117 lines
3.5 KiB
C#
Raw Normal View History

//-- ex-gen-class-polynomial
using System;
// A type implements AddMul<A,R> if one can add an A to it, giving an R:
interface AddMul<A,R> {
R Add(A e); // Addition with A, giving R
R Mul(A e); // Multiplication with A, giving R
}
// Polynomials over E, Polynomial<E>:
// The base type E of the polynomial must support addition,
// multiplication and zero (via the nullary constructor). That's what
// the type parameter constraint on E says.
// In return, one can add an E or a polynomial over E to a polynomial
// over E. Similarly, a polynomial over E can be multiplied by an E
// or by a polynomial over E. That's what the interface clauses say.
class Polynomial<E> : AddMul<E,Polynomial<E>>,
AddMul<Polynomial<E>,Polynomial<E>>
where E : AddMul<E,E>, new() {
// cs contains coefficients of x^0, x^1, ...; absent coefficients are zero.
// Invariant: cs != null && cs.Length >= 0; cs.Length==0 represents zero.
private readonly E[] cs;
public Polynomial() {
this.cs = new E[0];
}
public Polynomial(E[] cs) {
this.cs = cs;
}
public Polynomial<E> Add(Polynomial<E> that) {
int newlen = Math.Max(this.cs.Length, that.cs.Length);
int minlen = Math.Min(this.cs.Length, that.cs.Length);
E[] newcs = new E[newlen];
if (this.cs.Length <= that.cs.Length) {
for (int i=0; i<minlen; i++)
newcs[i] = this.cs[i].Add(that.cs[i]);
for (int i=minlen; i<newlen; i++)
newcs[i] = that.cs[i];
} else {
for (int i=0; i<minlen; i++)
newcs[i] = this.cs[i].Add(that.cs[i]);
for (int i=minlen; i<newlen; i++)
newcs[i] = this.cs[i];
}
return new Polynomial<E>(newcs);
}
public Polynomial<E> Add(E that) {
return this.Add(new Polynomial<E>(new E[] { that }));
}
public Polynomial<E> Mul(E that) {
E[] newcs = new E[cs.Length];
for (int i=0; i<cs.Length; i++)
newcs[i] = that.Mul(cs[i]);
return new Polynomial<E>(newcs);
}
public Polynomial<E> Mul(Polynomial<E> that) {
int newlen = Math.Max(1, this.cs.Length + that.cs.Length - 1);
E[] newcs = new E[newlen];
for (int i=0; i<newlen; i++) {
E sum = new E(); // Permitted by constraint E : new()
int start = Math.Max(0, i-that.cs.Length+1);
int stop = Math.Min(i, this.cs.Length-1);
for (int j=start; j<=stop; j++) {
// assert 0<=j && j<this.cs.Length && 0<=i-j && i-j<that.cs.Length;
sum = sum.Add(this.cs[j].Mul(that.cs[i-j]));
}
newcs[i] = sum;
}
return new Polynomial<E>(newcs);
}
public E Eval(E x) {
E res = new E(); // Permitted by constraint E : new()
for (int j=cs.Length-1; j>=0; j--)
res = res.Mul(x).Add(cs[j]);
return res;
}
}
struct Int : AddMul<Int,Int> {
private readonly int i;
public Int(int i) {
this.i = i;
}
public Int Add(Int that) {
return new Int(this.i + that.i);
}
public Int Mul(Int that) {
return new Int(this.i * that.i);
}
public override String ToString() {
return i.ToString();
}
}
class TestPolynomial {
public static void Main(String[] args) {
// The integer polynomial 2 + 5x + x^2
Polynomial<Int> ip =
new Polynomial<Int>(new Int[] { new Int(2), new Int(5), new Int(1) });
Console.WriteLine(ip.Eval(new Int(10))); // 152
Console.WriteLine(ip.Add(ip).Eval(new Int(10))); // 304 = 152 + 152
Console.WriteLine(ip.Mul(ip).Eval(new Int(10))); // 23104 = 152 * 152
}
}