Files
acceptance-tests
data
debian
docs
external
Newtonsoft.Json
api-doc-tools
api-snapshot
aspnetwebstack
bdwgc
binary-reference-assemblies
bockbuild
boringssl
cecil
cecil-legacy
corefx
corert
helix-binaries
ikdasm
ikvm
illinker-test-assets
linker
llvm-project
clang
clang-tools-extra
compiler-rt
libcxx
libcxxabi
libunwind
lld
lldb
llvm
bindings
cmake
docs
examples
include
lib
Analysis
AsmParser
BinaryFormat
Bitcode
CodeGen
AsmPrinter
GlobalISel
MIRParser
SelectionDAG
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
AtomicExpandPass.cpp
BasicTargetTransformInfo.cpp
BranchFolding.cpp
BranchFolding.h
BranchRelaxation.cpp
BuiltinGCs.cpp
CMakeLists.txt
CalcSpillWeights.cpp
CallingConvLower.cpp
CodeGen.cpp
CodeGenPrepare.cpp.REMOVED.git-id
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h
DFAPacketizer.cpp
DeadMachineInstructionElim.cpp
DetectDeadLanes.cpp
DwarfEHPrepare.cpp
EarlyIfConversion.cpp
EdgeBundles.cpp
ExecutionDepsFix.cpp
ExpandISelPseudos.cpp
ExpandMemCmp.cpp
ExpandPostRAPseudos.cpp
ExpandReductions.cpp
FEntryInserter.cpp
FaultMaps.cpp
FuncletLayout.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCRootLowering.cpp
GCStrategy.cpp
GlobalMerge.cpp
IfConversion.cpp
ImplicitNullChecks.cpp
IndirectBrExpandPass.cpp
InlineSpiller.cpp
InterferenceCache.cpp
InterferenceCache.h
InterleavedAccessPass.cpp
IntrinsicLowering.cpp
LLVMBuild.txt
LLVMTargetMachine.cpp
LatencyPriorityQueue.cpp
LazyMachineBlockFrequencyInfo.cpp
LexicalScopes.cpp
LiveDebugValues.cpp
LiveDebugVariables.cpp
LiveDebugVariables.h
LiveInterval.cpp
LiveIntervalUnion.cpp
LiveIntervals.cpp
LivePhysRegs.cpp
LiveRangeCalc.cpp
LiveRangeCalc.h
LiveRangeEdit.cpp
LiveRangeShrink.cpp
LiveRangeUtils.h
LiveRegMatrix.cpp
LiveRegUnits.cpp
LiveStacks.cpp
LiveVariables.cpp
LocalStackSlotAllocation.cpp
LowLevelType.cpp
LowerEmuTLS.cpp
MIRCanonicalizerPass.cpp
MIRPrinter.cpp
MIRPrintingPass.cpp
MachineBasicBlock.cpp
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp.REMOVED.git-id
MachineBranchProbabilityInfo.cpp
MachineCSE.cpp
MachineCombiner.cpp
MachineCopyPropagation.cpp
MachineDominanceFrontier.cpp
MachineDominators.cpp
MachineFrameInfo.cpp
MachineFunction.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp
MachineInstrBundle.cpp
MachineLICM.cpp
MachineLoopInfo.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachineOperand.cpp
MachineOptimizationRemarkEmitter.cpp
MachineOutliner.cpp
MachinePassRegistry.cpp
MachinePipeliner.cpp.REMOVED.git-id
MachinePostDominators.cpp
MachineRegionInfo.cpp
MachineRegisterInfo.cpp
MachineSSAUpdater.cpp
MachineScheduler.cpp.REMOVED.git-id
MachineSink.cpp
MachineTraceMetrics.cpp
MachineVerifier.cpp
MacroFusion.cpp
OptimizePHIs.cpp
PHIElimination.cpp
PHIEliminationUtils.cpp
PHIEliminationUtils.h
ParallelCG.cpp
PatchableFunction.cpp
PeepholeOptimizer.cpp
PostRAHazardRecognizer.cpp
PostRASchedulerList.cpp
PreISelIntrinsicLowering.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp
RegAllocGreedy.cpp.REMOVED.git-id
RegAllocPBQP.cpp
RegUsageInfoCollector.cpp
RegUsageInfoPropagate.cpp
RegisterClassInfo.cpp
RegisterCoalescer.cpp.REMOVED.git-id
RegisterCoalescer.h
RegisterPressure.cpp
RegisterScavenging.cpp
RegisterUsageInfo.cpp
RenameIndependentSubregs.cpp
ResetMachineFunctionPass.cpp
SafeStack.cpp
SafeStackColoring.cpp
SafeStackColoring.h
SafeStackLayout.cpp
SafeStackLayout.h
ScalarizeMaskedMemIntrin.cpp
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGCLowering.cpp
ShrinkWrap.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
SpillPlacement.cpp
SpillPlacement.h
Spiller.h
SplitKit.cpp
SplitKit.h
StackColoring.cpp
StackMapLivenessAnalysis.cpp
StackMaps.cpp
StackProtector.cpp
StackSlotColoring.cpp
TailDuplication.cpp
TailDuplicator.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
TargetLoweringBase.cpp
TargetLoweringObjectFileImpl.cpp
TargetOptionsImpl.cpp
TargetPassConfig.cpp
TargetRegisterInfo.cpp
TargetSchedule.cpp
TargetSubtargetInfo.cpp
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
WinEHPrepare.cpp
XRayInstrumentation.cpp
DebugInfo
Demangle
ExecutionEngine
FuzzMutate
Fuzzer
IR
IRReader
LTO
LineEditor
Linker
MC
Object
ObjectYAML
Option
Passes
ProfileData
Support
TableGen
Target
Testing
ToolDrivers
Transforms
WindowsManifest
XRay
CMakeLists.txt
LLVMBuild.txt
projects
resources
runtimes
scripts
test
tools
unittests
utils
.arcconfig
.clang-format
.clang-tidy
.gitattributes
.gitignore
CMakeLists.txt
CODE_OWNERS.TXT
CREDITS.TXT
LICENSE.TXT
LLVMBuild.txt
README.txt
RELEASE_TESTERS.TXT
configure
llvm.spec.in
openmp
polly
nuget-buildtasks
nunit-lite
roslyn-binaries
rx
xunit-binaries
how-to-bump-roslyn-binaries.md
ikvm-native
llvm
m4
man
mcs
mono
msvc
netcore
po
runtime
samples
scripts
support
tools
COPYING.LIB
LICENSE
Makefile.am
Makefile.in
NEWS
README.md
acinclude.m4
aclocal.m4
autogen.sh
code_of_conduct.md
compile
config.guess
config.h.in
config.rpath
config.sub
configure.REMOVED.git-id
configure.ac.REMOVED.git-id
depcomp
install-sh
ltmain.sh.REMOVED.git-id
missing
mkinstalldirs
mono-uninstalled.pc.in
test-driver
winconfig.h
linux-packaging-mono/external/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp

474 lines
17 KiB
C++
Raw Normal View History

//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
void LiveRangeEdit::Delegate::anchor() { }
LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
if (VRM) {
VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
}
LiveInterval &LI = LIS.createEmptyInterval(VReg);
if (Parent && !Parent->isSpillable())
LI.markNotSpillable();
// Create empty subranges if the OldReg's interval has them. Do not create
// the main range here---it will be constructed later after the subranges
// have been finalized.
LiveInterval &OldLI = LIS.getInterval(OldReg);
VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
for (LiveInterval::SubRange &S : OldLI.subranges())
LI.createSubRange(Alloc, S.LaneMask);
return LI;
}
unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
if (VRM) {
VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
}
// FIXME: Getting the interval here actually computes it.
// In theory, this may not be what we want, but in practice
// the createEmptyIntervalFrom API is used when this is not
// the case. Generally speaking we just want to annotate the
// LiveInterval when it gets created but we cannot do that at
// the moment.
if (Parent && !Parent->isSpillable())
LIS.getInterval(VReg).markNotSpillable();
return VReg;
}
bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
const MachineInstr *DefMI,
AliasAnalysis *aa) {
assert(DefMI && "Missing instruction");
ScannedRemattable = true;
if (!TII.isTriviallyReMaterializable(*DefMI, aa))
return false;
Remattable.insert(VNI);
return true;
}
void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
for (VNInfo *VNI : getParent().valnos) {
if (VNI->isUnused())
continue;
unsigned Original = VRM->getOriginal(getReg());
LiveInterval &OrigLI = LIS.getInterval(Original);
VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
if (!OrigVNI)
continue;
MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
if (!DefMI)
continue;
checkRematerializable(OrigVNI, DefMI, aa);
}
ScannedRemattable = true;
}
bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
if (!ScannedRemattable)
scanRemattable(aa);
return !Remattable.empty();
}
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
SlotIndex OrigIdx,
SlotIndex UseIdx) const {
OrigIdx = OrigIdx.getRegSlot(true);
UseIdx = UseIdx.getRegSlot(true);
for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = OrigMI->getOperand(i);
if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
continue;
// We can't remat physreg uses, unless it is a constant.
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
if (MRI.isConstantPhysReg(MO.getReg()))
continue;
return false;
}
LiveInterval &li = LIS.getInterval(MO.getReg());
const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
if (!OVNI)
continue;
// Don't allow rematerialization immediately after the original def.
// It would be incorrect if OrigMI redefines the register.
// See PR14098.
if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
return false;
if (OVNI != li.getVNInfoAt(UseIdx))
return false;
}
return true;
}
bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
SlotIndex UseIdx, bool cheapAsAMove) {
assert(ScannedRemattable && "Call anyRematerializable first");
// Use scanRemattable info.
if (!Remattable.count(OrigVNI))
return false;
// No defining instruction provided.
SlotIndex DefIdx;
assert(RM.OrigMI && "No defining instruction for remattable value");
DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
// If only cheap remats were requested, bail out early.
if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
return false;
// Verify that all used registers are available with the same values.
if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
return false;
return true;
}
SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg,
const Remat &RM,
const TargetRegisterInfo &tri,
bool Late) {
assert(RM.OrigMI && "Invalid remat");
TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
// DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
// to false anyway in case the isDead flag of RM.OrigMI's dest register
// is true.
(*--MI).getOperand(0).setIsDead(false);
Rematted.insert(RM.ParentVNI);
return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
}
void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
LIS.removeInterval(Reg);
}
bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
SmallVectorImpl<MachineInstr*> &Dead) {
MachineInstr *DefMI = nullptr, *UseMI = nullptr;
// Check that there is a single def and a single use.
for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
MachineInstr *MI = MO.getParent();
if (MO.isDef()) {
if (DefMI && DefMI != MI)
return false;
if (!MI->canFoldAsLoad())
return false;
DefMI = MI;
} else if (!MO.isUndef()) {
if (UseMI && UseMI != MI)
return false;
// FIXME: Targets don't know how to fold subreg uses.
if (MO.getSubReg())
return false;
UseMI = MI;
}
}
if (!DefMI || !UseMI)
return false;
// Since we're moving the DefMI load, make sure we're not extending any live
// ranges.
if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
LIS.getInstructionIndex(*UseMI)))
return false;
// We also need to make sure it is safe to move the load.
// Assume there are stores between DefMI and UseMI.
bool SawStore = true;
if (!DefMI->isSafeToMove(nullptr, SawStore))
return false;
DEBUG(dbgs() << "Try to fold single def: " << *DefMI
<< " into single use: " << *UseMI);
SmallVector<unsigned, 8> Ops;
if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
return false;
MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
if (!FoldMI)
return false;
DEBUG(dbgs() << " folded: " << *FoldMI);
LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
UseMI->eraseFromParent();
DefMI->addRegisterDead(LI->reg, nullptr);
Dead.push_back(DefMI);
++NumDCEFoldedLoads;
return true;
}
bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
const MachineOperand &MO) const {
const MachineInstr &MI = *MO.getParent();
SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
if (LI.Query(Idx).isKill())
return true;
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
unsigned SubReg = MO.getSubReg();
LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
for (const LiveInterval::SubRange &S : LI.subranges()) {
if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
return true;
}
return false;
}
/// Find all live intervals that need to shrink, then remove the instruction.
void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
AliasAnalysis *AA) {
assert(MI->allDefsAreDead() && "Def isn't really dead");
SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
// Never delete a bundled instruction.
if (MI->isBundled()) {
return;
}
// Never delete inline asm.
if (MI->isInlineAsm()) {
DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
return;
}
// Use the same criteria as DeadMachineInstructionElim.
bool SawStore = false;
if (!MI->isSafeToMove(nullptr, SawStore)) {
DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
return;
}
DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
// Collect virtual registers to be erased after MI is gone.
SmallVector<unsigned, 8> RegsToErase;
bool ReadsPhysRegs = false;
bool isOrigDef = false;
unsigned Dest;
// Only optimize rematerialize case when the instruction has one def, since
// otherwise we could leave some dead defs in the code. This case is
// extremely rare.
if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
MI->getDesc().getNumDefs() == 1) {
Dest = MI->getOperand(0).getReg();
unsigned Original = VRM->getOriginal(Dest);
LiveInterval &OrigLI = LIS.getInterval(Original);
VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
// The original live-range may have been shrunk to
// an empty live-range. It happens when it is dead, but
// we still keep it around to be able to rematerialize
// other values that depend on it.
if (OrigVNI)
isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
}
// Check for live intervals that may shrink
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
if (!MOI->isReg())
continue;
unsigned Reg = MOI->getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
// Check if MI reads any unreserved physregs.
if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
ReadsPhysRegs = true;
else if (MOI->isDef())
LIS.removePhysRegDefAt(Reg, Idx);
continue;
}
LiveInterval &LI = LIS.getInterval(Reg);
// Shrink read registers, unless it is likely to be expensive and
// unlikely to change anything. We typically don't want to shrink the
// PIC base register that has lots of uses everywhere.
// Always shrink COPY uses that probably come from live range splitting.
if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
(MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
ToShrink.insert(&LI);
// Remove defined value.
if (MOI->isDef()) {
if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
LIS.removeVRegDefAt(LI, Idx);
if (LI.empty())
RegsToErase.push_back(Reg);
}
}
// Currently, we don't support DCE of physreg live ranges. If MI reads
// any unreserved physregs, don't erase the instruction, but turn it into
// a KILL instead. This way, the physreg live ranges don't end up
// dangling.
// FIXME: It would be better to have something like shrinkToUses() for
// physregs. That could potentially enable more DCE and it would free up
// the physreg. It would not happen often, though.
if (ReadsPhysRegs) {
MI->setDesc(TII.get(TargetOpcode::KILL));
// Remove all operands that aren't physregs.
for (unsigned i = MI->getNumOperands(); i; --i) {
const MachineOperand &MO = MI->getOperand(i-1);
if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
continue;
MI->RemoveOperand(i-1);
}
DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
} else {
// If the dest of MI is an original reg and MI is reMaterializable,
// don't delete the inst. Replace the dest with a new reg, and keep
// the inst for remat of other siblings. The inst is saved in
// LiveRangeEdit::DeadRemats and will be deleted after all the
// allocations of the func are done.
if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
LiveInterval &NewLI = createEmptyIntervalFrom(Dest);
NewLI.removeEmptySubRanges();
VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
pop_back();
markDeadRemat(MI);
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
MI->getOperand(0).setIsDead(true);
} else {
if (TheDelegate)
TheDelegate->LRE_WillEraseInstruction(MI);
LIS.RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
++NumDCEDeleted;
}
}
// Erase any virtregs that are now empty and unused. There may be <undef>
// uses around. Keep the empty live range in that case.
for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
unsigned Reg = RegsToErase[i];
if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
ToShrink.remove(&LIS.getInterval(Reg));
eraseVirtReg(Reg);
}
}
}
void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
ArrayRef<unsigned> RegsBeingSpilled,
AliasAnalysis *AA) {
ToShrinkSet ToShrink;
for (;;) {
// Erase all dead defs.
while (!Dead.empty())
eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
if (ToShrink.empty())
break;
// Shrink just one live interval. Then delete new dead defs.
LiveInterval *LI = ToShrink.back();
ToShrink.pop_back();
if (foldAsLoad(LI, Dead))
continue;
unsigned VReg = LI->reg;
if (TheDelegate)
TheDelegate->LRE_WillShrinkVirtReg(VReg);
if (!LIS.shrinkToUses(LI, &Dead))
continue;
// Don't create new intervals for a register being spilled.
// The new intervals would have to be spilled anyway so its not worth it.
// Also they currently aren't spilled so creating them and not spilling
// them results in incorrect code.
bool BeingSpilled = false;
for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
if (VReg == RegsBeingSpilled[i]) {
BeingSpilled = true;
break;
}
}
if (BeingSpilled) continue;
// LI may have been separated, create new intervals.
LI->RenumberValues();
SmallVector<LiveInterval*, 8> SplitLIs;
LIS.splitSeparateComponents(*LI, SplitLIs);
if (!SplitLIs.empty())
++NumFracRanges;
unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
for (const LiveInterval *SplitLI : SplitLIs) {
// If LI is an original interval that hasn't been split yet, make the new
// intervals their own originals instead of referring to LI. The original
// interval must contain all the split products, and LI doesn't.
if (Original != VReg && Original != 0)
VRM->setIsSplitFromReg(SplitLI->reg, Original);
if (TheDelegate)
TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
}
}
}
// Keep track of new virtual registers created via
// MachineRegisterInfo::createVirtualRegister.
void
LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
{
if (VRM)
VRM->grow();
NewRegs.push_back(VReg);
}
void
LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
const MachineLoopInfo &Loops,
const MachineBlockFrequencyInfo &MBFI) {
VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
for (unsigned I = 0, Size = size(); I < Size; ++I) {
LiveInterval &LI = LIS.getInterval(get(I));
if (MRI.recomputeRegClass(LI.reg))
DEBUG({
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
dbgs() << "Inflated " << printReg(LI.reg) << " to "
<< TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
});
VRAI.calculateSpillWeightAndHint(LI);
}
}