } | ||
|  | 
 | ||
|  |   // First, color nodes that don't have any dups.
 | ||
|  |   for (auto E : Edges) { | ||
|  |     Node N = E.first; | ||
|  |     if (!Needed.count(conj(N)) || Colors.count(N)) | ||
|  |       continue; | ||
|  |     auto P = getUniqueColor(E.second); | ||
|  |     if (!P.first) | ||
|  |       return false; | ||
|  |     Colors[N] = other(P.second); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Now, nodes that are still uncolored. Since the graph can be modified
 | ||
|  |   // in this step, create a work queue.
 | ||
|  |   std::vector<Node> WorkQ; | ||
|  |   for (auto E : Edges) { | ||
|  |     Node N = E.first; | ||
|  |     if (!Colors.count(N)) | ||
|  |       WorkQ.push_back(N); | ||
|  |   } | ||
|  | 
 | ||
|  |   for (unsigned I = 0; I < WorkQ.size(); ++I) { | ||
|  |     Node N = WorkQ[I]; | ||
|  |     NodeSet &Ns = Edges[N]; | ||
|  |     auto P = getUniqueColor(Ns); | ||
|  |     if (P.first) { | ||
|  |       Colors[N] = other(P.second); | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Coloring failed. Split this node.
 | ||
|  |     Node C = conj(N); | ||
|  |     uint8_t ColorN = other(None); | ||
|  |     uint8_t ColorC = other(ColorN); | ||
|  |     NodeSet &Cs = Edges[C]; | ||
|  |     NodeSet CopyNs = Ns; | ||
|  |     for (Node M : CopyNs) { | ||
|  |       uint8_t ColorM = getColor(M); | ||
|  |       if (ColorM == ColorC) { | ||
|  |         // Connect M with C, disconnect M from N.
 | ||
|  |         Cs.insert(M); | ||
|  |         Edges[M].insert(C); | ||
|  |         Ns.erase(M); | ||
|  |         Edges[M].erase(N); | ||
|  |       } | ||
|  |     } | ||
|  |     Colors[N] = ColorN; | ||
|  |     Colors[C] = ColorC; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Explicitly assign "None" all all uncolored nodes.
 | ||
|  |   for (unsigned I = 0; I != Order.size(); ++I) | ||
|  |     if (Colors.count(I) == 0) | ||
|  |       Colors[I] = None; | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | LLVM_DUMP_METHOD | ||
|  | void Coloring::dump() const { | ||
|  |   dbgs() << "{ Order:   {"; | ||
|  |   for (unsigned I = 0; I != Order.size(); ++I) { | ||
|  |     Node P = Order[I]; | ||
|  |     if (P != Ignore) | ||
|  |       dbgs() << ' ' << P; | ||
|  |     else | ||
|  |       dbgs() << " -"; | ||
|  |   } | ||
|  |   dbgs() << " }\n"; | ||
|  |   dbgs() << "  Needed: {"; | ||
|  |   for (Node N : Needed) | ||
|  |     dbgs() << ' ' << N; | ||
|  |   dbgs() << " }\n"; | ||
|  | 
 | ||
|  |   dbgs() << "  Edges: {\n"; | ||
|  |   for (auto E : Edges) { | ||
|  |     dbgs() << "    " << E.first << " -> {"; | ||
|  |     for (auto N : E.second) | ||
|  |       dbgs() << ' ' << N; | ||
|  |     dbgs() << " }\n"; | ||
|  |   } | ||
|  |   dbgs() << "  }\n"; | ||
|  | 
 | ||
|  |   static const char *const Names[] = { "None", "Red", "Black" }; | ||
|  |   dbgs() << "  Colors: {\n"; | ||
|  |   for (auto C : Colors) | ||
|  |     dbgs() << "    " << C.first << " -> " << Names[C.second] << "\n"; | ||
|  |   dbgs() << "  }\n}\n"; | ||
|  | } | ||
|  | 
 | ||
|  | namespace { | ||
|  | // Base class of for reordering networks. They don't strictly need to be
 | ||
|  | // permutations, as outputs with repeated occurrences of an input element
 | ||
|  | // are allowed.
 | ||
|  | struct PermNetwork { | ||
|  |   using Controls = std::vector<uint8_t>; | ||
|  |   using ElemType = int; | ||
|  |   static constexpr ElemType Ignore = ElemType(-1); | ||
|  | 
 | ||
|  |   enum : uint8_t { | ||
|  |     None, | ||
|  |     Pass, | ||
|  |     Switch | ||
|  |   }; | ||
|  |   enum : uint8_t { | ||
|  |     Forward, | ||
|  |     Reverse | ||
|  |   }; | ||
|  | 
 | ||
|  |   PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { | ||
|  |     Order.assign(Ord.data(), Ord.data()+Ord.size()); | ||
|  |     Log = 0; | ||
|  | 
 | ||
|  |     unsigned S = Order.size(); | ||
|  |     while (S >>= 1) | ||
|  |       ++Log; | ||
|  | 
 | ||
|  |     Table.resize(Order.size()); | ||
|  |     for (RowType &Row : Table) | ||
|  |       Row.resize(Mult*Log, None); | ||
|  |   } | ||
|  | 
 | ||
|  |   void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { | ||
|  |     unsigned Size = Order.size(); | ||
|  |     V.resize(Size); | ||
|  |     for (unsigned I = 0; I != Size; ++I) { | ||
|  |       unsigned W = 0; | ||
|  |       for (unsigned L = 0; L != Log; ++L) { | ||
|  |         unsigned C = ctl(I, StartAt+L) == Switch; | ||
|  |         if (Dir == Forward) | ||
|  |           W |= C << (Log-1-L); | ||
|  |         else | ||
|  |           W |= C << L; | ||
|  |       } | ||
|  |       assert(isUInt<8>(W)); | ||
|  |       V[I] = uint8_t(W); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   uint8_t ctl(ElemType Pos, unsigned Step) const { | ||
|  |     return Table[Pos][Step]; | ||
|  |   } | ||
|  |   unsigned size() const { | ||
|  |     return Order.size(); | ||
|  |   } | ||
|  |   unsigned steps() const { | ||
|  |     return Log; | ||
|  |   } | ||
|  | 
 | ||
|  | protected: | ||
|  |   unsigned Log; | ||
|  |   std::vector<ElemType> Order; | ||
|  |   using RowType = std::vector<uint8_t>; | ||
|  |   std::vector<RowType> Table; | ||
|  | }; | ||
|  | 
 | ||
|  | struct ForwardDeltaNetwork : public PermNetwork { | ||
|  |   ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} | ||
|  | 
 | ||
|  |   bool run(Controls &V) { | ||
|  |     if (!route(Order.data(), Table.data(), size(), 0)) | ||
|  |       return false; | ||
|  |     getControls(V, 0, Forward); | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  | private: | ||
|  |   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); | ||
|  | }; | ||
|  | 
 | ||
|  | struct ReverseDeltaNetwork : public PermNetwork { | ||
|  |   ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} | ||
|  | 
 | ||
|  |   bool run(Controls &V) { | ||
|  |     if (!route(Order.data(), Table.data(), size(), 0)) | ||
|  |       return false; | ||
|  |     getControls(V, 0, Reverse); | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  | private: | ||
|  |   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); | ||
|  | }; | ||
|  | 
 | ||
|  | struct BenesNetwork : public PermNetwork { | ||
|  |   BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} | ||
|  | 
 | ||
|  |   bool run(Controls &F, Controls &R) { | ||
|  |     if (!route(Order.data(), Table.data(), size(), 0)) | ||
|  |       return false; | ||
|  | 
 | ||
|  |     getControls(F, 0, Forward); | ||
|  |     getControls(R, Log, Reverse); | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  | private: | ||
|  |   bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); | ||
|  | }; | ||
|  | } // namespace
 | ||
|  | 
 | ||
|  | bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, | ||
|  |                                 unsigned Step) { | ||
|  |   bool UseUp = false, UseDown = false; | ||
|  |   ElemType Num = Size; | ||
|  | 
 | ||
|  |   // Cannot use coloring here, because coloring is used to determine
 | ||
|  |   // the "big" switch, i.e. the one that changes halves, and in a forward
 | ||
|  |   // network, a color can be simultaneously routed to both halves in the
 | ||
|  |   // step we're working on.
 | ||
|  |   for (ElemType J = 0; J != Num; ++J) { | ||
|  |     ElemType I = P[J]; | ||
|  |     // I is the position in the input,
 | ||
|  |     // J is the position in the output.
 | ||
|  |     if (I == Ignore) | ||
|  |       continue; | ||
|  |     uint8_t S; | ||
|  |     if (I < Num/2) | ||
|  |       S = (J < Num/2) ? Pass : Switch; | ||
|  |     else | ||
|  |       S = (J < Num/2) ? Switch : Pass; | ||
|  | 
 | ||
|  |     // U is the element in the table that needs to be updated.
 | ||
|  |     ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); | ||
|  |     if (U < Num/2) | ||
|  |       UseUp = true; | ||
|  |     else | ||
|  |       UseDown = true; | ||
|  |     if (T[U][Step] != S && T[U][Step] != None) | ||
|  |       return false; | ||
|  |     T[U][Step] = S; | ||
|  |   } | ||
|  | 
 | ||
|  |   for (ElemType J = 0; J != Num; ++J) | ||
|  |     if (P[J] != Ignore && P[J] >= Num/2) | ||
|  |       P[J] -= Num/2; | ||
|  | 
 | ||
|  |   if (Step+1 < Log) { | ||
|  |     if (UseUp   && !route(P,        T,        Size/2, Step+1)) | ||
|  |       return false; | ||
|  |     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) | ||
|  |       return false; | ||
|  |   } | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, | ||
|  |                                 unsigned Step) { | ||
|  |   unsigned Pets = Log-1 - Step; | ||
|  |   bool UseUp = false, UseDown = false; | ||
|  |   ElemType Num = Size; | ||
|  | 
 | ||
|  |   // In this step half-switching occurs, so coloring can be used.
 | ||
|  |   Coloring G({P,Size}); | ||
|  |   const Coloring::MapType &M = G.colors(); | ||
|  |   if (M.empty()) | ||
|  |     return false; | ||
|  | 
 | ||
|  |   uint8_t ColorUp = Coloring::None; | ||
|  |   for (ElemType J = 0; J != Num; ++J) { | ||
|  |     ElemType I = P[J]; | ||
|  |     // I is the position in the input,
 | ||
|  |     // J is the position in the output.
 | ||
|  |     if (I == Ignore) | ||
|  |       continue; | ||
|  |     uint8_t C = M.at(I); | ||
|  |     if (C == Coloring::None) | ||
|  |       continue; | ||
|  |     // During "Step", inputs cannot switch halves, so if the "up" color
 | ||
|  |     // is still unknown, make sure that it is selected in such a way that
 | ||
|  |     // "I" will stay in the same half.
 | ||
|  |     bool InpUp = I < Num/2; | ||
|  |     if (ColorUp == Coloring::None) | ||
|  |       ColorUp = InpUp ? C : G.other(C); | ||
|  |     if ((C == ColorUp) != InpUp) { | ||
|  |       // If I should go to a different half than where is it now, give up.
 | ||
|  |       return false; | ||
|  |     } | ||
|  | 
 | ||
|  |     uint8_t S; | ||
|  |     if (InpUp) { | ||
|  |       S = (J < Num/2) ? Pass : Switch; | ||
|  |       UseUp = true; | ||
|  |     } else { | ||
|  |       S = (J < Num/2) ? Switch : Pass; | ||
|  |       UseDown = true; | ||
|  |     } | ||
|  |     T[J][Pets] = S; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Reorder the working permutation according to the computed switch table
 | ||
|  |   // for the last step (i.e. Pets).
 | ||
|  |   for (ElemType J = 0, E = Size / 2; J != E; ++J) { | ||
|  |     ElemType PJ = P[J];         // Current values of P[J]
 | ||
|  |     ElemType PC = P[J+Size/2];  // and P[conj(J)]
 | ||
|  |     ElemType QJ = PJ;           // New values of P[J]
 | ||
|  |     ElemType QC = PC;           // and P[conj(J)]
 | ||
|  |     if (T[J][Pets] == Switch) | ||
|  |       QC = PJ; | ||
|  |     if (T[J+Size/2][Pets] == Switch) | ||
|  |       QJ = PC; | ||
|  |     P[J] = QJ; | ||
|  |     P[J+Size/2] = QC; | ||
|  |   } | ||
|  | 
 | ||
|  |   for (ElemType J = 0; J != Num; ++J) | ||
|  |     if (P[J] != Ignore && P[J] >= Num/2) | ||
|  |       P[J] -= Num/2; | ||
|  | 
 | ||
|  |   if (Step+1 < Log) { | ||
|  |     if (UseUp && !route(P, T, Size/2, Step+1)) | ||
|  |       return false; | ||
|  |     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) | ||
|  |       return false; | ||
|  |   } | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, | ||
|  |                          unsigned Step) { | ||
|  |   Coloring G({P,Size}); | ||
|  |   const Coloring::MapType &M = G.colors(); | ||
|  |   if (M.empty()) | ||
|  |     return false; | ||
|  |   ElemType Num = Size; | ||
|  | 
 | ||
|  |   unsigned Pets = 2*Log-1 - Step; | ||
|  |   bool UseUp = false, UseDown = false; | ||
|  | 
 | ||
|  |   // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
 | ||
|  |   // result in different controls. Let's pick the one where the first
 | ||
|  |   // control will be "Pass".
 | ||
|  |   uint8_t ColorUp = Coloring::None; | ||
|  |   for (ElemType J = 0; J != Num; ++J) { | ||
|  |     ElemType I = P[J]; | ||
|  |     if (I == Ignore) | ||
|  |       continue; | ||
|  |     uint8_t C = M.at(I); | ||
|  |     if (C == Coloring::None) | ||
|  |       continue; | ||
|  |     if (ColorUp == Coloring::None) { | ||
|  |       ColorUp = (I < Num/2) ? Coloring::Red : Coloring::Black; | ||
|  |     } | ||
|  |     unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; | ||
|  |     if (C == ColorUp) { | ||
|  |       if (I < Num/2) | ||
|  |         T[I][Step] = Pass; | ||
|  |       else | ||
|  |         T[CI][Step] = Switch; | ||
|  |       T[J][Pets] = (J < Num/2) ? Pass : Switch; | ||
|  |       UseUp = true; | ||
|  |     } else { // Down
 | ||
|  |       if (I < Num/2) | ||
|  |         T[CI][Step] = Switch; | ||
|  |       else | ||
|  |         T[I][Step] = Pass; | ||
|  |       T[J][Pets] = (J < Num/2) ? Switch : Pass; | ||
|  |       UseDown = true; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // Reorder the working permutation according to the computed switch table
 | ||
|  |   // for the last step (i.e. Pets).
 | ||
|  |   for (ElemType J = 0; J != Num/2; ++J) { | ||
|  |     ElemType PJ = P[J];         // Current values of P[J]
 | ||
|  |     ElemType PC = P[J+Num/2];   // and P[conj(J)]
 | ||
|  |     ElemType QJ = PJ;           // New values of P[J]
 | ||
|  |     ElemType QC = PC;           // and P[conj(J)]
 | ||
|  |     if (T[J][Pets] == Switch) | ||
|  |       QC = PJ; | ||
|  |     if (T[J+Num/2][Pets] == Switch) | ||
|  |       QJ = PC; | ||
|  |     P[J] = QJ; | ||
|  |     P[J+Num/2] = QC; | ||
|  |   } | ||
|  | 
 | ||
|  |   for (ElemType J = 0; J != Num; ++J) | ||
|  |     if (P[J] != Ignore && P[J] >= Num/2) | ||
|  |       P[J] -= Num/2; | ||
|  | 
 | ||
|  |   if (Step+1 < Log) { | ||
|  |     if (UseUp && !route(P, T, Size/2, Step+1)) | ||
|  |       return false; | ||
|  |     if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) | ||
|  |       return false; | ||
|  |   } | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | // --------------------------------------------------------------------
 | ||
|  | // Support for building selection results (output instructions that are
 | ||
|  | // parts of the final selection).
 | ||
|  | 
 | ||
|  | namespace { | ||
|  | struct OpRef { | ||
|  |   OpRef(SDValue V) : OpV(V) {} | ||
|  |   bool isValue() const { return OpV.getNode() != nullptr; } | ||
|  |   bool isValid() const { return isValue() || !(OpN & Invalid); } | ||
|  |   static OpRef res(int N) { return OpRef(Whole | (N & Index)); } | ||
|  |   static OpRef fail() { return OpRef(Invalid); } | ||
|  | 
 | ||
|  |   static OpRef lo(const OpRef &R) { | ||
|  |     assert(!R.isValue()); | ||
|  |     return OpRef(R.OpN & (Undef | Index | LoHalf)); | ||
|  |   } | ||
|  |   static OpRef hi(const OpRef &R) { | ||
|  |     assert(!R.isValue()); | ||
|  |     return OpRef(R.OpN & (Undef | Index | HiHalf)); | ||
|  |   } | ||
|  |   static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } | ||
|  | 
 | ||
|  |   // Direct value.
 | ||
|  |   SDValue OpV = SDValue(); | ||
|  | 
 | ||
|  |   // Reference to the operand of the input node:
 | ||
|  |   // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
 | ||
|  |   // operand index:
 | ||
|  |   // If bit 30 is set, it's the high half of the operand.
 | ||
|  |   // If bit 29 is set, it's the low half of the operand.
 | ||
|  |   unsigned OpN = 0; | ||
|  | 
 | ||
|  |   enum : unsigned { | ||
|  |     Invalid = 0x10000000, | ||
|  |     LoHalf  = 0x20000000, | ||
|  |     HiHalf  = 0x40000000, | ||
|  |     Whole   = LoHalf | HiHalf, | ||
|  |     Undef   = 0x80000000, | ||
|  |     Index   = 0x0FFFFFFF,  // Mask of the index value.
 | ||
|  |     IndexBits = 28, | ||
|  |   }; | ||
|  | 
 | ||
|  |   void print(raw_ostream &OS, const SelectionDAG &G) const; | ||
|  | 
 | ||
|  | private: | ||
|  |   OpRef(unsigned N) : OpN(N) {} | ||
|  | }; | ||
|  | 
 | ||
|  | struct NodeTemplate { | ||
|  |   NodeTemplate() = default; | ||
|  |   unsigned Opc = 0; | ||
|  |   MVT Ty = MVT::Other; | ||
|  |   std::vector<OpRef> Ops; | ||
|  | 
 | ||
|  |   void print(raw_ostream &OS, const SelectionDAG &G) const; | ||
|  | }; | ||
|  | 
 | ||
|  | struct ResultStack { | ||
|  |   ResultStack(SDNode *Inp) | ||
|  |     : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} | ||
|  |   SDNode *InpNode; | ||
|  |   MVT InpTy; | ||
|  |   unsigned push(const NodeTemplate &Res) { | ||
|  |     List.push_back(Res); | ||
|  |     return List.size()-1; | ||
|  |   } | ||
|  |   unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { | ||
|  |     NodeTemplate Res; | ||
|  |     Res.Opc = Opc; | ||
|  |     Res.Ty = Ty; | ||
|  |     Res.Ops = Ops; | ||
|  |     return push(Res); | ||
|  |   } | ||
|  |   bool empty() const { return List.empty(); } | ||
|  |   unsigned size() const { return List.size(); } | ||
|  |   unsigned top() const { return size()-1; } | ||
|  |   const NodeTemplate &operator[](unsigned I) const { return List[I]; } | ||
|  |   unsigned reset(unsigned NewTop) { | ||
|  |     List.resize(NewTop+1); | ||
|  |     return NewTop; | ||
|  |   } | ||
|  | 
 | ||
|  |   using BaseType = std::vector<NodeTemplate>; | ||
|  |   BaseType::iterator begin() { return List.begin(); } | ||
|  |   BaseType::iterator end()   { return List.end(); } | ||
|  |   BaseType::const_iterator begin() const { return List.begin(); } | ||
|  |   BaseType::const_iterator end() const   { return List.end(); } | ||
|  | 
 | ||
|  |   BaseType List; | ||
|  | 
 | ||
|  |   void print(raw_ostream &OS, const SelectionDAG &G) const; | ||
|  | }; | ||
|  | } // namespace
 | ||
|  | 
 | ||
|  | void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { | ||
|  |   if (isValue()) { | ||
|  |     OpV.getNode()->print(OS, &G); | ||
|  |     return; | ||
|  |   } | ||
|  |   if (OpN & Invalid) { | ||
|  |     OS << "invalid"; | ||
|  |     return; | ||
|  |   } | ||
|  |   if (OpN & Undef) { | ||
|  |     OS << "undef"; | ||
|  |     return; | ||
|  |   } | ||
|  |   if ((OpN & Whole) != Whole) { | ||
|  |     assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); | ||
|  |     if (OpN & LoHalf) | ||
|  |       OS << "lo "; | ||
|  |     else | ||
|  |       OS << "hi "; | ||
|  |   } | ||
|  |   OS << '#' << SignExtend32(OpN & Index, IndexBits); | ||
|  | } | ||
|  | 
 | ||
|  | void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { | ||
|  |   const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); | ||
|  |   OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  " | ||
|  |      << TII.getName(Opc); | ||
|  |   bool Comma = false; | ||
|  |   for (const auto &R : Ops) { | ||
|  |     if (Comma) | ||
|  |       OS << ','; | ||
|  |     Comma = true; | ||
|  |     OS << ' '; | ||
|  |     R.print(OS, G); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { | ||
|  |   OS << "Input node:\n"; | ||
|  | #ifndef NDEBUG
 | ||
|  |   InpNode->dumpr(&G); | ||
|  | #endif
 | ||
|  |   OS << "Result templates:\n"; | ||
|  |   for (unsigned I = 0, E = List.size(); I != E; ++I) { | ||
|  |     OS << '[' << I << "] "; | ||
|  |     List[I].print(OS, G); | ||
|  |     OS << '\n'; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | namespace { | ||
|  | struct ShuffleMask { | ||
|  |   ShuffleMask(ArrayRef<int> M) : Mask(M) { | ||
|  |     for (unsigned I = 0, E = Mask.size(); I != E; ++I) { | ||
|  |       int M = Mask[I]; | ||
|  |       if (M == -1) | ||
|  |         continue; | ||
|  |       MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); | ||
|  |       MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   ArrayRef<int> Mask; | ||
|  |   int MinSrc = -1, MaxSrc = -1; | ||
|  | 
 | ||
|  |   ShuffleMask lo() const { | ||
|  |     size_t H = Mask.size()/2; | ||
|  |     return ShuffleMask(Mask.take_front(H)); | ||
|  |   } | ||
|  |   ShuffleMask hi() const { | ||
|  |     size_t H = Mask.size()/2; | ||
|  |     return ShuffleMask(Mask.take_back(H)); | ||
|  |   } | ||
|  | }; | ||
|  | } // namespace
 | ||
|  | 
 | ||
|  | // --------------------------------------------------------------------
 | ||
|  | // The HvxSelector class.
 | ||
|  | 
 | ||
|  | static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { | ||
|  |   return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); | ||
|  | } | ||
|  | static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { | ||
|  |   return static_cast<const HexagonSubtarget&>(G.getSubtarget()); | ||
|  | } | ||
|  | 
 | ||
|  | namespace llvm { | ||
|  |   struct HvxSelector { | ||
|  |     const HexagonTargetLowering &Lower; | ||
|  |     HexagonDAGToDAGISel &ISel; | ||
|  |     SelectionDAG &DAG; | ||
|  |     const HexagonSubtarget &HST; | ||
|  |     const unsigned HwLen; | ||
|  | 
 | ||
|  |     HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) | ||
|  |       : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G), | ||
|  |         HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} | ||
|  | 
 | ||
|  |     MVT getSingleVT(MVT ElemTy) const { | ||
|  |       unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8); | ||
|  |       return MVT::getVectorVT(ElemTy, NumElems); | ||
|  |     } | ||
|  | 
 | ||
|  |     MVT getPairVT(MVT ElemTy) const { | ||
|  |       unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8); | ||
|  |       return MVT::getVectorVT(ElemTy, NumElems); | ||
|  |     } | ||
|  | 
 | ||
|  |     void selectShuffle(SDNode *N); | ||
|  |     void selectRor(SDNode *N); | ||
|  | 
 | ||
|  |   private: | ||
|  |     void materialize(const ResultStack &Results); | ||
|  | 
 | ||
|  |     SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); | ||
|  | 
 | ||
|  |     enum : unsigned { | ||
|  |       None, | ||
|  |       PackMux, | ||
|  |     }; | ||
|  |     OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results); | ||
|  |     OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, | ||
|  |                 MutableArrayRef<int> NewMask, unsigned Options = None); | ||
|  |     OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, | ||
|  |                 MutableArrayRef<int> NewMask); | ||
|  |     OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | ||
|  |                 ResultStack &Results); | ||
|  |     OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | ||
|  |                 ResultStack &Results); | ||
|  | 
 | ||
|  |     OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); | ||
|  |     OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); | ||
|  |     OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); | ||
|  |     OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); | ||
|  | 
 | ||
|  |     OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); | ||
|  |     OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); | ||
|  |     OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); | ||
|  |     OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); | ||
|  | 
 | ||
|  |     bool selectVectorConstants(SDNode *N); | ||
|  |     bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, | ||
|  |                           SDValue Va, SDValue Vb, SDNode *N); | ||
|  | 
 | ||
|  |   }; | ||
|  | } | ||
|  | 
 | ||
|  | static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, | ||
|  |                       MutableArrayRef<int> MaskR) { | ||
|  |   unsigned VecLen = Mask.size(); | ||
|  |   assert(MaskL.size() == VecLen && MaskR.size() == VecLen); | ||
|  |   for (unsigned I = 0; I != VecLen; ++I) { | ||
|  |     int M = Mask[I]; | ||
|  |     if (M < 0) { | ||
|  |       MaskL[I] = MaskR[I] = -1; | ||
|  |     } else if (unsigned(M) < VecLen) { | ||
|  |       MaskL[I] = M; | ||
|  |       MaskR[I] = -1; | ||
|  |     } else { | ||
|  |       MaskL[I] = -1; | ||
|  |       MaskR[I] = M-VecLen; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, | ||
|  |                                          unsigned MaxLen) { | ||
|  |   assert(A.size() > 0 && A.size() >= MaxLen); | ||
|  |   int F = A[0]; | ||
|  |   int E = F; | ||
|  |   for (unsigned I = 1; I != MaxLen; ++I) { | ||
|  |     if (A[I] - E != Inc) | ||
|  |       return { F, I }; | ||
|  |     E = A[I]; | ||
|  |   } | ||
|  |   return { F, MaxLen }; | ||
|  | } | ||
|  | 
 | ||
|  | static bool isUndef(ArrayRef<int> Mask) { | ||
|  |   for (int Idx : Mask) | ||
|  |     if (Idx != -1) | ||
|  |       return false; | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | static bool isIdentity(ArrayRef<int> Mask) { | ||
|  |   for (int I = 0, E = Mask.size(); I != E; ++I) { | ||
|  |     int M = Mask[I]; | ||
|  |     if (M >= 0 && M != I) | ||
|  |       return false; | ||
|  |   } | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | static bool isPermutation(ArrayRef<int> Mask) { | ||
|  |   // Check by adding all numbers only works if there is no overflow.
 | ||
|  |   assert(Mask.size() < 0x00007FFF && "Sanity failure"); | ||
|  |   int Sum = 0; | ||
|  |   for (int Idx : Mask) { | ||
|  |     if (Idx == -1) | ||
|  |       return false; | ||
|  |     Sum += Idx; | ||
|  |   } | ||
|  |   int N = Mask.size(); | ||
|  |   return 2*Sum == N*(N-1); | ||
|  | } | ||
|  | 
 | ||
|  | bool HvxSelector::selectVectorConstants(SDNode *N) { | ||
|  |   // Constant vectors are generated as loads from constant pools.
 | ||
|  |   // Since they are generated during the selection process, the main
 | ||
|  |   // selection algorithm is not aware of them. Select them directly
 | ||
|  |   // here.
 | ||
|  |   SmallVector<SDNode*,4> Loads; | ||
|  |   SmallVector<SDNode*,16> WorkQ; | ||
|  | 
 | ||
|  |   // The DAG can change (due to CSE) during selection, so cache all the
 | ||
|  |   // unselected nodes first to avoid traversing a mutating DAG.
 | ||
|  | 
 | ||
|  |   auto IsLoadToSelect = [] (SDNode *N) { | ||
|  |     if (!N->isMachineOpcode() && N->getOpcode() == ISD::LOAD) { | ||
|  |       SDValue Addr = cast<LoadSDNode>(N)->getBasePtr(); | ||
|  |       unsigned AddrOpc = Addr.getOpcode(); | ||
|  |       if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP) | ||
|  |         if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool) | ||
|  |           return true; | ||
|  |     } | ||
|  |     return false; | ||
|  |   }; | ||
|  | 
 | ||
|  |   WorkQ.push_back(N); | ||
|  |   for (unsigned i = 0; i != WorkQ.size(); ++i) { | ||
|  |     SDNode *W = WorkQ[i]; | ||
|  |     if (IsLoadToSelect(W)) { | ||
|  |       Loads.push_back(W); | ||
|  |       continue; | ||
|  |     } | ||
|  |     for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) | ||
|  |       WorkQ.push_back(W->getOperand(j).getNode()); | ||
|  |   } | ||
|  | 
 | ||
|  |   for (SDNode *L : Loads) | ||
|  |     ISel.Select(L); | ||
|  | 
 | ||
|  |   return !Loads.empty(); | ||
|  | } | ||
|  | 
 | ||
|  | void HvxSelector::materialize(const ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", { | ||
|  |     dbgs() << "Materializing\n"; | ||
|  |     Results.print(dbgs(), DAG); | ||
|  |   }); | ||
|  |   if (Results.empty()) | ||
|  |     return; | ||
|  |   const SDLoc &dl(Results.InpNode); | ||
|  |   std::vector<SDValue> Output; | ||
|  | 
 | ||
|  |   for (unsigned I = 0, E = Results.size(); I != E; ++I) { | ||
|  |     const NodeTemplate &Node = Results[I]; | ||
|  |     std::vector<SDValue> Ops; | ||
|  |     for (const OpRef &R : Node.Ops) { | ||
|  |       assert(R.isValid()); | ||
|  |       if (R.isValue()) { | ||
|  |         Ops.push_back(R.OpV); | ||
|  |         continue; | ||
|  |       } | ||
|  |       if (R.OpN & OpRef::Undef) { | ||
|  |         MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); | ||
|  |         Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); | ||
|  |         continue; | ||
|  |       } | ||
|  |       // R is an index of a result.
 | ||
|  |       unsigned Part = R.OpN & OpRef::Whole; | ||
|  |       int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); | ||
|  |       if (Idx < 0) | ||
|  |         Idx += I; | ||
|  |       assert(Idx >= 0 && unsigned(Idx) < Output.size()); | ||
|  |       SDValue Op = Output[Idx]; | ||
|  |       MVT OpTy = Op.getValueType().getSimpleVT(); | ||
|  |       if (Part != OpRef::Whole) { | ||
|  |         assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); | ||
|  |         if (Op.getOpcode() == HexagonISD::VCOMBINE) { | ||
|  |           Op = (Part == OpRef::HiHalf) ? Op.getOperand(0) : Op.getOperand(1); | ||
|  |         } else { | ||
|  |           MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), | ||
|  |                                         OpTy.getVectorNumElements()/2); | ||
|  |           unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo | ||
|  |                                                  : Hexagon::vsub_hi; | ||
|  |           Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); | ||
|  |         } | ||
|  |       } | ||
|  |       Ops.push_back(Op); | ||
|  |     } // for (Node : Results)
 | ||
|  | 
 | ||
|  |     assert(Node.Ty != MVT::Other); | ||
|  |     SDNode *ResN = (Node.Opc == TargetOpcode::COPY) | ||
|  |                       ? Ops.front().getNode() | ||
|  |                       : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); | ||
|  |     Output.push_back(SDValue(ResN, 0)); | ||
|  |   } | ||
|  | 
 | ||
|  |   SDNode *OutN = Output.back().getNode(); | ||
|  |   SDNode *InpN = Results.InpNode; | ||
|  |   DEBUG_WITH_TYPE("isel", { | ||
|  |     dbgs() << "Generated node:\n"; | ||
|  |     OutN->dumpr(&DAG); | ||
|  |   }); | ||
|  | 
 | ||
|  |   ISel.ReplaceNode(InpN, OutN); | ||
|  |   selectVectorConstants(OutN); | ||
|  |   DAG.RemoveDeadNodes(); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   const SDLoc &dl(Results.InpNode); | ||
|  |   Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { | ||
|  |     DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32), | ||
|  |     Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32), | ||
|  |     Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32), | ||
|  |   }); | ||
|  |   return OpRef::res(Results.top()); | ||
|  | } | ||
|  | 
 | ||
|  | // Va, Vb are single vectors, SM can be arbitrarily long.
 | ||
|  | OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, | ||
|  |                          ResultStack &Results, MutableArrayRef<int> NewMask, | ||
|  |                          unsigned Options) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   if (!Va.isValid() || !Vb.isValid()) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   MVT Ty = getSingleVT(MVT::i8); | ||
|  | 
 | ||
|  |   if (SM.MaxSrc - SM.MinSrc < int(HwLen)) { | ||
|  |     if (SM.MaxSrc < int(HwLen)) { | ||
|  |       memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen); | ||
|  |       return Va; | ||
|  |     } | ||
|  |     if (SM.MinSrc >= int(HwLen)) { | ||
|  |       for (int I = 0; I != VecLen; ++I) { | ||
|  |         int M = SM.Mask[I]; | ||
|  |         if (M != -1) | ||
|  |           M -= HwLen; | ||
|  |         NewMask[I] = M; | ||
|  |       } | ||
|  |       return Vb; | ||
|  |     } | ||
|  |     const SDLoc &dl(Results.InpNode); | ||
|  |     SDValue S = DAG.getTargetConstant(SM.MinSrc, dl, MVT::i32); | ||
|  |     if (isUInt<3>(SM.MinSrc)) { | ||
|  |       Results.push(Hexagon::V6_valignbi, Ty, {Vb, Va, S}); | ||
|  |     } else { | ||
|  |       Results.push(Hexagon::A2_tfrsi, MVT::i32, {S}); | ||
|  |       unsigned Top = Results.top(); | ||
|  |       Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)}); | ||
|  |     } | ||
|  |     for (int I = 0; I != VecLen; ++I) { | ||
|  |       int M = SM.Mask[I]; | ||
|  |       if (M != -1) | ||
|  |         M -= SM.MinSrc; | ||
|  |       NewMask[I] = M; | ||
|  |     } | ||
|  |     return OpRef::res(Results.top()); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (Options & PackMux) { | ||
|  |     // If elements picked from Va and Vb have all different (source) indexes
 | ||
|  |     // (relative to the start of the argument), do a mux, and update the mask.
 | ||
|  |     BitVector Picked(HwLen); | ||
|  |     SmallVector<uint8_t,128> MuxBytes(HwLen); | ||
|  |     bool CanMux = true; | ||
|  |     for (int I = 0; I != VecLen; ++I) { | ||
|  |       int M = SM.Mask[I]; | ||
|  |       if (M == -1) | ||
|  |         continue; | ||
|  |       if (M >= int(HwLen)) | ||
|  |         M -= HwLen; | ||
|  |       else | ||
|  |         MuxBytes[M] = 0xFF; | ||
|  |       if (Picked[M]) { | ||
|  |         CanMux = false; | ||
|  |         break; | ||
|  |       } | ||
|  |       NewMask[I] = M; | ||
|  |     } | ||
|  |     if (CanMux) | ||
|  |       return vmuxs(MuxBytes, Va, Vb, Results); | ||
|  |   } | ||
|  | 
 | ||
|  |   return OpRef::fail(); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, | ||
|  |                          ResultStack &Results, MutableArrayRef<int> NewMask) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   unsigned HalfMask = 0; | ||
|  |   unsigned LogHw = Log2_32(HwLen); | ||
|  |   for (int M : SM.Mask) { | ||
|  |     if (M == -1) | ||
|  |       continue; | ||
|  |     HalfMask |= (1u << (M >> LogHw)); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (HalfMask == 0) | ||
|  |     return OpRef::undef(getPairVT(MVT::i8)); | ||
|  | 
 | ||
|  |   // If more than two halves are used, bail.
 | ||
|  |   // TODO: be more aggressive here?
 | ||
|  |   if (countPopulation(HalfMask) > 2) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   MVT HalfTy = getSingleVT(MVT::i8); | ||
|  | 
 | ||
|  |   OpRef Inp[2] = { Va, Vb }; | ||
|  |   OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; | ||
|  | 
 | ||
|  |   uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; | ||
|  |   unsigned Idx = 0; | ||
|  |   for (unsigned I = 0; I != 4; ++I) { | ||
|  |     if ((HalfMask & (1u << I)) == 0) | ||
|  |       continue; | ||
|  |     assert(Idx < 2); | ||
|  |     OpRef Op = Inp[I/2]; | ||
|  |     Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op); | ||
|  |     HalfIdx[I] = Idx++; | ||
|  |   } | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   for (int I = 0; I != VecLen; ++I) { | ||
|  |     int M = SM.Mask[I]; | ||
|  |     if (M >= 0) { | ||
|  |       uint8_t Idx = HalfIdx[M >> LogHw]; | ||
|  |       assert(Idx == 0 || Idx == 1); | ||
|  |       M = (M & (HwLen-1)) + HwLen*Idx; | ||
|  |     } | ||
|  |     NewMask[I] = M; | ||
|  |   } | ||
|  | 
 | ||
|  |   return concat(Out[0], Out[1], Results); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | ||
|  |                          ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   MVT ByteTy = getSingleVT(MVT::i8); | ||
|  |   MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX
 | ||
|  |   const SDLoc &dl(Results.InpNode); | ||
|  |   SDValue B = getVectorConstant(Bytes, dl); | ||
|  |   Results.push(Hexagon::V6_vd0, ByteTy, {}); | ||
|  |   Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); | ||
|  |   Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); | ||
|  |   return OpRef::res(Results.top()); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, | ||
|  |                          ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   size_t S = Bytes.size() / 2; | ||
|  |   OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); | ||
|  |   OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); | ||
|  |   return concat(L, H, Results); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   unsigned VecLen = SM.Mask.size(); | ||
|  |   assert(HwLen == VecLen); | ||
|  |   (void)VecLen; | ||
|  |   assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); | ||
|  | 
 | ||
|  |   if (isIdentity(SM.Mask)) | ||
|  |     return Va; | ||
|  |   if (isUndef(SM.Mask)) | ||
|  |     return OpRef::undef(getSingleVT(MVT::i8)); | ||
|  | 
 | ||
|  |   OpRef P = perfect(SM, Va, Results); | ||
|  |   if (P.isValid()) | ||
|  |     return P; | ||
|  |   return butterfly(SM, Va, Results); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, | ||
|  |                            ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   if (isUndef(SM.Mask)) | ||
|  |     return OpRef::undef(getSingleVT(MVT::i8)); | ||
|  | 
 | ||
|  |   OpRef C = contracting(SM, Va, Vb, Results); | ||
|  |   if (C.isValid()) | ||
|  |     return C; | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   SmallVector<int,128> NewMask(VecLen); | ||
|  |   OpRef P = packs(SM, Va, Vb, Results, NewMask); | ||
|  |   if (P.isValid()) | ||
|  |     return shuffs1(ShuffleMask(NewMask), P, Results); | ||
|  | 
 | ||
|  |   SmallVector<int,128> MaskL(VecLen), MaskR(VecLen); | ||
|  |   splitMask(SM.Mask, MaskL, MaskR); | ||
|  | 
 | ||
|  |   OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); | ||
|  |   OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); | ||
|  |   if (!L.isValid() || !R.isValid()) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   SmallVector<uint8_t,128> Bytes(VecLen); | ||
|  |   for (int I = 0; I != VecLen; ++I) { | ||
|  |     if (MaskL[I] != -1) | ||
|  |       Bytes[I] = 0xFF; | ||
|  |   } | ||
|  |   return vmuxs(Bytes, L, R, Results); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  | 
 | ||
|  |   if (isIdentity(SM.Mask)) | ||
|  |     return Va; | ||
|  |   if (isUndef(SM.Mask)) | ||
|  |     return OpRef::undef(getPairVT(MVT::i8)); | ||
|  | 
 | ||
|  |   SmallVector<int,128> PackedMask(VecLen); | ||
|  |   OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); | ||
|  |   if (P.isValid()) { | ||
|  |     ShuffleMask PM(PackedMask); | ||
|  |     OpRef E = expanding(PM, P, Results); | ||
|  |     if (E.isValid()) | ||
|  |       return E; | ||
|  | 
 | ||
|  |     OpRef L = shuffs1(PM.lo(), P, Results); | ||
|  |     OpRef H = shuffs1(PM.hi(), P, Results); | ||
|  |     if (L.isValid() && H.isValid()) | ||
|  |       return concat(L, H, Results); | ||
|  |   } | ||
|  | 
 | ||
|  |   OpRef R = perfect(SM, Va, Results); | ||
|  |   if (R.isValid()) | ||
|  |     return R; | ||
|  |   // TODO commute the mask and try the opposite order of the halves.
 | ||
|  | 
 | ||
|  |   OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); | ||
|  |   OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); | ||
|  |   if (L.isValid() && H.isValid()) | ||
|  |     return concat(L, H, Results); | ||
|  | 
 | ||
|  |   return OpRef::fail(); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, | ||
|  |                            ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   if (isUndef(SM.Mask)) | ||
|  |     return OpRef::undef(getPairVT(MVT::i8)); | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   SmallVector<int,256> PackedMask(VecLen); | ||
|  |   OpRef P = packp(SM, Va, Vb, Results, PackedMask); | ||
|  |   if (P.isValid()) | ||
|  |     return shuffp1(ShuffleMask(PackedMask), P, Results); | ||
|  | 
 | ||
|  |   SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); | ||
|  |   OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); | ||
|  |   OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); | ||
|  |   if (!L.isValid() || !R.isValid()) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   // Mux the results.
 | ||
|  |   SmallVector<uint8_t,256> Bytes(VecLen); | ||
|  |   for (int I = 0; I != VecLen; ++I) { | ||
|  |     if (MaskL[I] != -1) | ||
|  |       Bytes[I] = 0xFF; | ||
|  |   } | ||
|  |   return vmuxp(Bytes, L, R, Results); | ||
|  | } | ||
|  | 
 | ||
|  | bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, | ||
|  |                                    MVT ResTy, SDValue Va, SDValue Vb, | ||
|  |                                    SDNode *N) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   MVT ElemTy = ResTy.getVectorElementType(); | ||
|  |   assert(ElemTy == MVT::i8); | ||
|  |   unsigned VecLen = Mask.size(); | ||
|  |   bool HavePairs = (2*HwLen == VecLen); | ||
|  |   MVT SingleTy = getSingleVT(MVT::i8); | ||
|  | 
 | ||
|  |   SmallVector<SDValue,128> Ops; | ||
|  |   for (int I : Mask) { | ||
|  |     if (I < 0) { | ||
|  |       Ops.push_back(ISel.selectUndef(dl, ElemTy)); | ||
|  |       continue; | ||
|  |     } | ||
|  |     SDValue Vec; | ||
|  |     unsigned M = I; | ||
|  |     if (M < VecLen) { | ||
|  |       Vec = Va; | ||
|  |     } else { | ||
|  |       Vec = Vb; | ||
|  |       M -= VecLen; | ||
|  |     } | ||
|  |     if (HavePairs) { | ||
|  |       if (M < HwLen) { | ||
|  |         Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); | ||
|  |       } else { | ||
|  |         Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); | ||
|  |         M -= HwLen; | ||
|  |       } | ||
|  |     } | ||
|  |     SDValue Idx = DAG.getConstant(M, dl, MVT::i32); | ||
|  |     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ElemTy, {Vec, Idx}); | ||
|  |     SDValue L = Lower.LowerOperation(Ex, DAG); | ||
|  |     assert(L.getNode()); | ||
|  |     Ops.push_back(L); | ||
|  |   } | ||
|  | 
 | ||
|  |   SDValue LV; | ||
|  |   if (2*HwLen == VecLen) { | ||
|  |     SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); | ||
|  |     SDValue L0 = Lower.LowerOperation(B0, DAG); | ||
|  |     SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); | ||
|  |     SDValue L1 = Lower.LowerOperation(B1, DAG); | ||
|  |     // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
 | ||
|  |     // functions may expect to be called only for illegal operations, so
 | ||
|  |     // make sure that they are not called for legal ones. Develop a better
 | ||
|  |     // mechanism for dealing with this.
 | ||
|  |     LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); | ||
|  |   } else { | ||
|  |     SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); | ||
|  |     LV = Lower.LowerOperation(BV, DAG); | ||
|  |   } | ||
|  | 
 | ||
|  |   assert(!N->use_empty()); | ||
|  |   ISel.ReplaceNode(N, LV.getNode()); | ||
|  |   DAG.RemoveDeadNodes(); | ||
|  | 
 | ||
|  |   std::deque<SDNode*> SubNodes; | ||
|  |   SubNodes.push_back(LV.getNode()); | ||
|  |   for (unsigned I = 0; I != SubNodes.size(); ++I) { | ||
|  |     for (SDValue Op : SubNodes[I]->ops()) | ||
|  |       SubNodes.push_back(Op.getNode()); | ||
|  |   } | ||
|  |   while (!SubNodes.empty()) { | ||
|  |     SDNode *S = SubNodes.front(); | ||
|  |     SubNodes.pop_front(); | ||
|  |     if (S->use_empty()) | ||
|  |       continue; | ||
|  |     // This isn't great, but users need to be selected before any nodes that
 | ||
|  |     // they use. (The reason is to match larger patterns, and avoid nodes that
 | ||
|  |     // cannot be matched on their own, e.g. ValueType, TokenFactor, etc.).
 | ||
|  |     bool PendingUser = llvm::any_of(S->uses(), [&SubNodes](const SDNode *U) { | ||
|  |                          return llvm::any_of(SubNodes, [U](const SDNode *T) { | ||
|  |                            return T == U; | ||
|  |                          }); | ||
|  |                        }); | ||
|  |     if (PendingUser) | ||
|  |       SubNodes.push_back(S); | ||
|  |     else | ||
|  |       ISel.Select(S); | ||
|  |   } | ||
|  | 
 | ||
|  |   DAG.RemoveDeadNodes(); | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, | ||
|  |                                ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   if (!Va.isValid() || !Vb.isValid()) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   // Contracting shuffles, i.e. instructions that always discard some bytes
 | ||
|  |   // from the operand vectors.
 | ||
|  |   //
 | ||
|  |   // V6_vshuff{e,o}b
 | ||
|  |   // V6_vdealb4w
 | ||
|  |   // V6_vpack{e,o}{b,h}
 | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); | ||
|  |   MVT ResTy = getSingleVT(MVT::i8); | ||
|  | 
 | ||
|  |   // The following shuffles only work for bytes and halfwords. This requires
 | ||
|  |   // the strip length to be 1 or 2.
 | ||
|  |   if (Strip.second != 1 && Strip.second != 2) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   // The patterns for the shuffles, in terms of the starting offsets of the
 | ||
|  |   // consecutive strips (L = length of the strip, N = VecLen):
 | ||
|  |   //
 | ||
|  |   // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2
 | ||
|  |   // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2
 | ||
|  |   //
 | ||
|  |   // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2
 | ||
|  |   // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2
 | ||
|  |   //
 | ||
|  |   // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
 | ||
|  | 
 | ||
|  |   // The value of the element in the mask following the strip will decide
 | ||
|  |   // what kind of a shuffle this can be.
 | ||
|  |   int NextInMask = SM.Mask[Strip.second]; | ||
|  | 
 | ||
|  |   // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
 | ||
|  |   // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
 | ||
|  |   // satisfy this.
 | ||
|  |   if (NextInMask < VecLen) { | ||
|  |     // vpack{e,o} or vdealb4w
 | ||
|  |     if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) { | ||
|  |       int N = VecLen; | ||
|  |       // Check if this is vdealb4w (L=1).
 | ||
|  |       for (int I = 0; I != N/4; ++I) | ||
|  |         if (SM.Mask[I] != 4*I) | ||
|  |           return OpRef::fail(); | ||
|  |       for (int I = 0; I != N/4; ++I) | ||
|  |         if (SM.Mask[I+N/4] != 2 + 4*I) | ||
|  |           return OpRef::fail(); | ||
|  |       for (int I = 0; I != N/4; ++I) | ||
|  |         if (SM.Mask[I+N/2] != N + 4*I) | ||
|  |           return OpRef::fail(); | ||
|  |       for (int I = 0; I != N/4; ++I) | ||
|  |         if (SM.Mask[I+3*N/4] != N+2 + 4*I) | ||
|  |           return OpRef::fail(); | ||
|  |       // Matched mask for vdealb4w.
 | ||
|  |       Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va}); | ||
|  |       return OpRef::res(Results.top()); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Check if this is vpack{e,o}.
 | ||
|  |     int N = VecLen; | ||
|  |     int L = Strip.second; | ||
|  |     // Check if the first strip starts at 0 or at L.
 | ||
|  |     if (Strip.first != 0 && Strip.first != L) | ||
|  |       return OpRef::fail(); | ||
|  |     // Examine the rest of the mask.
 | ||
|  |     for (int I = L; I < N; I += L) { | ||
|  |       auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); | ||
|  |       // Check whether the mask element at the beginning of each strip
 | ||
|  |       // increases by 2L each time.
 | ||
|  |       if (S.first - Strip.first != 2*I) | ||
|  |         return OpRef::fail(); | ||
|  |       // Check whether each strip is of the same length.
 | ||
|  |       if (S.second != unsigned(L)) | ||
|  |         return OpRef::fail(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Strip.first == 0  =>  vpacke
 | ||
|  |     // Strip.first == L  =>  vpacko
 | ||
|  |     assert(Strip.first == 0 || Strip.first == L); | ||
|  |     using namespace Hexagon; | ||
|  |     NodeTemplate Res; | ||
|  |     Res.Opc = Strip.second == 1 // Number of bytes.
 | ||
|  |                   ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob) | ||
|  |                   : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh); | ||
|  |     Res.Ty = ResTy; | ||
|  |     Res.Ops = { Vb, Va }; | ||
|  |     Results.push(Res); | ||
|  |     return OpRef::res(Results.top()); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Check if this is vshuff{e,o}.
 | ||
|  |   int N = VecLen; | ||
|  |   int L = Strip.second; | ||
|  |   std::pair<int,unsigned> PrevS = Strip; | ||
|  |   bool Flip = false; | ||
|  |   for (int I = L; I < N; I += L) { | ||
|  |     auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); | ||
|  |     if (S.second != PrevS.second) | ||
|  |       return OpRef::fail(); | ||
|  |     int Diff = Flip ? PrevS.first - S.first + 2*L | ||
|  |                     : S.first - PrevS.first; | ||
|  |     if (Diff != N) | ||
|  |       return OpRef::fail(); | ||
|  |     Flip ^= true; | ||
|  |     PrevS = S; | ||
|  |   } | ||
|  |   // Strip.first == 0  =>  vshuffe
 | ||
|  |   // Strip.first == L  =>  vshuffo
 | ||
|  |   assert(Strip.first == 0 || Strip.first == L); | ||
|  |   using namespace Hexagon; | ||
|  |   NodeTemplate Res; | ||
|  |   Res.Opc = Strip.second == 1 // Number of bytes.
 | ||
|  |                 ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob) | ||
|  |                 : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh); | ||
|  |   Res.Ty = ResTy; | ||
|  |   Res.Ops = { Vb, Va }; | ||
|  |   Results.push(Res); | ||
|  |   return OpRef::res(Results.top()); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   // Expanding shuffles (using all elements and inserting into larger vector):
 | ||
|  |   //
 | ||
|  |   // V6_vunpacku{b,h} [*]
 | ||
|  |   //
 | ||
|  |   // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
 | ||
|  |   //
 | ||
|  |   // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
 | ||
|  |   // they are not shuffles.
 | ||
|  |   //
 | ||
|  |   // The argument is a single vector.
 | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); | ||
|  | 
 | ||
|  |   std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); | ||
|  | 
 | ||
|  |   // The patterns for the unpacks, in terms of the starting offsets of the
 | ||
|  |   // consecutive strips (L = length of the strip, N = VecLen):
 | ||
|  |   //
 | ||
|  |   // vunpacku:  0, -1, L, -1, 2L, -1 ...
 | ||
|  | 
 | ||
|  |   if (Strip.first != 0) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   // The vunpackus only handle byte and half-word.
 | ||
|  |   if (Strip.second != 1 && Strip.second != 2) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   int N = VecLen; | ||
|  |   int L = Strip.second; | ||
|  | 
 | ||
|  |   // First, check the non-ignored strips.
 | ||
|  |   for (int I = 2*L; I < 2*N; I += 2*L) { | ||
|  |     auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); | ||
|  |     if (S.second != unsigned(L)) | ||
|  |       return OpRef::fail(); | ||
|  |     if (2*S.first != I) | ||
|  |       return OpRef::fail(); | ||
|  |   } | ||
|  |   // Check the -1s.
 | ||
|  |   for (int I = L; I < 2*N; I += 2*L) { | ||
|  |     auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); | ||
|  |     if (S.first != -1 || S.second != unsigned(L)) | ||
|  |       return OpRef::fail(); | ||
|  |   } | ||
|  | 
 | ||
|  |   unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub | ||
|  |                                    : Hexagon::V6_vunpackuh; | ||
|  |   Results.push(Opc, getPairVT(MVT::i8), {Va}); | ||
|  |   return OpRef::res(Results.top()); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   // V6_vdeal{b,h}
 | ||
|  |   // V6_vshuff{b,h}
 | ||
|  | 
 | ||
|  |   // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
 | ||
|  |   // V6_vshuffvdd (V6_vshuff)
 | ||
|  |   // V6_dealvdd (V6_vdeal)
 | ||
|  | 
 | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  |   assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); | ||
|  |   unsigned LogLen = Log2_32(VecLen); | ||
|  |   unsigned HwLog = Log2_32(HwLen); | ||
|  |   // The result length must be the same as the length of a single vector,
 | ||
|  |   // or a vector pair.
 | ||
|  |   assert(LogLen == HwLog || LogLen == HwLog+1); | ||
|  |   bool Extend = (LogLen == HwLog); | ||
|  | 
 | ||
|  |   if (!isPermutation(SM.Mask)) | ||
|  |     return OpRef::fail(); | ||
|  | 
 | ||
|  |   SmallVector<unsigned,8> Perm(LogLen); | ||
|  | 
 | ||
|  |   // Check if this could be a perfect shuffle, or a combination of perfect
 | ||
|  |   // shuffles.
 | ||
|  |   //
 | ||
|  |   // Consider this permutation (using hex digits to make the ASCII diagrams
 | ||
|  |   // easier to read):
 | ||
|  |   //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
 | ||
|  |   // This is a "deal" operation: divide the input into two halves, and
 | ||
|  |   // create the output by picking elements by alternating between these two
 | ||
|  |   // halves:
 | ||
|  |   //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
 | ||
|  |   //   8 9 A B C D E F
 | ||
|  |   //
 | ||
|  |   // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
 | ||
|  |   // a somwehat different mechanism that could be used to perform shuffle/
 | ||
|  |   // deal operations: a 2x2 transpose.
 | ||
|  |   // Consider the halves of inputs again, they can be interpreted as a 2x8
 | ||
|  |   // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
 | ||
|  |   // together. Now, when considering 2 elements at a time, it will be a 2x4
 | ||
|  |   // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
 | ||
|  |   //   01 23  45 67
 | ||
|  |   //   89 AB  CD EF
 | ||
|  |   // With groups of 4, this will become a single 2x2 matrix, and so on.
 | ||
|  |   //
 | ||
|  |   // The 2x2 transpose instruction works by transposing each of the 2x2
 | ||
|  |   // matrices (or "sub-matrices"), given a specific group size. For example,
 | ||
|  |   // if the group size is 1 (i.e. each element is its own group), there
 | ||
|  |   // will be four transposes of the four 2x2 matrices that form the 2x8.
 | ||
|  |   // For example, with the inputs as above, the result will be:
 | ||
|  |   //   0 8  2 A  4 C  6 E
 | ||
|  |   //   1 9  3 B  5 D  7 F
 | ||
|  |   // Now, this result can be tranposed again, but with the group size of 2:
 | ||
|  |   //   08 19  4C 5D
 | ||
|  |   //   2A 3B  6E 7F
 | ||
|  |   // If we then transpose that result, but with the group size of 4, we get:
 | ||
|  |   //   0819 2A3B
 | ||
|  |   //   4C5D 6E7F
 | ||
|  |   // If we concatenate these two rows, it will be
 | ||
|  |   //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
 | ||
|  |   // which is the same as the "deal" [*] above.
 | ||
|  |   //
 | ||
|  |   // In general, a "deal" of individual elements is a series of 2x2 transposes,
 | ||
|  |   // with changing group size. HVX has two instructions:
 | ||
|  |   //   Vdd = V6_vdealvdd Vu, Vv, Rt
 | ||
|  |   //   Vdd = V6_shufvdd  Vu, Vv, Rt
 | ||
|  |   // that perform exactly that. The register Rt controls which transposes are
 | ||
|  |   // going to happen: a bit at position n (counting from 0) indicates that a
 | ||
|  |   // transpose with a group size of 2^n will take place. If multiple bits are
 | ||
|  |   // set, multiple transposes will happen: vdealvdd will perform them starting
 | ||
|  |   // with the largest group size, vshuffvdd will do them in the reverse order.
 | ||
|  |   //
 | ||
|  |   // The main observation is that each 2x2 transpose corresponds to swapping
 | ||
|  |   // columns of bits in the binary representation of the values.
 | ||
|  |   //
 | ||
|  |   // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
 | ||
|  |   // in a given column. The * denote the columns that will be swapped.
 | ||
|  |   // The transpose with the group size 2^n corresponds to swapping columns
 | ||
|  |   // 3 (the highest log) and log2(n):
 | ||
|  |   //
 | ||
|  |   //     3 2 1 0         0 2 1 3         0 2 3 1
 | ||
|  |   //     *     *             * *           * *
 | ||
|  |   //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
 | ||
|  |   //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
 | ||
|  |   //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
 | ||
|  |   //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
 | ||
|  |   //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
 | ||
|  |   //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
 | ||
|  |   //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
 | ||
|  |   //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
 | ||
|  |   //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
 | ||
|  |   //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
 | ||
|  |   //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
 | ||
|  |   //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
 | ||
|  |   //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
 | ||
|  |   //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
 | ||
|  |   //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
 | ||
|  |   //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
 | ||
|  | 
 | ||
|  |   auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) { | ||
|  |     unsigned X = Mask[0] ^ Mask[Num/2]; | ||
|  |     // Check that the first half has the X's bits clear.
 | ||
|  |     if ((Mask[0] & X) != 0) | ||
|  |       return 0u; | ||
|  |     for (unsigned I = 1; I != Num/2; ++I) { | ||
|  |       if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X) | ||
|  |         return 0u; | ||
|  |       if ((Mask[I] & X) != 0) | ||
|  |         return 0u; | ||
|  |     } | ||
|  |     return X; | ||
|  |   }; | ||
|  | 
 | ||
|  |   // Create a vector of log2's for each column: Perm[i] corresponds to
 | ||
|  |   // the i-th bit (lsb is 0).
 | ||
|  |   assert(VecLen > 2); | ||
|  |   for (unsigned I = VecLen; I >= 2; I >>= 1) { | ||
|  |     // Examine the initial segment of Mask of size I.
 | ||
|  |     unsigned X = XorPow2(SM.Mask, I); | ||
|  |     if (!isPowerOf2_32(X)) | ||
|  |       return OpRef::fail(); | ||
|  |     // Check the other segments of Mask.
 | ||
|  |     for (int J = I; J < VecLen; J += I) { | ||
|  |       if (XorPow2(SM.Mask.slice(J, I), I) != X) | ||
|  |         return OpRef::fail(); | ||
|  |     } | ||
|  |     Perm[Log2_32(X)] = Log2_32(I)-1; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Once we have Perm, represent it as cycles. Denote the maximum log2
 | ||
|  |   // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
 | ||
|  |   // written as (M a1 a2 a3 ... an). That cycle can be broken up into
 | ||
|  |   // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
 | ||
|  |   // order being from left to right. Any (contiguous) segment where the
 | ||
|  |   // values ai, ai+1...aj are either all increasing or all decreasing,
 | ||
|  |   // can be implemented via a single vshuffvdd/vdealvdd respectively.
 | ||
|  |   //
 | ||
|  |   // If there is a cycle (a1 a2 ... an) that does not involve M, it can
 | ||
|  |   // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
 | ||
|  |   // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
 | ||
|  |   // can be used to generate a sequence of vshuffvdd/vdealvdd.
 | ||
|  |   //
 | ||
|  |   // Example:
 | ||
|  |   // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
 | ||
|  |   // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
 | ||
|  |   //   (4 0 1)(4 0)(4 2 3)(4 2).
 | ||
|  |   // It can then be expanded into swaps as
 | ||
|  |   //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
 | ||
|  |   // and broken up into "increasing" segments as
 | ||
|  |   //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
 | ||
|  |   // This is equivalent to
 | ||
|  |   //   (4 0 1)(4 0 2 3)(4 2),
 | ||
|  |   // which can be implemented as 3 vshufvdd instructions.
 | ||
|  | 
 | ||
|  |   using CycleType = SmallVector<unsigned,8>; | ||
|  |   std::set<CycleType> Cycles; | ||
|  |   std::set<unsigned> All; | ||
|  | 
 | ||
|  |   for (unsigned I : Perm) | ||
|  |     All.insert(I); | ||
|  | 
 | ||
|  |   // If the cycle contains LogLen-1, move it to the front of the cycle.
 | ||
|  |   // Otherwise, return the cycle unchanged.
 | ||
|  |   auto canonicalize = [LogLen](const CycleType &C) -> CycleType { | ||
|  |     unsigned LogPos, N = C.size(); | ||
|  |     for (LogPos = 0; LogPos != N; ++LogPos) | ||
|  |       if (C[LogPos] == LogLen-1) | ||
|  |         break; | ||
|  |     if (LogPos == N) | ||
|  |       return C; | ||
|  | 
 | ||
|  |     CycleType NewC(C.begin()+LogPos, C.end()); | ||
|  |     NewC.append(C.begin(), C.begin()+LogPos); | ||
|  |     return NewC; | ||
|  |   }; | ||
|  | 
 | ||
|  |   auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { | ||
|  |     // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
 | ||
|  |     // for bytes zero is included, for halfwords is not.
 | ||
|  |     if (Cs.size() != 1) | ||
|  |       return 0u; | ||
|  |     const CycleType &C = *Cs.begin(); | ||
|  |     if (C[0] != Len-1) | ||
|  |       return 0u; | ||
|  |     int D = Len - C.size(); | ||
|  |     if (D != 0 && D != 1) | ||
|  |       return 0u; | ||
|  | 
 | ||
|  |     bool IsDeal = true, IsShuff = true; | ||
|  |     for (unsigned I = 1; I != Len-D; ++I) { | ||
|  |       if (C[I] != Len-1-I) | ||
|  |         IsDeal = false; | ||
|  |       if (C[I] != I-(1-D))  // I-1, I
 | ||
|  |         IsShuff = false; | ||
|  |     } | ||
|  |     // At most one, IsDeal or IsShuff, can be non-zero.
 | ||
|  |     assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); | ||
|  |     static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh }; | ||
|  |     static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh }; | ||
|  |     return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); | ||
|  |   }; | ||
|  | 
 | ||
|  |   while (!All.empty()) { | ||
|  |     unsigned A = *All.begin(); | ||
|  |     All.erase(A); | ||
|  |     CycleType C; | ||
|  |     C.push_back(A); | ||
|  |     for (unsigned B = Perm[A]; B != A; B = Perm[B]) { | ||
|  |       C.push_back(B); | ||
|  |       All.erase(B); | ||
|  |     } | ||
|  |     if (C.size() <= 1) | ||
|  |       continue; | ||
|  |     Cycles.insert(canonicalize(C)); | ||
|  |   } | ||
|  | 
 | ||
|  |   MVT SingleTy = getSingleVT(MVT::i8); | ||
|  |   MVT PairTy = getPairVT(MVT::i8); | ||
|  | 
 | ||
|  |   // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
 | ||
|  |   if (unsigned(VecLen) == HwLen) { | ||
|  |     if (unsigned SingleOpc = pfs(Cycles, LogLen)) { | ||
|  |       Results.push(SingleOpc, SingleTy, {Va}); | ||
|  |       return OpRef::res(Results.top()); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   SmallVector<unsigned,8> SwapElems; | ||
|  |   if (HwLen == unsigned(VecLen)) | ||
|  |     SwapElems.push_back(LogLen-1); | ||
|  | 
 | ||
|  |   for (const CycleType &C : Cycles) { | ||
|  |     unsigned First = (C[0] == LogLen-1) ? 1 : 0; | ||
|  |     SwapElems.append(C.begin()+First, C.end()); | ||
|  |     if (First == 0) | ||
|  |       SwapElems.push_back(C[0]); | ||
|  |   } | ||
|  | 
 | ||
|  |   const SDLoc &dl(Results.InpNode); | ||
|  |   OpRef Arg = !Extend ? Va | ||
|  |                       : concat(Va, OpRef::undef(SingleTy), Results); | ||
|  | 
 | ||
|  |   for (unsigned I = 0, E = SwapElems.size(); I != E; ) { | ||
|  |     bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1]; | ||
|  |     unsigned S = (1u << SwapElems[I]); | ||
|  |     if (I < E-1) { | ||
|  |       while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1])) | ||
|  |         S |= 1u << SwapElems[I]; | ||
|  |       // The above loop will not add a bit for the final SwapElems[I+1],
 | ||
|  |       // so add it here.
 | ||
|  |       S |= 1u << SwapElems[I]; | ||
|  |     } | ||
|  |     ++I; | ||
|  | 
 | ||
|  |     NodeTemplate Res; | ||
|  |     Results.push(Hexagon::A2_tfrsi, MVT::i32, | ||
|  |                  { DAG.getTargetConstant(S, dl, MVT::i32) }); | ||
|  |     Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; | ||
|  |     Res.Ty = PairTy; | ||
|  |     Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) }; | ||
|  |     Results.push(Res); | ||
|  |     Arg = OpRef::res(Results.top()); | ||
|  |   } | ||
|  | 
 | ||
|  |   return !Extend ? Arg : OpRef::lo(Arg); | ||
|  | } | ||
|  | 
 | ||
|  | OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { | ||
|  |   DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); | ||
|  |   // Butterfly shuffles.
 | ||
|  |   //
 | ||
|  |   // V6_vdelta
 | ||
|  |   // V6_vrdelta
 | ||
|  |   // V6_vror
 | ||
|  | 
 | ||
|  |   // The assumption here is that all elements picked by Mask are in the
 | ||
|  |   // first operand to the vector_shuffle. This assumption is enforced
 | ||
|  |   // by the caller.
 | ||
|  | 
 | ||
|  |   MVT ResTy = getSingleVT(MVT::i8); | ||
|  |   PermNetwork::Controls FC, RC; | ||
|  |   const SDLoc &dl(Results.InpNode); | ||
|  |   int VecLen = SM.Mask.size(); | ||
|  | 
 | ||
|  |   for (int M : SM.Mask) { | ||
|  |     if (M != -1 && M >= VecLen) | ||
|  |       return OpRef::fail(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Try the deltas/benes for both single vectors and vector pairs.
 | ||
|  |   ForwardDeltaNetwork FN(SM.Mask); | ||
|  |   if (FN.run(FC)) { | ||
|  |     SDValue Ctl = getVectorConstant(FC, dl); | ||
|  |     Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); | ||
|  |     return OpRef::res(Results.top()); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Try reverse delta.
 | ||
|  |   ReverseDeltaNetwork RN(SM.Mask); | ||
|  |   if (RN.run(RC)) { | ||
|  |     SDValue Ctl = getVectorConstant(RC, dl); | ||
|  |     Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); | ||
|  |     return OpRef::res(Results.top()); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Do Benes.
 | ||
|  |   BenesNetwork BN(SM.Mask); | ||
|  |   if (BN.run(FC, RC)) { | ||
|  |     SDValue CtlF = getVectorConstant(FC, dl); | ||
|  |     SDValue CtlR = getVectorConstant(RC, dl); | ||
|  |     Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); | ||
|  |     Results.push(Hexagon::V6_vrdelta, ResTy, | ||
|  |                  {OpRef::res(-1), OpRef(CtlR)}); | ||
|  |     return OpRef::res(Results.top()); | ||
|  |   } | ||
|  | 
 | ||
|  |   return OpRef::fail(); | ||
|  | } | ||
|  | 
 | ||
|  | SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, | ||
|  |                                        const SDLoc &dl) { | ||
|  |   SmallVector<SDValue, 128> Elems; | ||
|  |   for (uint8_t C : Data) | ||
|  |     Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); | ||
|  |   MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); | ||
|  |   SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); | ||
|  |   SDValue LV = Lower.LowerOperation(BV, DAG); | ||
|  |   DAG.RemoveDeadNode(BV.getNode()); | ||
|  |   return LV; | ||
|  | } | ||
|  | 
 | ||
|  | void HvxSelector::selectShuffle(SDNode *N) { | ||
|  |   DEBUG_WITH_TYPE("isel", { | ||
|  |     dbgs() << "Starting " << __func__ << " on node:\n"; | ||
|  |     N->dump(&DAG); | ||
|  |   }); | ||
|  |   MVT ResTy = N->getValueType(0).getSimpleVT(); | ||
|  |   // Assume that vector shuffles operate on vectors of bytes.
 | ||
|  |   assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); | ||
|  | 
 | ||
|  |   auto *SN = cast<ShuffleVectorSDNode>(N); | ||
|  |   std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); | ||
|  |   // This shouldn't really be necessary. Is it?
 | ||
|  |   for (int &Idx : Mask) | ||
|  |     if (Idx != -1 && Idx < 0) | ||
|  |       Idx = -1; | ||
|  | 
 | ||
|  |   unsigned VecLen = Mask.size(); | ||
|  |   bool HavePairs = (2*HwLen == VecLen); | ||
|  |   assert(ResTy.getSizeInBits() / 8 == VecLen); | ||
|  | 
 | ||
|  |   // Vd = vector_shuffle Va, Vb, Mask
 | ||
|  |   //
 | ||
|  | 
 | ||
|  |   bool UseLeft = false, UseRight = false; | ||
|  |   for (unsigned I = 0; I != VecLen; ++I) { | ||
|  |     if (Mask[I] == -1) | ||
|  |       continue; | ||
|  |     unsigned Idx = Mask[I]; | ||
|  |     assert(Idx < 2*VecLen); | ||
|  |     if (Idx < VecLen) | ||
|  |       UseLeft = true; | ||
|  |     else | ||
|  |       UseRight = true; | ||
|  |   } | ||
|  | 
 | ||
|  |   DEBUG_WITH_TYPE("isel", { | ||
|  |     dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" | ||
|  |            << UseLeft << " UseRight=" << UseRight << " HavePairs=" | ||
|  |            << HavePairs << '\n'; | ||
|  |   }); | ||
|  |   // If the mask is all -1's, generate "undef".
 | ||
|  |   if (!UseLeft && !UseRight) { | ||
|  |     ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); | ||
|  |     DAG.RemoveDeadNode(N); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   SDValue Vec0 = N->getOperand(0); | ||
|  |   SDValue Vec1 = N->getOperand(1); | ||
|  |   ResultStack Results(SN); | ||
|  |   Results.push(TargetOpcode::COPY, ResTy, {Vec0}); | ||
|  |   Results.push(TargetOpcode::COPY, ResTy, {Vec1}); | ||
|  |   OpRef Va = OpRef::res(Results.top()-1); | ||
|  |   OpRef Vb = OpRef::res(Results.top()); | ||
|  | 
 | ||
|  |   OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) | ||
|  |                          : shuffp2(ShuffleMask(Mask), Va, Vb, Results); | ||
|  | 
 | ||
|  |   bool Done = Res.isValid(); | ||
|  |   if (Done) { | ||
|  |     // Make sure that Res is on the stack before materializing.
 | ||
|  |     Results.push(TargetOpcode::COPY, ResTy, {Res}); | ||
|  |     materialize(Results); | ||
|  |   } else { | ||
|  |     Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (!Done) { | ||
|  | #ifndef NDEBUG
 | ||
|  |     dbgs() << "Unhandled shuffle:\n"; | ||
|  |     SN->dumpr(&DAG); | ||
|  | #endif
 | ||
|  |     llvm_unreachable("Failed to select vector shuffle"); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | void HvxSelector::selectRor(SDNode *N) { | ||
|  |   // If this is a rotation by less than 8, use V6_valignbi.
 | ||
|  |   MVT Ty = N->getValueType(0).getSimpleVT(); | ||
|  |   const SDLoc &dl(N); | ||
|  |   SDValue VecV = N->getOperand(0); | ||
|  |   SDValue RotV = N->getOperand(1); | ||
|  |   SDNode *NewN = nullptr; | ||
|  | 
 | ||
|  |   if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { | ||
|  |     unsigned S = CN->getZExtValue(); | ||
|  |     if (S % HST.getVectorLength() == 0) { | ||
|  |       NewN = VecV.getNode(); | ||
|  |     } else if (isUInt<3>(S)) { | ||
|  |       SDValue C = DAG.getTargetConstant(S, dl, MVT::i32); | ||
|  |       NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, | ||
|  |                                 {VecV, VecV, C}); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (!NewN) | ||
|  |     NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); | ||
|  | 
 | ||
|  |   ISel.ReplaceNode(N, NewN); | ||
|  |   DAG.RemoveDeadNode(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { | ||
|  |   HvxSelector(*this, *CurDAG).selectShuffle(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { | ||
|  |   HvxSelector(*this, *CurDAG).selectRor(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { | ||
|  |   const SDLoc &dl(N); | ||
|  |   SDValue Chain = N->getOperand(0); | ||
|  |   SDValue Address = N->getOperand(2); | ||
|  |   SDValue Predicate = N->getOperand(3); | ||
|  |   SDValue Base = N->getOperand(4); | ||
|  |   SDValue Modifier = N->getOperand(5); | ||
|  |   SDValue Offset = N->getOperand(6); | ||
|  | 
 | ||
|  |   unsigned Opcode; | ||
|  |   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | ||
|  |   switch (IntNo) { | ||
|  |   default: | ||
|  |     llvm_unreachable("Unexpected HVX gather intrinsic."); | ||
|  |   case Intrinsic::hexagon_V6_vgathermhq: | ||
|  |   case Intrinsic::hexagon_V6_vgathermhq_128B: | ||
|  |     Opcode = Hexagon::V6_vgathermhq_pseudo; | ||
|  |     break; | ||
|  |   case Intrinsic::hexagon_V6_vgathermwq: | ||
|  |   case Intrinsic::hexagon_V6_vgathermwq_128B: | ||
|  |     Opcode = Hexagon::V6_vgathermwq_pseudo; | ||
|  |     break; | ||
|  |   case Intrinsic::hexagon_V6_vgathermhwq: | ||
|  |   case Intrinsic::hexagon_V6_vgathermhwq_128B: | ||
|  |     Opcode = Hexagon::V6_vgathermhwq_pseudo; | ||
|  |     break; | ||
|  |   } | ||
|  | 
 | ||
|  |   SDVTList VTs = CurDAG->getVTList(MVT::Other); | ||
|  |   SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain }; | ||
|  |   SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); | ||
|  | 
 | ||
|  |   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | ||
|  |   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | ||
|  |   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); | ||
|  | 
 | ||
|  |   ReplaceUses(N, Result); | ||
|  |   CurDAG->RemoveDeadNode(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { | ||
|  |   const SDLoc &dl(N); | ||
|  |   SDValue Chain = N->getOperand(0); | ||
|  |   SDValue Address = N->getOperand(2); | ||
|  |   SDValue Base = N->getOperand(3); | ||
|  |   SDValue Modifier = N->getOperand(4); | ||
|  |   SDValue Offset = N->getOperand(5); | ||
|  | 
 | ||
|  |   unsigned Opcode; | ||
|  |   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | ||
|  |   switch (IntNo) { | ||
|  |   default: | ||
|  |     llvm_unreachable("Unexpected HVX gather intrinsic."); | ||
|  |   case Intrinsic::hexagon_V6_vgathermh: | ||
|  |   case Intrinsic::hexagon_V6_vgathermh_128B: | ||
|  |     Opcode = Hexagon::V6_vgathermh_pseudo; | ||
|  |     break; | ||
|  |   case Intrinsic::hexagon_V6_vgathermw: | ||
|  |   case Intrinsic::hexagon_V6_vgathermw_128B: | ||
|  |     Opcode = Hexagon::V6_vgathermw_pseudo; | ||
|  |     break; | ||
|  |   case Intrinsic::hexagon_V6_vgathermhw: | ||
|  |   case Intrinsic::hexagon_V6_vgathermhw_128B: | ||
|  |     Opcode = Hexagon::V6_vgathermhw_pseudo; | ||
|  |     break; | ||
|  |   } | ||
|  | 
 | ||
|  |   SDVTList VTs = CurDAG->getVTList(MVT::Other); | ||
|  |   SDValue Ops[] = { Address, Base, Modifier, Offset, Chain }; | ||
|  |   SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); | ||
|  | 
 | ||
|  |   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | ||
|  |   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | ||
|  |   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); | ||
|  | 
 | ||
|  |   ReplaceUses(N, Result); | ||
|  |   CurDAG->RemoveDeadNode(N); | ||
|  | } | ||
|  | 
 | ||
|  | void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { | ||
|  |   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | ||
|  |   SDNode *Result; | ||
|  |   switch (IID) { | ||
|  |   case Intrinsic::hexagon_V6_vaddcarry: { | ||
|  |     SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | ||
|  |                                     N->getOperand(3) }; | ||
|  |     SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1); | ||
|  |     Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); | ||
|  |     break; | ||
|  |   } | ||
|  |   case Intrinsic::hexagon_V6_vaddcarry_128B: { | ||
|  |     SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | ||
|  |                                     N->getOperand(3) }; | ||
|  |     SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1); | ||
|  |     Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); | ||
|  |     break; | ||
|  |   } | ||
|  |   case Intrinsic::hexagon_V6_vsubcarry: { | ||
|  |     SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | ||
|  |                                     N->getOperand(3) }; | ||
|  |     SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1); | ||
|  |     Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); | ||
|  |     break; | ||
|  |   } | ||
|  |   case Intrinsic::hexagon_V6_vsubcarry_128B: { | ||
|  |     SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2), | ||
|  |                                     N->getOperand(3) }; | ||
|  |     SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1); | ||
|  |     Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); | ||
|  |     break; | ||
|  |   } | ||
|  |   default: | ||
|  |     llvm_unreachable("Unexpected HVX dual output intrinsic."); | ||
|  |   } | ||
|  |   ReplaceUses(N, Result); | ||
|  |   ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); | ||
|  |   ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); | ||
|  |   CurDAG->RemoveDeadNode(N); | ||
|  | } | ||
|  | 
 | ||
|  | 
 |