784 lines
27 KiB
C
784 lines
27 KiB
C
|
/*
|
||
|
* kmp_wait_release.h -- Wait/Release implementation
|
||
|
*/
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
||
|
// Source Licenses. See LICENSE.txt for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef KMP_WAIT_RELEASE_H
|
||
|
#define KMP_WAIT_RELEASE_H
|
||
|
|
||
|
#include "kmp.h"
|
||
|
#include "kmp_itt.h"
|
||
|
#include "kmp_stats.h"
|
||
|
#if OMPT_SUPPORT
|
||
|
#include "ompt-specific.h"
|
||
|
#endif
|
||
|
|
||
|
/*!
|
||
|
@defgroup WAIT_RELEASE Wait/Release operations
|
||
|
|
||
|
The definitions and functions here implement the lowest level thread
|
||
|
synchronizations of suspending a thread and awaking it. They are used to build
|
||
|
higher level operations such as barriers and fork/join.
|
||
|
*/
|
||
|
|
||
|
/*!
|
||
|
@ingroup WAIT_RELEASE
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
/*!
|
||
|
* The flag_type describes the storage used for the flag.
|
||
|
*/
|
||
|
enum flag_type {
|
||
|
flag32, /**< 32 bit flags */
|
||
|
flag64, /**< 64 bit flags */
|
||
|
flag_oncore /**< special 64-bit flag for on-core barrier (hierarchical) */
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
* Base class for wait/release volatile flag
|
||
|
*/
|
||
|
template <typename P> class kmp_flag {
|
||
|
volatile P
|
||
|
*loc; /**< Pointer to the flag storage that is modified by another thread
|
||
|
*/
|
||
|
flag_type t; /**< "Type" of the flag in loc */
|
||
|
public:
|
||
|
typedef P flag_t;
|
||
|
kmp_flag(volatile P *p, flag_type ft) : loc(p), t(ft) {}
|
||
|
/*!
|
||
|
* @result the pointer to the actual flag
|
||
|
*/
|
||
|
volatile P *get() { return loc; }
|
||
|
/*!
|
||
|
* @param new_loc in set loc to point at new_loc
|
||
|
*/
|
||
|
void set(volatile P *new_loc) { loc = new_loc; }
|
||
|
/*!
|
||
|
* @result the flag_type
|
||
|
*/
|
||
|
flag_type get_type() { return t; }
|
||
|
// Derived classes must provide the following:
|
||
|
/*
|
||
|
kmp_info_t * get_waiter(kmp_uint32 i);
|
||
|
kmp_uint32 get_num_waiters();
|
||
|
bool done_check();
|
||
|
bool done_check_val(P old_loc);
|
||
|
bool notdone_check();
|
||
|
P internal_release();
|
||
|
void suspend(int th_gtid);
|
||
|
void resume(int th_gtid);
|
||
|
P set_sleeping();
|
||
|
P unset_sleeping();
|
||
|
bool is_sleeping();
|
||
|
bool is_any_sleeping();
|
||
|
bool is_sleeping_val(P old_loc);
|
||
|
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
|
||
|
int *thread_finished
|
||
|
USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32
|
||
|
is_constrained);
|
||
|
*/
|
||
|
};
|
||
|
|
||
|
#if OMPT_SUPPORT
|
||
|
static inline void __ompt_implicit_task_end(kmp_info_t *this_thr,
|
||
|
omp_state_t omp_state,
|
||
|
ompt_data_t *tId,
|
||
|
ompt_data_t *pId) {
|
||
|
int ds_tid = this_thr->th.th_info.ds.ds_tid;
|
||
|
if (omp_state == omp_state_wait_barrier_implicit) {
|
||
|
this_thr->th.ompt_thread_info.state = omp_state_overhead;
|
||
|
#if OMPT_OPTIONAL
|
||
|
void *codeptr = NULL;
|
||
|
if (ompt_enabled.ompt_callback_sync_region_wait) {
|
||
|
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
|
||
|
ompt_sync_region_barrier, ompt_scope_end, NULL, tId, codeptr);
|
||
|
}
|
||
|
if (ompt_enabled.ompt_callback_sync_region) {
|
||
|
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
|
||
|
ompt_sync_region_barrier, ompt_scope_end, NULL, tId, codeptr);
|
||
|
}
|
||
|
#endif
|
||
|
if (!KMP_MASTER_TID(ds_tid)) {
|
||
|
if (ompt_enabled.ompt_callback_implicit_task) {
|
||
|
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
|
||
|
ompt_scope_end, NULL, tId, 0, ds_tid);
|
||
|
}
|
||
|
#if OMPT_OPTIONAL
|
||
|
if (ompt_enabled.ompt_callback_idle) {
|
||
|
ompt_callbacks.ompt_callback(ompt_callback_idle)(ompt_scope_begin);
|
||
|
}
|
||
|
#endif
|
||
|
// return to idle state
|
||
|
this_thr->th.ompt_thread_info.state = omp_state_idle;
|
||
|
} else {
|
||
|
this_thr->th.ompt_thread_info.state = omp_state_overhead;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Spin wait loop that first does pause, then yield, then sleep. A thread that
|
||
|
calls __kmp_wait_* must make certain that another thread calls __kmp_release
|
||
|
to wake it back up to prevent deadlocks! */
|
||
|
template <class C>
|
||
|
static inline void
|
||
|
__kmp_wait_template(kmp_info_t *this_thr, C *flag,
|
||
|
int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
|
||
|
// NOTE: We may not belong to a team at this point.
|
||
|
volatile typename C::flag_t *spin = flag->get();
|
||
|
kmp_uint32 spins;
|
||
|
kmp_uint32 hibernate;
|
||
|
int th_gtid;
|
||
|
int tasks_completed = FALSE;
|
||
|
int oversubscribed;
|
||
|
#if !KMP_USE_MONITOR
|
||
|
kmp_uint64 poll_count;
|
||
|
kmp_uint64 hibernate_goal;
|
||
|
#endif
|
||
|
|
||
|
KMP_FSYNC_SPIN_INIT(spin, NULL);
|
||
|
if (flag->done_check()) {
|
||
|
KMP_FSYNC_SPIN_ACQUIRED(CCAST(typename C::flag_t *, spin));
|
||
|
return;
|
||
|
}
|
||
|
th_gtid = this_thr->th.th_info.ds.ds_gtid;
|
||
|
KA_TRACE(20,
|
||
|
("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
|
||
|
#if KMP_STATS_ENABLED
|
||
|
stats_state_e thread_state = KMP_GET_THREAD_STATE();
|
||
|
#endif
|
||
|
|
||
|
/* OMPT Behavior:
|
||
|
THIS function is called from
|
||
|
__kmp_barrier (2 times) (implicit or explicit barrier in parallel regions)
|
||
|
these have join / fork behavior
|
||
|
|
||
|
In these cases, we don't change the state or trigger events in THIS
|
||
|
function.
|
||
|
Events are triggered in the calling code (__kmp_barrier):
|
||
|
|
||
|
state := omp_state_overhead
|
||
|
barrier-begin
|
||
|
barrier-wait-begin
|
||
|
state := omp_state_wait_barrier
|
||
|
call join-barrier-implementation (finally arrive here)
|
||
|
{}
|
||
|
call fork-barrier-implementation (finally arrive here)
|
||
|
{}
|
||
|
state := omp_state_overhead
|
||
|
barrier-wait-end
|
||
|
barrier-end
|
||
|
state := omp_state_work_parallel
|
||
|
|
||
|
|
||
|
__kmp_fork_barrier (after thread creation, before executing implicit task)
|
||
|
call fork-barrier-implementation (finally arrive here)
|
||
|
{} // worker arrive here with state = omp_state_idle
|
||
|
|
||
|
|
||
|
__kmp_join_barrier (implicit barrier at end of parallel region)
|
||
|
state := omp_state_barrier_implicit
|
||
|
barrier-begin
|
||
|
barrier-wait-begin
|
||
|
call join-barrier-implementation (finally arrive here
|
||
|
final_spin=FALSE)
|
||
|
{
|
||
|
}
|
||
|
__kmp_fork_barrier (implicit barrier at end of parallel region)
|
||
|
call fork-barrier-implementation (finally arrive here final_spin=TRUE)
|
||
|
|
||
|
Worker after task-team is finished:
|
||
|
barrier-wait-end
|
||
|
barrier-end
|
||
|
implicit-task-end
|
||
|
idle-begin
|
||
|
state := omp_state_idle
|
||
|
|
||
|
Before leaving, if state = omp_state_idle
|
||
|
idle-end
|
||
|
state := omp_state_overhead
|
||
|
*/
|
||
|
#if OMPT_SUPPORT
|
||
|
omp_state_t ompt_entry_state;
|
||
|
ompt_data_t *pId = NULL;
|
||
|
ompt_data_t *tId;
|
||
|
if (ompt_enabled.enabled) {
|
||
|
ompt_entry_state = this_thr->th.ompt_thread_info.state;
|
||
|
if (!final_spin || ompt_entry_state != omp_state_wait_barrier_implicit ||
|
||
|
KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
|
||
|
ompt_lw_taskteam_t *team =
|
||
|
this_thr->th.th_team->t.ompt_serialized_team_info;
|
||
|
if (team) {
|
||
|
pId = &(team->ompt_team_info.parallel_data);
|
||
|
tId = &(team->ompt_task_info.task_data);
|
||
|
} else {
|
||
|
pId = OMPT_CUR_TEAM_DATA(this_thr);
|
||
|
tId = OMPT_CUR_TASK_DATA(this_thr);
|
||
|
}
|
||
|
} else {
|
||
|
pId = NULL;
|
||
|
tId = &(this_thr->th.ompt_thread_info.task_data);
|
||
|
}
|
||
|
#if OMPT_OPTIONAL
|
||
|
if (ompt_entry_state == omp_state_idle) {
|
||
|
if (ompt_enabled.ompt_callback_idle) {
|
||
|
ompt_callbacks.ompt_callback(ompt_callback_idle)(ompt_scope_begin);
|
||
|
}
|
||
|
} else
|
||
|
#endif
|
||
|
if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
|
||
|
this_thr->th.th_task_team == NULL)) {
|
||
|
// implicit task is done. Either no taskqueue, or task-team finished
|
||
|
__ompt_implicit_task_end(this_thr, ompt_entry_state, tId, pId);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Setup for waiting
|
||
|
KMP_INIT_YIELD(spins);
|
||
|
|
||
|
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
|
||
|
#if KMP_USE_MONITOR
|
||
|
// The worker threads cannot rely on the team struct existing at this point.
|
||
|
// Use the bt values cached in the thread struct instead.
|
||
|
#ifdef KMP_ADJUST_BLOCKTIME
|
||
|
if (__kmp_zero_bt && !this_thr->th.th_team_bt_set)
|
||
|
// Force immediate suspend if not set by user and more threads than
|
||
|
// available procs
|
||
|
hibernate = 0;
|
||
|
else
|
||
|
hibernate = this_thr->th.th_team_bt_intervals;
|
||
|
#else
|
||
|
hibernate = this_thr->th.th_team_bt_intervals;
|
||
|
#endif /* KMP_ADJUST_BLOCKTIME */
|
||
|
|
||
|
/* If the blocktime is nonzero, we want to make sure that we spin wait for
|
||
|
the entirety of the specified #intervals, plus up to one interval more.
|
||
|
This increment make certain that this thread doesn't go to sleep too
|
||
|
soon. */
|
||
|
if (hibernate != 0)
|
||
|
hibernate++;
|
||
|
|
||
|
// Add in the current time value.
|
||
|
hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
|
||
|
KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
|
||
|
th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
|
||
|
hibernate - __kmp_global.g.g_time.dt.t_value));
|
||
|
#else
|
||
|
hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
|
||
|
poll_count = 0;
|
||
|
#endif // KMP_USE_MONITOR
|
||
|
}
|
||
|
|
||
|
oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
|
||
|
KMP_MB();
|
||
|
|
||
|
// Main wait spin loop
|
||
|
while (flag->notdone_check()) {
|
||
|
int in_pool;
|
||
|
kmp_task_team_t *task_team = NULL;
|
||
|
if (__kmp_tasking_mode != tskm_immediate_exec) {
|
||
|
task_team = this_thr->th.th_task_team;
|
||
|
/* If the thread's task team pointer is NULL, it means one of 3 things:
|
||
|
1) A newly-created thread is first being released by
|
||
|
__kmp_fork_barrier(), and its task team has not been set up yet.
|
||
|
2) All tasks have been executed to completion.
|
||
|
3) Tasking is off for this region. This could be because we are in a
|
||
|
serialized region (perhaps the outer one), or else tasking was manually
|
||
|
disabled (KMP_TASKING=0). */
|
||
|
if (task_team != NULL) {
|
||
|
if (TCR_SYNC_4(task_team->tt.tt_active)) {
|
||
|
if (KMP_TASKING_ENABLED(task_team))
|
||
|
flag->execute_tasks(
|
||
|
this_thr, th_gtid, final_spin,
|
||
|
&tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
|
||
|
else
|
||
|
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
|
||
|
} else {
|
||
|
KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
|
||
|
#if OMPT_SUPPORT
|
||
|
// task-team is done now, other cases should be catched above
|
||
|
if (final_spin && ompt_enabled.enabled)
|
||
|
__ompt_implicit_task_end(this_thr, ompt_entry_state, tId, pId);
|
||
|
#endif
|
||
|
this_thr->th.th_task_team = NULL;
|
||
|
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
|
||
|
}
|
||
|
} else {
|
||
|
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
|
||
|
} // if
|
||
|
} // if
|
||
|
|
||
|
KMP_FSYNC_SPIN_PREPARE(CCAST(typename C::flag_t *, spin));
|
||
|
if (TCR_4(__kmp_global.g.g_done)) {
|
||
|
if (__kmp_global.g.g_abort)
|
||
|
__kmp_abort_thread();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// If we are oversubscribed, or have waited a bit (and
|
||
|
// KMP_LIBRARY=throughput), then yield
|
||
|
// TODO: Should it be number of cores instead of thread contexts? Like:
|
||
|
// KMP_YIELD(TCR_4(__kmp_nth) > __kmp_ncores);
|
||
|
// Need performance improvement data to make the change...
|
||
|
if (oversubscribed) {
|
||
|
KMP_YIELD(1);
|
||
|
} else {
|
||
|
KMP_YIELD_SPIN(spins);
|
||
|
}
|
||
|
// Check if this thread was transferred from a team
|
||
|
// to the thread pool (or vice-versa) while spinning.
|
||
|
in_pool = !!TCR_4(this_thr->th.th_in_pool);
|
||
|
if (in_pool != !!this_thr->th.th_active_in_pool) {
|
||
|
if (in_pool) { // Recently transferred from team to pool
|
||
|
KMP_TEST_THEN_INC32(&__kmp_thread_pool_active_nth);
|
||
|
this_thr->th.th_active_in_pool = TRUE;
|
||
|
/* Here, we cannot assert that:
|
||
|
KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) <=
|
||
|
__kmp_thread_pool_nth);
|
||
|
__kmp_thread_pool_nth is inc/dec'd by the master thread while the
|
||
|
fork/join lock is held, whereas __kmp_thread_pool_active_nth is
|
||
|
inc/dec'd asynchronously by the workers. The two can get out of sync
|
||
|
for brief periods of time. */
|
||
|
} else { // Recently transferred from pool to team
|
||
|
KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth);
|
||
|
KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
|
||
|
this_thr->th.th_active_in_pool = FALSE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if KMP_STATS_ENABLED
|
||
|
// Check if thread has been signalled to idle state
|
||
|
// This indicates that the logical "join-barrier" has finished
|
||
|
if (this_thr->th.th_stats->isIdle() &&
|
||
|
KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
|
||
|
KMP_SET_THREAD_STATE(IDLE);
|
||
|
KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Don't suspend if KMP_BLOCKTIME is set to "infinite"
|
||
|
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
|
||
|
continue;
|
||
|
|
||
|
// Don't suspend if there is a likelihood of new tasks being spawned.
|
||
|
if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
|
||
|
continue;
|
||
|
|
||
|
#if KMP_USE_MONITOR
|
||
|
// If we have waited a bit more, fall asleep
|
||
|
if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
|
||
|
continue;
|
||
|
#else
|
||
|
if (KMP_BLOCKING(hibernate_goal, poll_count++))
|
||
|
continue;
|
||
|
#endif
|
||
|
|
||
|
KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));
|
||
|
flag->suspend(th_gtid);
|
||
|
|
||
|
if (TCR_4(__kmp_global.g.g_done)) {
|
||
|
if (__kmp_global.g.g_abort)
|
||
|
__kmp_abort_thread();
|
||
|
break;
|
||
|
} else if (__kmp_tasking_mode != tskm_immediate_exec &&
|
||
|
this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
|
||
|
this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
|
||
|
}
|
||
|
// TODO: If thread is done with work and times out, disband/free
|
||
|
}
|
||
|
|
||
|
#if OMPT_SUPPORT
|
||
|
omp_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
|
||
|
if (ompt_enabled.enabled && ompt_exit_state != omp_state_undefined) {
|
||
|
#if OMPT_OPTIONAL
|
||
|
if (final_spin) {
|
||
|
__ompt_implicit_task_end(this_thr, ompt_exit_state, tId, pId);
|
||
|
ompt_exit_state = this_thr->th.ompt_thread_info.state;
|
||
|
}
|
||
|
#endif
|
||
|
if (ompt_exit_state == omp_state_idle) {
|
||
|
#if OMPT_OPTIONAL
|
||
|
if (ompt_enabled.ompt_callback_idle) {
|
||
|
ompt_callbacks.ompt_callback(ompt_callback_idle)(ompt_scope_end);
|
||
|
}
|
||
|
#endif
|
||
|
this_thr->th.ompt_thread_info.state = omp_state_overhead;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
#if KMP_STATS_ENABLED
|
||
|
// If we were put into idle state, pop that off the state stack
|
||
|
if (KMP_GET_THREAD_STATE() == IDLE) {
|
||
|
KMP_POP_PARTITIONED_TIMER();
|
||
|
KMP_SET_THREAD_STATE(thread_state);
|
||
|
this_thr->th.th_stats->resetIdleFlag();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
KMP_FSYNC_SPIN_ACQUIRED(CCAST(typename C::flag_t *, spin));
|
||
|
}
|
||
|
|
||
|
/* Release any threads specified as waiting on the flag by releasing the flag
|
||
|
and resume the waiting thread if indicated by the sleep bit(s). A thread that
|
||
|
calls __kmp_wait_template must call this function to wake up the potentially
|
||
|
sleeping thread and prevent deadlocks! */
|
||
|
template <class C> static inline void __kmp_release_template(C *flag) {
|
||
|
#ifdef KMP_DEBUG
|
||
|
int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
|
||
|
#endif
|
||
|
KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
|
||
|
KMP_DEBUG_ASSERT(flag->get());
|
||
|
KMP_FSYNC_RELEASING(CCAST(typename C::flag_t *, flag->get()));
|
||
|
|
||
|
flag->internal_release();
|
||
|
|
||
|
KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
|
||
|
*(flag->get())));
|
||
|
|
||
|
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
|
||
|
// Only need to check sleep stuff if infinite block time not set.
|
||
|
// Are *any* threads waiting on flag sleeping?
|
||
|
if (flag->is_any_sleeping()) {
|
||
|
for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
|
||
|
// if sleeping waiter exists at i, sets current_waiter to i inside flag
|
||
|
kmp_info_t *waiter = flag->get_waiter(i);
|
||
|
if (waiter) {
|
||
|
int wait_gtid = waiter->th.th_info.ds.ds_gtid;
|
||
|
// Wake up thread if needed
|
||
|
KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep "
|
||
|
"flag(%p) set\n",
|
||
|
gtid, wait_gtid, flag->get()));
|
||
|
flag->resume(wait_gtid); // unsets flag's current_waiter when done
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename FlagType> struct flag_traits {};
|
||
|
|
||
|
template <> struct flag_traits<kmp_uint32> {
|
||
|
typedef kmp_uint32 flag_t;
|
||
|
static const flag_type t = flag32;
|
||
|
static inline flag_t tcr(flag_t f) { return TCR_4(f); }
|
||
|
static inline flag_t test_then_add4(volatile flag_t *f) {
|
||
|
return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f));
|
||
|
}
|
||
|
static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
|
||
|
return KMP_TEST_THEN_OR32(f, v);
|
||
|
}
|
||
|
static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
|
||
|
return KMP_TEST_THEN_AND32(f, v);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct flag_traits<kmp_uint64> {
|
||
|
typedef kmp_uint64 flag_t;
|
||
|
static const flag_type t = flag64;
|
||
|
static inline flag_t tcr(flag_t f) { return TCR_8(f); }
|
||
|
static inline flag_t test_then_add4(volatile flag_t *f) {
|
||
|
return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f));
|
||
|
}
|
||
|
static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
|
||
|
return KMP_TEST_THEN_OR64(f, v);
|
||
|
}
|
||
|
static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
|
||
|
return KMP_TEST_THEN_AND64(f, v);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename FlagType> class kmp_basic_flag : public kmp_flag<FlagType> {
|
||
|
typedef flag_traits<FlagType> traits_type;
|
||
|
FlagType checker; /**< Value to compare flag to to check if flag has been
|
||
|
released. */
|
||
|
kmp_info_t
|
||
|
*waiting_threads[1]; /**< Array of threads sleeping on this thread. */
|
||
|
kmp_uint32
|
||
|
num_waiting_threads; /**< Number of threads sleeping on this thread. */
|
||
|
public:
|
||
|
kmp_basic_flag(volatile FlagType *p)
|
||
|
: kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
|
||
|
kmp_basic_flag(volatile FlagType *p, kmp_info_t *thr)
|
||
|
: kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(1) {
|
||
|
waiting_threads[0] = thr;
|
||
|
}
|
||
|
kmp_basic_flag(volatile FlagType *p, FlagType c)
|
||
|
: kmp_flag<FlagType>(p, traits_type::t), checker(c),
|
||
|
num_waiting_threads(0) {}
|
||
|
/*!
|
||
|
* param i in index into waiting_threads
|
||
|
* @result the thread that is waiting at index i
|
||
|
*/
|
||
|
kmp_info_t *get_waiter(kmp_uint32 i) {
|
||
|
KMP_DEBUG_ASSERT(i < num_waiting_threads);
|
||
|
return waiting_threads[i];
|
||
|
}
|
||
|
/*!
|
||
|
* @result num_waiting_threads
|
||
|
*/
|
||
|
kmp_uint32 get_num_waiters() { return num_waiting_threads; }
|
||
|
/*!
|
||
|
* @param thr in the thread which is now waiting
|
||
|
*
|
||
|
* Insert a waiting thread at index 0.
|
||
|
*/
|
||
|
void set_waiter(kmp_info_t *thr) {
|
||
|
waiting_threads[0] = thr;
|
||
|
num_waiting_threads = 1;
|
||
|
}
|
||
|
/*!
|
||
|
* @result true if the flag object has been released.
|
||
|
*/
|
||
|
bool done_check() { return traits_type::tcr(*(this->get())) == checker; }
|
||
|
/*!
|
||
|
* @param old_loc in old value of flag
|
||
|
* @result true if the flag's old value indicates it was released.
|
||
|
*/
|
||
|
bool done_check_val(FlagType old_loc) { return old_loc == checker; }
|
||
|
/*!
|
||
|
* @result true if the flag object is not yet released.
|
||
|
* Used in __kmp_wait_template like:
|
||
|
* @code
|
||
|
* while (flag.notdone_check()) { pause(); }
|
||
|
* @endcode
|
||
|
*/
|
||
|
bool notdone_check() { return traits_type::tcr(*(this->get())) != checker; }
|
||
|
/*!
|
||
|
* @result Actual flag value before release was applied.
|
||
|
* Trigger all waiting threads to run by modifying flag to release state.
|
||
|
*/
|
||
|
void internal_release() {
|
||
|
(void)traits_type::test_then_add4((volatile FlagType *)this->get());
|
||
|
}
|
||
|
/*!
|
||
|
* @result Actual flag value before sleep bit(s) set.
|
||
|
* Notes that there is at least one thread sleeping on the flag by setting
|
||
|
* sleep bit(s).
|
||
|
*/
|
||
|
FlagType set_sleeping() {
|
||
|
return traits_type::test_then_or((volatile FlagType *)this->get(),
|
||
|
KMP_BARRIER_SLEEP_STATE);
|
||
|
}
|
||
|
/*!
|
||
|
* @result Actual flag value before sleep bit(s) cleared.
|
||
|
* Notes that there are no longer threads sleeping on the flag by clearing
|
||
|
* sleep bit(s).
|
||
|
*/
|
||
|
FlagType unset_sleeping() {
|
||
|
return traits_type::test_then_and((volatile FlagType *)this->get(),
|
||
|
~KMP_BARRIER_SLEEP_STATE);
|
||
|
}
|
||
|
/*!
|
||
|
* @param old_loc in old value of flag
|
||
|
* Test whether there are threads sleeping on the flag's old value in old_loc.
|
||
|
*/
|
||
|
bool is_sleeping_val(FlagType old_loc) {
|
||
|
return old_loc & KMP_BARRIER_SLEEP_STATE;
|
||
|
}
|
||
|
/*!
|
||
|
* Test whether there are threads sleeping on the flag.
|
||
|
*/
|
||
|
bool is_sleeping() { return is_sleeping_val(*(this->get())); }
|
||
|
bool is_any_sleeping() { return is_sleeping_val(*(this->get())); }
|
||
|
kmp_uint8 *get_stolen() { return NULL; }
|
||
|
enum barrier_type get_bt() { return bs_last_barrier; }
|
||
|
};
|
||
|
|
||
|
class kmp_flag_32 : public kmp_basic_flag<kmp_uint32> {
|
||
|
public:
|
||
|
kmp_flag_32(volatile kmp_uint32 *p) : kmp_basic_flag<kmp_uint32>(p) {}
|
||
|
kmp_flag_32(volatile kmp_uint32 *p, kmp_info_t *thr)
|
||
|
: kmp_basic_flag<kmp_uint32>(p, thr) {}
|
||
|
kmp_flag_32(volatile kmp_uint32 *p, kmp_uint32 c)
|
||
|
: kmp_basic_flag<kmp_uint32>(p, c) {}
|
||
|
void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); }
|
||
|
void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); }
|
||
|
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
|
||
|
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
|
||
|
kmp_int32 is_constrained) {
|
||
|
return __kmp_execute_tasks_32(
|
||
|
this_thr, gtid, this, final_spin,
|
||
|
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
|
||
|
}
|
||
|
void wait(kmp_info_t *this_thr,
|
||
|
int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
|
||
|
__kmp_wait_template(this_thr, this,
|
||
|
final_spin USE_ITT_BUILD_ARG(itt_sync_obj));
|
||
|
}
|
||
|
void release() { __kmp_release_template(this); }
|
||
|
flag_type get_ptr_type() { return flag32; }
|
||
|
};
|
||
|
|
||
|
class kmp_flag_64 : public kmp_basic_flag<kmp_uint64> {
|
||
|
public:
|
||
|
kmp_flag_64(volatile kmp_uint64 *p) : kmp_basic_flag<kmp_uint64>(p) {}
|
||
|
kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr)
|
||
|
: kmp_basic_flag<kmp_uint64>(p, thr) {}
|
||
|
kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c)
|
||
|
: kmp_basic_flag<kmp_uint64>(p, c) {}
|
||
|
void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); }
|
||
|
void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); }
|
||
|
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
|
||
|
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
|
||
|
kmp_int32 is_constrained) {
|
||
|
return __kmp_execute_tasks_64(
|
||
|
this_thr, gtid, this, final_spin,
|
||
|
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
|
||
|
}
|
||
|
void wait(kmp_info_t *this_thr,
|
||
|
int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
|
||
|
__kmp_wait_template(this_thr, this,
|
||
|
final_spin USE_ITT_BUILD_ARG(itt_sync_obj));
|
||
|
}
|
||
|
void release() { __kmp_release_template(this); }
|
||
|
flag_type get_ptr_type() { return flag64; }
|
||
|
};
|
||
|
|
||
|
// Hierarchical 64-bit on-core barrier instantiation
|
||
|
class kmp_flag_oncore : public kmp_flag<kmp_uint64> {
|
||
|
kmp_uint64 checker;
|
||
|
kmp_info_t *waiting_threads[1];
|
||
|
kmp_uint32 num_waiting_threads;
|
||
|
kmp_uint32
|
||
|
offset; /**< Portion of flag that is of interest for an operation. */
|
||
|
bool flag_switch; /**< Indicates a switch in flag location. */
|
||
|
enum barrier_type bt; /**< Barrier type. */
|
||
|
kmp_info_t *this_thr; /**< Thread that may be redirected to different flag
|
||
|
location. */
|
||
|
#if USE_ITT_BUILD
|
||
|
void *
|
||
|
itt_sync_obj; /**< ITT object that must be passed to new flag location. */
|
||
|
#endif
|
||
|
unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) {
|
||
|
return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
kmp_flag_oncore(volatile kmp_uint64 *p)
|
||
|
: kmp_flag<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
|
||
|
flag_switch(false) {}
|
||
|
kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx)
|
||
|
: kmp_flag<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
|
||
|
offset(idx), flag_switch(false) {}
|
||
|
kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
|
||
|
enum barrier_type bar_t, kmp_info_t *thr
|
||
|
#if USE_ITT_BUILD
|
||
|
,
|
||
|
void *itt
|
||
|
#endif
|
||
|
)
|
||
|
: kmp_flag<kmp_uint64>(p, flag_oncore), checker(c),
|
||
|
num_waiting_threads(0), offset(idx), flag_switch(false), bt(bar_t),
|
||
|
this_thr(thr)
|
||
|
#if USE_ITT_BUILD
|
||
|
,
|
||
|
itt_sync_obj(itt)
|
||
|
#endif
|
||
|
{
|
||
|
}
|
||
|
kmp_info_t *get_waiter(kmp_uint32 i) {
|
||
|
KMP_DEBUG_ASSERT(i < num_waiting_threads);
|
||
|
return waiting_threads[i];
|
||
|
}
|
||
|
kmp_uint32 get_num_waiters() { return num_waiting_threads; }
|
||
|
void set_waiter(kmp_info_t *thr) {
|
||
|
waiting_threads[0] = thr;
|
||
|
num_waiting_threads = 1;
|
||
|
}
|
||
|
bool done_check_val(kmp_uint64 old_loc) {
|
||
|
return byteref(&old_loc, offset) == checker;
|
||
|
}
|
||
|
bool done_check() { return done_check_val(*get()); }
|
||
|
bool notdone_check() {
|
||
|
// Calculate flag_switch
|
||
|
if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
|
||
|
flag_switch = true;
|
||
|
if (byteref(get(), offset) != 1 && !flag_switch)
|
||
|
return true;
|
||
|
else if (flag_switch) {
|
||
|
this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
|
||
|
kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
|
||
|
(kmp_uint64)KMP_BARRIER_STATE_BUMP);
|
||
|
__kmp_wait_64(this_thr, &flag, TRUE
|
||
|
#if USE_ITT_BUILD
|
||
|
,
|
||
|
itt_sync_obj
|
||
|
#endif
|
||
|
);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
void internal_release() {
|
||
|
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
|
||
|
byteref(get(), offset) = 1;
|
||
|
} else {
|
||
|
kmp_uint64 mask = 0;
|
||
|
byteref(&mask, offset) = 1;
|
||
|
KMP_TEST_THEN_OR64(get(), mask);
|
||
|
}
|
||
|
}
|
||
|
kmp_uint64 set_sleeping() {
|
||
|
return KMP_TEST_THEN_OR64(get(), KMP_BARRIER_SLEEP_STATE);
|
||
|
}
|
||
|
kmp_uint64 unset_sleeping() {
|
||
|
return KMP_TEST_THEN_AND64(get(), ~KMP_BARRIER_SLEEP_STATE);
|
||
|
}
|
||
|
bool is_sleeping_val(kmp_uint64 old_loc) {
|
||
|
return old_loc & KMP_BARRIER_SLEEP_STATE;
|
||
|
}
|
||
|
bool is_sleeping() { return is_sleeping_val(*get()); }
|
||
|
bool is_any_sleeping() { return is_sleeping_val(*get()); }
|
||
|
void wait(kmp_info_t *this_thr, int final_spin) {
|
||
|
__kmp_wait_template<kmp_flag_oncore>(
|
||
|
this_thr, this, final_spin USE_ITT_BUILD_ARG(itt_sync_obj));
|
||
|
}
|
||
|
void release() { __kmp_release_template(this); }
|
||
|
void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); }
|
||
|
void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); }
|
||
|
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
|
||
|
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
|
||
|
kmp_int32 is_constrained) {
|
||
|
return __kmp_execute_tasks_oncore(
|
||
|
this_thr, gtid, this, final_spin,
|
||
|
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
|
||
|
}
|
||
|
kmp_uint8 *get_stolen() { return NULL; }
|
||
|
enum barrier_type get_bt() { return bt; }
|
||
|
flag_type get_ptr_type() { return flag_oncore; }
|
||
|
};
|
||
|
|
||
|
// Used to wake up threads, volatile void* flag is usually the th_sleep_loc
|
||
|
// associated with int gtid.
|
||
|
static inline void __kmp_null_resume_wrapper(int gtid, volatile void *flag) {
|
||
|
if (!flag)
|
||
|
return;
|
||
|
|
||
|
switch (RCAST(kmp_flag_64 *, CCAST(void *, flag))->get_type()) {
|
||
|
case flag32:
|
||
|
__kmp_resume_32(gtid, NULL);
|
||
|
break;
|
||
|
case flag64:
|
||
|
__kmp_resume_64(gtid, NULL);
|
||
|
break;
|
||
|
case flag_oncore:
|
||
|
__kmp_resume_oncore(gtid, NULL);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
@}
|
||
|
*/
|
||
|
|
||
|
#endif // KMP_WAIT_RELEASE_H
|