838 lines
26 KiB
C
Raw Normal View History

/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved.
* Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
* Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
#include "private/gc_priv.h"
#ifdef ENABLE_DISCLAIM
# include "gc_disclaim.h"
#endif
#include <stdio.h>
GC_INNER signed_word GC_bytes_found = 0;
/* Number of bytes of memory reclaimed */
/* minus the number of bytes originally */
/* on free lists which we had to drop. */
#if defined(PARALLEL_MARK)
GC_INNER signed_word GC_fl_builder_count = 0;
/* Number of threads currently building free lists without */
/* holding GC lock. It is not safe to collect if this is */
/* nonzero. Also, together with the mark lock, it is used as */
/* a semaphore during marker threads startup. */
#endif /* PARALLEL_MARK */
/* We defer printing of leaked objects until we're done with the GC */
/* cycle, since the routine for printing objects needs to run outside */
/* the collector, e.g. without the allocation lock. */
#ifndef MAX_LEAKED
# define MAX_LEAKED 40
#endif
STATIC ptr_t GC_leaked[MAX_LEAKED] = { NULL };
STATIC unsigned GC_n_leaked = 0;
GC_INNER GC_bool GC_have_errors = FALSE;
#if !defined(EAGER_SWEEP) && defined(ENABLE_DISCLAIM)
STATIC void GC_reclaim_unconditionally_marked(void);
#endif
GC_INLINE void GC_add_leaked(ptr_t leaked)
{
# ifndef SHORT_DBG_HDRS
if (GC_findleak_delay_free && !GC_check_leaked(leaked))
return;
# endif
GC_have_errors = TRUE;
if (GC_n_leaked < MAX_LEAKED) {
GC_leaked[GC_n_leaked++] = leaked;
/* Make sure it's not reclaimed this cycle */
GC_set_mark_bit(leaked);
}
}
/* Print all objects on the list after printing any smashed objects. */
/* Clear both lists. Called without the allocation lock held. */
GC_INNER void GC_print_all_errors(void)
{
static GC_bool printing_errors = FALSE;
GC_bool have_errors;
unsigned i, n_leaked;
ptr_t leaked[MAX_LEAKED];
DCL_LOCK_STATE;
LOCK();
if (printing_errors) {
UNLOCK();
return;
}
have_errors = GC_have_errors;
printing_errors = TRUE;
n_leaked = GC_n_leaked;
if (n_leaked > 0) {
GC_ASSERT(n_leaked <= MAX_LEAKED);
BCOPY(GC_leaked, leaked, n_leaked * sizeof(ptr_t));
GC_n_leaked = 0;
BZERO(GC_leaked, n_leaked * sizeof(ptr_t));
}
UNLOCK();
if (GC_debugging_started) {
GC_print_all_smashed();
} else {
have_errors = FALSE;
}
if (n_leaked > 0) {
GC_err_printf("Found %u leaked objects:\n", n_leaked);
have_errors = TRUE;
}
for (i = 0; i < n_leaked; i++) {
ptr_t p = leaked[i];
GC_print_heap_obj(p);
GC_free(p);
}
if (have_errors
# ifndef GC_ABORT_ON_LEAK
&& GETENV("GC_ABORT_ON_LEAK") != NULL
# endif
) {
ABORT("Leaked or smashed objects encountered");
}
LOCK();
printing_errors = FALSE;
UNLOCK();
}
/*
* reclaim phase
*
*/
/* Test whether a block is completely empty, i.e. contains no marked */
/* objects. This does not require the block to be in physical memory. */
GC_INNER GC_bool GC_block_empty(hdr *hhdr)
{
return (hhdr -> hb_n_marks == 0);
}
STATIC GC_bool GC_block_nearly_full(hdr *hhdr)
{
return (hhdr -> hb_n_marks > 7 * HBLK_OBJS(hhdr -> hb_sz)/8);
}
/* FIXME: This should perhaps again be specialized for USE_MARK_BYTES */
/* and USE_MARK_BITS cases. */
/*
* Restore unmarked small objects in h of size sz to the object
* free list. Returns the new list.
* Clears unmarked objects. Sz is in bytes.
*/
STATIC ptr_t GC_reclaim_clear(struct hblk *hbp, hdr *hhdr, word sz,
ptr_t list, signed_word *count)
{
word bit_no = 0;
word *p, *q, *plim;
signed_word n_bytes_found = 0;
GC_ASSERT(hhdr == GC_find_header((ptr_t)hbp));
GC_ASSERT(sz == hhdr -> hb_sz);
GC_ASSERT((sz & (BYTES_PER_WORD-1)) == 0);
p = (word *)(hbp->hb_body);
plim = (word *)(hbp->hb_body + HBLKSIZE - sz);
/* go through all words in block */
while ((word)p <= (word)plim) {
if (mark_bit_from_hdr(hhdr, bit_no)) {
p = (word *)((ptr_t)p + sz);
} else {
n_bytes_found += sz;
/* object is available - put on list */
obj_link(p) = list;
list = ((ptr_t)p);
/* Clear object, advance p to next object in the process */
q = (word *)((ptr_t)p + sz);
# ifdef USE_MARK_BYTES
GC_ASSERT(!(sz & 1)
&& !((word)p & (2 * sizeof(word) - 1)));
p[1] = 0;
p += 2;
while ((word)p < (word)q) {
CLEAR_DOUBLE(p);
p += 2;
}
# else
p++; /* Skip link field */
while ((word)p < (word)q) {
*p++ = 0;
}
# endif
}
bit_no += MARK_BIT_OFFSET(sz);
}
*count += n_bytes_found;
return(list);
}
/* The same thing, but don't clear objects: */
STATIC ptr_t GC_reclaim_uninit(struct hblk *hbp, hdr *hhdr, word sz,
ptr_t list, signed_word *count)
{
word bit_no = 0;
word *p, *plim;
signed_word n_bytes_found = 0;
GC_ASSERT(sz == hhdr -> hb_sz);
p = (word *)(hbp->hb_body);
plim = (word *)((ptr_t)hbp + HBLKSIZE - sz);
/* go through all words in block */
while ((word)p <= (word)plim) {
if (!mark_bit_from_hdr(hhdr, bit_no)) {
n_bytes_found += sz;
/* object is available - put on list */
obj_link(p) = list;
list = ((ptr_t)p);
}
p = (word *)((ptr_t)p + sz);
bit_no += MARK_BIT_OFFSET(sz);
}
*count += n_bytes_found;
return(list);
}
#ifdef ENABLE_DISCLAIM
/* Call reclaim notifier for block's kind on each unmarked object in */
/* block, all within a pair of corresponding enter/leave callbacks. */
STATIC ptr_t GC_disclaim_and_reclaim(struct hblk *hbp, hdr *hhdr, word sz,
ptr_t list, signed_word *count)
{
word bit_no = 0;
word *p, *q, *plim;
signed_word n_bytes_found = 0;
struct obj_kind *ok = &GC_obj_kinds[hhdr->hb_obj_kind];
int (GC_CALLBACK *disclaim)(void *) = ok->ok_disclaim_proc;
GC_ASSERT(sz == hhdr -> hb_sz);
p = (word *)(hbp -> hb_body);
plim = (word *)((ptr_t)p + HBLKSIZE - sz);
while ((word)p <= (word)plim) {
int marked = mark_bit_from_hdr(hhdr, bit_no);
if (!marked && (*disclaim)(p)) {
hhdr -> hb_n_marks++;
marked = 1;
}
if (marked)
p = (word *)((ptr_t)p + sz);
else {
n_bytes_found += sz;
/* object is available - put on list */
obj_link(p) = list;
list = ((ptr_t)p);
/* Clear object, advance p to next object in the process */
q = (word *)((ptr_t)p + sz);
# ifdef USE_MARK_BYTES
GC_ASSERT((sz & 1) == 0);
GC_ASSERT(((word)p & (2 * sizeof(word) - 1)) == 0);
p[1] = 0;
p += 2;
while ((word)p < (word)q) {
CLEAR_DOUBLE(p);
p += 2;
}
# else
p++; /* Skip link field */
while ((word)p < (word)q) {
*p++ = 0;
}
# endif
}
bit_no += MARK_BIT_OFFSET(sz);
}
*count += n_bytes_found;
return list;
}
#endif /* ENABLE_DISCLAIM */
/* Don't really reclaim objects, just check for unmarked ones: */
STATIC void GC_reclaim_check(struct hblk *hbp, hdr *hhdr, word sz)
{
word bit_no;
ptr_t p, plim;
GC_ASSERT(sz == hhdr -> hb_sz);
/* go through all words in block */
p = hbp->hb_body;
plim = p + HBLKSIZE - sz;
for (bit_no = 0; (word)p <= (word)plim;
p += sz, bit_no += MARK_BIT_OFFSET(sz)) {
if (!mark_bit_from_hdr(hhdr, bit_no)) {
GC_add_leaked(p);
}
}
}
/* Is a pointer-free block? Same as IS_PTRFREE macro (in os_dep.c) but */
/* uses unordered atomic access to avoid racing with GC_realloc. */
#ifdef AO_HAVE_load
# define IS_PTRFREE_SAFE(hhdr) \
(AO_load((volatile AO_t *)&(hhdr)->hb_descr) == 0)
#else
/* No race as GC_realloc holds the lock while updating hb_descr. */
# define IS_PTRFREE_SAFE(hhdr) ((hhdr)->hb_descr == 0)
#endif
/*
* Generic procedure to rebuild a free list in hbp.
* Also called directly from GC_malloc_many.
* Sz is now in bytes.
*/
GC_INNER ptr_t GC_reclaim_generic(struct hblk * hbp, hdr *hhdr, size_t sz,
GC_bool init, ptr_t list,
signed_word *count)
{
ptr_t result;
GC_ASSERT(GC_find_header((ptr_t)hbp) == hhdr);
# ifndef GC_DISABLE_INCREMENTAL
GC_remove_protection(hbp, 1, IS_PTRFREE_SAFE(hhdr));
# endif
# ifdef ENABLE_DISCLAIM
if ((hhdr -> hb_flags & HAS_DISCLAIM) != 0) {
result = GC_disclaim_and_reclaim(hbp, hhdr, sz, list, count);
} else
# endif
/* else */ if (init || GC_debugging_started) {
result = GC_reclaim_clear(hbp, hhdr, sz, list, count);
} else {
GC_ASSERT(IS_PTRFREE_SAFE(hhdr));
result = GC_reclaim_uninit(hbp, hhdr, sz, list, count);
}
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
return result;
}
/*
* Restore unmarked small objects in the block pointed to by hbp
* to the appropriate object free list.
* If entirely empty blocks are to be completely deallocated, then
* caller should perform that check.
*/
STATIC void GC_reclaim_small_nonempty_block(struct hblk *hbp,
GC_bool report_if_found)
{
hdr *hhdr = HDR(hbp);
word sz = hhdr -> hb_sz;
struct obj_kind * ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
void **flh = &(ok -> ok_freelist[BYTES_TO_GRANULES(sz)]);
hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
if (report_if_found) {
GC_reclaim_check(hbp, hhdr, sz);
} else {
*flh = GC_reclaim_generic(hbp, hhdr, sz, ok -> ok_init,
(ptr_t)(*flh), &GC_bytes_found);
}
}
#ifdef ENABLE_DISCLAIM
STATIC void GC_disclaim_and_reclaim_or_free_small_block(struct hblk *hbp)
{
hdr *hhdr = HDR(hbp);
word sz = hhdr -> hb_sz;
struct obj_kind * ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
void **flh = &(ok -> ok_freelist[BYTES_TO_GRANULES(sz)]);
void *flh_next;
hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
flh_next = GC_reclaim_generic(hbp, hhdr, sz, ok -> ok_init,
(ptr_t)(*flh), &GC_bytes_found);
if (hhdr -> hb_n_marks)
*flh = flh_next;
else {
GC_bytes_found += HBLKSIZE;
GC_freehblk(hbp);
}
}
#endif /* ENABLE_DISCLAIM */
/*
* Restore an unmarked large object or an entirely empty blocks of small objects
* to the heap block free list.
* Otherwise enqueue the block for later processing
* by GC_reclaim_small_nonempty_block.
* If report_if_found is TRUE, then process any block immediately, and
* simply report free objects; do not actually reclaim them.
*/
STATIC void GC_reclaim_block(struct hblk *hbp, word report_if_found)
{
hdr * hhdr = HDR(hbp);
word sz = hhdr -> hb_sz; /* size of objects in current block */
struct obj_kind * ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
if( sz > MAXOBJBYTES ) { /* 1 big object */
if( !mark_bit_from_hdr(hhdr, 0) ) {
if (report_if_found) {
GC_add_leaked((ptr_t)hbp);
} else {
word blocks;
# ifdef ENABLE_DISCLAIM
if (EXPECT(hhdr->hb_flags & HAS_DISCLAIM, 0)) {
struct obj_kind *ok = &GC_obj_kinds[hhdr->hb_obj_kind];
if ((*ok->ok_disclaim_proc)(hbp)) {
/* Not disclaimed => resurrect the object. */
set_mark_bit_from_hdr(hhdr, 0);
goto in_use;
}
}
# endif
blocks = OBJ_SZ_TO_BLOCKS(sz);
if (blocks > 1) {
GC_large_allocd_bytes -= blocks * HBLKSIZE;
}
GC_bytes_found += sz;
GC_freehblk(hbp);
}
} else {
# ifdef ENABLE_DISCLAIM
in_use:
# endif
if (IS_PTRFREE_SAFE(hhdr)) {
GC_atomic_in_use += sz;
} else {
GC_composite_in_use += sz;
}
}
} else {
GC_bool empty = GC_block_empty(hhdr);
# ifdef PARALLEL_MARK
/* Count can be low or one too high because we sometimes */
/* have to ignore decrements. Objects can also potentially */
/* be repeatedly marked by each marker. */
/* Here we assume two markers, but this is extremely */
/* unlikely to fail spuriously with more. And if it does, it */
/* should be looked at. */
GC_ASSERT(hhdr -> hb_n_marks <= 2 * (HBLKSIZE/sz + 1) + 16);
# else
GC_ASSERT(sz * hhdr -> hb_n_marks <= HBLKSIZE);
# endif
if (report_if_found) {
GC_reclaim_small_nonempty_block(hbp, TRUE /* report_if_found */);
} else if (empty) {
# ifdef ENABLE_DISCLAIM
if ((hhdr -> hb_flags & HAS_DISCLAIM) != 0) {
GC_disclaim_and_reclaim_or_free_small_block(hbp);
} else
# endif
/* else */ {
GC_bytes_found += HBLKSIZE;
GC_freehblk(hbp);
}
} else if (GC_find_leak || !GC_block_nearly_full(hhdr)) {
/* group of smaller objects, enqueue the real work */
struct hblk **rlh = ok -> ok_reclaim_list;
if (rlh != NULL) {
rlh += BYTES_TO_GRANULES(sz);
hhdr -> hb_next = *rlh;
*rlh = hbp;
}
} /* else not worth salvaging. */
/* We used to do the nearly_full check later, but we */
/* already have the right cache context here. Also */
/* doing it here avoids some silly lock contention in */
/* GC_malloc_many. */
if (IS_PTRFREE_SAFE(hhdr)) {
GC_atomic_in_use += sz * hhdr -> hb_n_marks;
} else {
GC_composite_in_use += sz * hhdr -> hb_n_marks;
}
}
}
#if !defined(NO_DEBUGGING)
/* Routines to gather and print heap block info */
/* intended for debugging. Otherwise should be called */
/* with lock. */
struct Print_stats
{
size_t number_of_blocks;
size_t total_bytes;
};
#ifdef USE_MARK_BYTES
/* Return the number of set mark bits in the given header. */
/* Remains externally visible as used by GNU GCJ currently. */
int GC_n_set_marks(hdr *hhdr)
{
int result = 0;
int i;
word sz = hhdr -> hb_sz;
int offset = (int)MARK_BIT_OFFSET(sz);
int limit = (int)FINAL_MARK_BIT(sz);
for (i = 0; i < limit; i += offset) {
result += hhdr -> hb_marks[i];
}
GC_ASSERT(hhdr -> hb_marks[limit]);
return(result);
}
#else
/* Number of set bits in a word. Not performance critical. */
static int set_bits(word n)
{
word m = n;
int result = 0;
while (m > 0) {
if (m & 1) result++;
m >>= 1;
}
return(result);
}
int GC_n_set_marks(hdr *hhdr)
{
int result = 0;
int i;
int n_mark_words;
# ifdef MARK_BIT_PER_OBJ
int n_objs = (int)HBLK_OBJS(hhdr -> hb_sz);
if (0 == n_objs) n_objs = 1;
n_mark_words = divWORDSZ(n_objs + WORDSZ - 1);
# else /* MARK_BIT_PER_GRANULE */
n_mark_words = MARK_BITS_SZ;
# endif
for (i = 0; i < n_mark_words - 1; i++) {
result += set_bits(hhdr -> hb_marks[i]);
}
# ifdef MARK_BIT_PER_OBJ
result += set_bits((hhdr -> hb_marks[n_mark_words - 1])
<< (n_mark_words * WORDSZ - n_objs));
# else
result += set_bits(hhdr -> hb_marks[n_mark_words - 1]);
# endif
return(result - 1);
}
#endif /* !USE_MARK_BYTES */
STATIC void GC_print_block_descr(struct hblk *h,
word /* struct PrintStats */ raw_ps)
{
hdr * hhdr = HDR(h);
size_t bytes = hhdr -> hb_sz;
struct Print_stats *ps;
unsigned n_marks = GC_n_set_marks(hhdr);
unsigned n_objs = (unsigned)HBLK_OBJS(bytes);
if (0 == n_objs) n_objs = 1;
if (hhdr -> hb_n_marks != n_marks) {
GC_printf("%u,%u,%u!=%u,%u\n", hhdr->hb_obj_kind, (unsigned)bytes,
(unsigned)hhdr->hb_n_marks, n_marks, n_objs);
} else {
GC_printf("%u,%u,%u,%u\n", hhdr->hb_obj_kind, (unsigned)bytes,
n_marks, n_objs);
}
ps = (struct Print_stats *)raw_ps;
ps->total_bytes += (bytes + (HBLKSIZE-1)) & ~(HBLKSIZE-1); /* round up */
ps->number_of_blocks++;
}
void GC_print_block_list(void)
{
struct Print_stats pstats;
GC_printf("kind(0=ptrfree,1=normal,2=unc.),"
"size_in_bytes,#_marks_set,#objs\n");
pstats.number_of_blocks = 0;
pstats.total_bytes = 0;
GC_apply_to_all_blocks(GC_print_block_descr, (word)&pstats);
GC_printf("blocks= %lu, bytes= %lu\n",
(unsigned long)pstats.number_of_blocks,
(unsigned long)pstats.total_bytes);
}
#include "gc_inline.h" /* for GC_print_free_list prototype */
/* Currently for debugger use only: */
GC_API void GC_CALL GC_print_free_list(int kind, size_t sz_in_granules)
{
void *flh_next;
int n;
GC_ASSERT(kind < MAXOBJKINDS);
GC_ASSERT(sz_in_granules <= MAXOBJGRANULES);
flh_next = GC_obj_kinds[kind].ok_freelist[sz_in_granules];
for (n = 0; flh_next; n++) {
GC_printf("Free object in heap block %p [%d]: %p\n",
(void *)HBLKPTR(flh_next), n, flh_next);
flh_next = obj_link(flh_next);
}
}
#endif /* !NO_DEBUGGING */
/*
* Clear all obj_link pointers in the list of free objects *flp.
* Clear *flp.
* This must be done before dropping a list of free gcj-style objects,
* since may otherwise end up with dangling "descriptor" pointers.
* It may help for other pointer-containing objects.
*/
STATIC void GC_clear_fl_links(void **flp)
{
void *next = *flp;
while (0 != next) {
*flp = 0;
flp = &(obj_link(next));
next = *flp;
}
}
/*
* Perform GC_reclaim_block on the entire heap, after first clearing
* small object free lists (if we are not just looking for leaks).
*/
GC_INNER void GC_start_reclaim(GC_bool report_if_found)
{
unsigned kind;
# if defined(PARALLEL_MARK)
GC_ASSERT(0 == GC_fl_builder_count);
# endif
/* Reset in use counters. GC_reclaim_block recomputes them. */
GC_composite_in_use = 0;
GC_atomic_in_use = 0;
/* Clear reclaim- and free-lists */
for (kind = 0; kind < GC_n_kinds; kind++) {
struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
GC_bool should_clobber = (GC_obj_kinds[kind].ok_descriptor != 0);
if (rlist == 0) continue; /* This kind not used. */
if (!report_if_found) {
void **fop;
void **lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJGRANULES+1]);
for (fop = GC_obj_kinds[kind].ok_freelist;
(word)fop < (word)lim; (*(word **)&fop)++) {
if (*fop != 0) {
if (should_clobber) {
GC_clear_fl_links(fop);
} else {
*fop = 0;
}
}
}
} /* otherwise free list objects are marked, */
/* and its safe to leave them */
BZERO(rlist, (MAXOBJGRANULES + 1) * sizeof(void *));
}
/* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
/* or enqueue the block for later processing. */
GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
# ifdef EAGER_SWEEP
/* This is a very stupid thing to do. We make it possible anyway, */
/* so that you can convince yourself that it really is very stupid. */
GC_reclaim_all((GC_stop_func)0, FALSE);
# elif defined(ENABLE_DISCLAIM)
/* However, make sure to clear reclaimable objects of kinds with */
/* unconditional marking enabled before we do any significant */
/* marking work. */
GC_reclaim_unconditionally_marked();
# endif
# if defined(PARALLEL_MARK)
GC_ASSERT(0 == GC_fl_builder_count);
# endif
}
/*
* Sweep blocks of the indicated object size and kind until either the
* appropriate free list is nonempty, or there are no more blocks to
* sweep.
*/
GC_INNER void GC_continue_reclaim(word sz /* granules */, int kind)
{
hdr * hhdr;
struct hblk * hbp;
struct obj_kind * ok = &(GC_obj_kinds[kind]);
struct hblk ** rlh = ok -> ok_reclaim_list;
void **flh = &(ok -> ok_freelist[sz]);
if (rlh == 0) return; /* No blocks of this kind. */
rlh += sz;
while ((hbp = *rlh) != 0) {
hhdr = HDR(hbp);
*rlh = hhdr -> hb_next;
GC_reclaim_small_nonempty_block(hbp, FALSE);
if (*flh != 0) break;
}
}
/*
* Reclaim all small blocks waiting to be reclaimed.
* Abort and return FALSE when/if (*stop_func)() returns TRUE.
* If this returns TRUE, then it's safe to restart the world
* with incorrectly cleared mark bits.
* If ignore_old is TRUE, then reclaim only blocks that have been
* recently reclaimed, and discard the rest.
* Stop_func may be 0.
*/
GC_INNER GC_bool GC_reclaim_all(GC_stop_func stop_func, GC_bool ignore_old)
{
word sz;
unsigned kind;
hdr * hhdr;
struct hblk * hbp;
struct obj_kind * ok;
struct hblk ** rlp;
struct hblk ** rlh;
# ifndef NO_CLOCK
CLOCK_TYPE start_time = 0; /* initialized to prevent warning. */
if (GC_print_stats == VERBOSE)
GET_TIME(start_time);
# endif
for (kind = 0; kind < GC_n_kinds; kind++) {
ok = &(GC_obj_kinds[kind]);
rlp = ok -> ok_reclaim_list;
if (rlp == 0) continue;
for (sz = 1; sz <= MAXOBJGRANULES; sz++) {
rlh = rlp + sz;
while ((hbp = *rlh) != 0) {
if (stop_func != (GC_stop_func)0 && (*stop_func)()) {
return(FALSE);
}
hhdr = HDR(hbp);
*rlh = hhdr -> hb_next;
if (!ignore_old || hhdr -> hb_last_reclaimed == GC_gc_no - 1) {
/* It's likely we'll need it this time, too */
/* It's been touched recently, so this */
/* shouldn't trigger paging. */
GC_reclaim_small_nonempty_block(hbp, FALSE);
}
}
}
}
# ifndef NO_CLOCK
if (GC_print_stats == VERBOSE) {
CLOCK_TYPE done_time;
GET_TIME(done_time);
GC_verbose_log_printf("Disposing of reclaim lists took %lu msecs\n",
MS_TIME_DIFF(done_time,start_time));
}
# endif
return(TRUE);
}
#if !defined(EAGER_SWEEP) && defined(ENABLE_DISCLAIM)
/* We do an eager sweep on heap blocks where unconditional marking has */
/* been enabled, so that any reclaimable objects have been reclaimed */
/* before we start marking. This is a simplified GC_reclaim_all */
/* restricted to kinds where ok_mark_unconditionally is true. */
STATIC void GC_reclaim_unconditionally_marked(void)
{
word sz;
unsigned kind;
hdr * hhdr;
struct hblk * hbp;
struct obj_kind * ok;
struct hblk ** rlp;
struct hblk ** rlh;
for (kind = 0; kind < GC_n_kinds; kind++) {
ok = &(GC_obj_kinds[kind]);
if (!ok->ok_mark_unconditionally)
continue;
rlp = ok->ok_reclaim_list;
if (rlp == 0)
continue;
for (sz = 1; sz <= MAXOBJGRANULES; sz++) {
rlh = rlp + sz;
while ((hbp = *rlh) != 0) {
hhdr = HDR(hbp);
*rlh = hhdr->hb_next;
GC_reclaim_small_nonempty_block(hbp, FALSE);
}
}
}
}
#endif /* !EAGER_SWEEP && ENABLE_DISCLAIM */
struct enumerate_reachable_s {
GC_reachable_object_proc proc;
void *client_data;
};
STATIC void GC_do_enumerate_reachable_objects(struct hblk *hbp, word ped)
{
struct hblkhdr *hhdr = HDR(hbp);
size_t sz = (size_t)hhdr->hb_sz;
size_t bit_no;
char *p, *plim;
if (GC_block_empty(hhdr)) {
return;
}
p = hbp->hb_body;
if (sz > MAXOBJBYTES) { /* one big object */
plim = p;
} else {
plim = hbp->hb_body + HBLKSIZE - sz;
}
/* Go through all words in block. */
for (bit_no = 0; p <= plim; bit_no += MARK_BIT_OFFSET(sz), p += sz) {
if (mark_bit_from_hdr(hhdr, bit_no)) {
((struct enumerate_reachable_s *)ped)->proc(p, sz,
((struct enumerate_reachable_s *)ped)->client_data);
}
}
}
GC_API void GC_CALL GC_enumerate_reachable_objects_inner(
GC_reachable_object_proc proc,
void *client_data)
{
struct enumerate_reachable_s ed;
GC_ASSERT(I_HOLD_LOCK());
ed.proc = proc;
ed.client_data = client_data;
GC_apply_to_all_blocks(GC_do_enumerate_reachable_objects, (word)&ed);
}