371 lines
14 KiB
C++
371 lines
14 KiB
C++
|
//===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/IR/PatternMatch.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/Analysis/ValueTracking.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/DataLayout.h"
|
||
|
#include "llvm/IR/DerivedTypes.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/LLVMContext.h"
|
||
|
#include "llvm/IR/MDBuilder.h"
|
||
|
#include "llvm/IR/Module.h"
|
||
|
#include "llvm/IR/NoFolder.h"
|
||
|
#include "llvm/IR/Operator.h"
|
||
|
#include "llvm/IR/Type.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
using namespace llvm::PatternMatch;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
struct PatternMatchTest : ::testing::Test {
|
||
|
LLVMContext Ctx;
|
||
|
std::unique_ptr<Module> M;
|
||
|
Function *F;
|
||
|
BasicBlock *BB;
|
||
|
IRBuilder<NoFolder> IRB;
|
||
|
|
||
|
PatternMatchTest()
|
||
|
: M(new Module("PatternMatchTestModule", Ctx)),
|
||
|
F(Function::Create(
|
||
|
FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
|
||
|
Function::ExternalLinkage, "f", M.get())),
|
||
|
BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
|
||
|
};
|
||
|
|
||
|
TEST_F(PatternMatchTest, OneUse) {
|
||
|
// Build up a little tree of values:
|
||
|
//
|
||
|
// One = (1 + 2) + 42
|
||
|
// Two = One + 42
|
||
|
// Leaf = (Two + 8) + (Two + 13)
|
||
|
Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
|
||
|
IRB.getInt32(42));
|
||
|
Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
|
||
|
Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
|
||
|
IRB.CreateAdd(Two, IRB.getInt32(13)));
|
||
|
Value *V;
|
||
|
|
||
|
EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
|
||
|
EXPECT_EQ(One, V);
|
||
|
|
||
|
EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
|
||
|
EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
|
||
|
}
|
||
|
|
||
|
TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
|
||
|
Type *FltTy = IRB.getFloatTy();
|
||
|
Value *L = ConstantFP::get(FltTy, 1.0);
|
||
|
Value *R = ConstantFP::get(FltTy, 2.0);
|
||
|
Value *MatchL, *MatchR;
|
||
|
|
||
|
// Test OLT.
|
||
|
EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test OLE.
|
||
|
EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test no match on OGE.
|
||
|
EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
|
||
|
|
||
|
// Test no match on OGT.
|
||
|
EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
|
||
|
|
||
|
// Test inverted selects. Note, that this "inverts" the ordering, e.g.:
|
||
|
// %cmp = fcmp oge L, R
|
||
|
// %min = select %cmp R, L
|
||
|
// Given L == NaN
|
||
|
// the above is expanded to %cmp == false ==> %min = L
|
||
|
// which is true for UnordFMin, not OrdFMin, so test that:
|
||
|
|
||
|
// [OU]GE with inverted select.
|
||
|
EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// [OU]GT with inverted select.
|
||
|
EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
}
|
||
|
|
||
|
TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
|
||
|
Type *FltTy = IRB.getFloatTy();
|
||
|
Value *L = ConstantFP::get(FltTy, 1.0);
|
||
|
Value *R = ConstantFP::get(FltTy, 2.0);
|
||
|
Value *MatchL, *MatchR;
|
||
|
|
||
|
// Test OGT.
|
||
|
EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test OGE.
|
||
|
EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test no match on OLE.
|
||
|
EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
|
||
|
|
||
|
// Test no match on OLT.
|
||
|
EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
|
||
|
|
||
|
|
||
|
// Test inverted selects. Note, that this "inverts" the ordering, e.g.:
|
||
|
// %cmp = fcmp ole L, R
|
||
|
// %max = select %cmp, R, L
|
||
|
// Given L == NaN,
|
||
|
// the above is expanded to %cmp == false ==> %max == L
|
||
|
// which is true for UnordFMax, not OrdFMax, so test that:
|
||
|
|
||
|
// [OU]LE with inverted select.
|
||
|
EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// [OUT]LT with inverted select.
|
||
|
EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
}
|
||
|
|
||
|
TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
|
||
|
Type *FltTy = IRB.getFloatTy();
|
||
|
Value *L = ConstantFP::get(FltTy, 1.0);
|
||
|
Value *R = ConstantFP::get(FltTy, 2.0);
|
||
|
Value *MatchL, *MatchR;
|
||
|
|
||
|
// Test ULT.
|
||
|
EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test ULE.
|
||
|
EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test no match on UGE.
|
||
|
EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
|
||
|
|
||
|
// Test no match on UGT.
|
||
|
EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
|
||
|
|
||
|
// Test inverted selects. Note, that this "inverts" the ordering, e.g.:
|
||
|
// %cmp = fcmp uge L, R
|
||
|
// %min = select %cmp R, L
|
||
|
// Given L == NaN
|
||
|
// the above is expanded to %cmp == true ==> %min = R
|
||
|
// which is true for OrdFMin, not UnordFMin, so test that:
|
||
|
|
||
|
// [UO]GE with inverted select.
|
||
|
EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// [UO]GT with inverted select.
|
||
|
EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
}
|
||
|
|
||
|
TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
|
||
|
Type *FltTy = IRB.getFloatTy();
|
||
|
Value *L = ConstantFP::get(FltTy, 1.0);
|
||
|
Value *R = ConstantFP::get(FltTy, 2.0);
|
||
|
Value *MatchL, *MatchR;
|
||
|
|
||
|
// Test UGT.
|
||
|
EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test UGE.
|
||
|
EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// Test no match on ULE.
|
||
|
EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
|
||
|
|
||
|
// Test no match on ULT.
|
||
|
EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
|
||
|
|
||
|
// Test inverted selects. Note, that this "inverts" the ordering, e.g.:
|
||
|
// %cmp = fcmp ule L, R
|
||
|
// %max = select %cmp R, L
|
||
|
// Given L == NaN
|
||
|
// the above is expanded to %cmp == true ==> %max = R
|
||
|
// which is true for OrdFMax, not UnordFMax, so test that:
|
||
|
|
||
|
// [UO]LE with inverted select.
|
||
|
EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
// [UO]LT with inverted select.
|
||
|
EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
|
||
|
EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
|
||
|
.match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
}
|
||
|
|
||
|
TEST_F(PatternMatchTest, OverflowingBinOps) {
|
||
|
Value *L = IRB.getInt32(1);
|
||
|
Value *R = IRB.getInt32(2);
|
||
|
Value *MatchL, *MatchR;
|
||
|
|
||
|
EXPECT_TRUE(
|
||
|
m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
MatchL = MatchR = nullptr;
|
||
|
EXPECT_TRUE(
|
||
|
m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
MatchL = MatchR = nullptr;
|
||
|
EXPECT_TRUE(
|
||
|
m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
MatchL = MatchR = nullptr;
|
||
|
EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
|
||
|
IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
EXPECT_TRUE(
|
||
|
m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
MatchL = MatchR = nullptr;
|
||
|
EXPECT_TRUE(
|
||
|
m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
MatchL = MatchR = nullptr;
|
||
|
EXPECT_TRUE(
|
||
|
m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
MatchL = MatchR = nullptr;
|
||
|
EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
|
||
|
IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
|
||
|
EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
|
||
|
EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
|
||
|
EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
|
||
|
EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
|
||
|
EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
|
||
|
EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
|
||
|
EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
|
||
|
IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
|
||
|
EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
|
||
|
|
||
|
EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
|
||
|
EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
|
||
|
EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
|
||
|
EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
|
||
|
EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
|
||
|
EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
|
||
|
EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
|
||
|
EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
|
||
|
IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
|
||
|
EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
|
||
|
}
|
||
|
|
||
|
template <typename T> struct MutableConstTest : PatternMatchTest { };
|
||
|
|
||
|
typedef ::testing::Types<std::tuple<Value*, Instruction*>,
|
||
|
std::tuple<const Value*, const Instruction *>>
|
||
|
MutableConstTestTypes;
|
||
|
TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
|
||
|
|
||
|
TYPED_TEST(MutableConstTest, ICmp) {
|
||
|
auto &IRB = PatternMatchTest::IRB;
|
||
|
|
||
|
typedef typename std::tuple_element<0, TypeParam>::type ValueType;
|
||
|
typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
|
||
|
|
||
|
Value *L = IRB.getInt32(1);
|
||
|
Value *R = IRB.getInt32(2);
|
||
|
ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
|
||
|
|
||
|
ValueType MatchL;
|
||
|
ValueType MatchR;
|
||
|
ICmpInst::Predicate MatchPred;
|
||
|
|
||
|
EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
|
||
|
.match((InstructionType)IRB.CreateICmp(Pred, L, R)));
|
||
|
EXPECT_EQ(L, MatchL);
|
||
|
EXPECT_EQ(R, MatchR);
|
||
|
}
|
||
|
|
||
|
} // anonymous namespace.
|