480 lines
13 KiB
C#
Raw Normal View History

// SplitOrderedList.cs
//
// Copyright (c) 2010 Jérémie "Garuma" Laval
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
//
using System;
using System.Threading;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization;
namespace System.Collections.Concurrent
{
internal class SplitOrderedList<TKey, T>
{
class Node
{
public bool Marked;
public ulong Key;
public TKey SubKey;
public T Data;
public Node Next;
public Node Init (ulong key, TKey subKey, T data)
{
this.Key = key;
this.SubKey = subKey;
this.Data = data;
this.Marked = false;
this.Next = null;
return this;
}
// Used to create dummy node
public Node Init (ulong key)
{
this.Key = key;
this.Data = default (T);
this.Next = null;
this.Marked = false;
this.SubKey = default (TKey);
return this;
}
// Used to create marked node
public Node Init (Node wrapped)
{
this.Marked = true;
this.Next = wrapped;
this.Key = 0;
this.Data = default (T);
this.SubKey = default (TKey);
return this;
}
}
const int MaxLoad = 5;
const uint BucketSize = 512;
Node head;
Node tail;
Node[] buckets = new Node [BucketSize];
int count;
int size = 2;
SimpleRwLock slim = new SimpleRwLock ();
readonly IEqualityComparer<TKey> comparer;
public SplitOrderedList (IEqualityComparer<TKey> comparer)
{
this.comparer = comparer;
head = new Node ().Init (0);
tail = new Node ().Init (ulong.MaxValue);
head.Next = tail;
SetBucket (0, head);
}
public int Count {
get {
return count;
}
}
public T InsertOrUpdate (uint key, TKey subKey, Func<T> addGetter, Func<T, T> updateGetter)
{
Node current;
bool result = InsertInternal (key, subKey, default (T), addGetter, out current);
if (result)
return current.Data;
// FIXME: this should have a CAS-like behavior
return current.Data = updateGetter (current.Data);
}
public T InsertOrUpdate (uint key, TKey subKey, T addValue, T updateValue)
{
Node current;
if (InsertInternal (key, subKey, addValue, null, out current))
return current.Data;
// FIXME: this should have a CAS-like behavior
return current.Data = updateValue;
}
public bool Insert (uint key, TKey subKey, T data)
{
Node current;
return InsertInternal (key, subKey, data, null, out current);
}
public T InsertOrGet (uint key, TKey subKey, T data, Func<T> dataCreator)
{
Node current;
InsertInternal (key, subKey, data, dataCreator, out current);
return current.Data;
}
bool InsertInternal (uint key, TKey subKey, T data, Func<T> dataCreator, out Node current)
{
Node node = new Node ().Init (ComputeRegularKey (key), subKey, data);
uint b = key % (uint)size;
Node bucket;
if ((bucket = GetBucket (b)) == null)
bucket = InitializeBucket (b);
if (!ListInsert (node, bucket, out current, dataCreator))
return false;
int csize = size;
if (Interlocked.Increment (ref count) / csize > MaxLoad && (csize & 0x40000000) == 0)
Interlocked.CompareExchange (ref size, 2 * csize, csize);
current = node;
return true;
}
public bool Find (uint key, TKey subKey, out T data)
{
Node node;
uint b = key % (uint)size;
data = default (T);
Node bucket;
if ((bucket = GetBucket (b)) == null)
bucket = InitializeBucket (b);
if (!ListFind (ComputeRegularKey (key), subKey, bucket, out node))
return false;
data = node.Data;
return !node.Marked;
}
public bool CompareExchange (uint key, TKey subKey, T data, Func<T, bool> check)
{
Node node;
uint b = key % (uint)size;
Node bucket;
if ((bucket = GetBucket (b)) == null)
bucket = InitializeBucket (b);
if (!ListFind (ComputeRegularKey (key), subKey, bucket, out node))
return false;
if (!check (node.Data))
return false;
node.Data = data;
return true;
}
public bool Delete (uint key, TKey subKey, out T data)
{
uint b = key % (uint)size;
Node bucket;
if ((bucket = GetBucket (b)) == null)
bucket = InitializeBucket (b);
if (!ListDelete (bucket, ComputeRegularKey (key), subKey, out data))
return false;
Interlocked.Decrement (ref count);
return true;
}
public IEnumerator<T> GetEnumerator ()
{
Node node = head.Next;
while (node != tail) {
while (node.Marked || (node.Key & 1) == 0) {
node = node.Next;
if (node == tail)
yield break;
}
yield return node.Data;
node = node.Next;
}
}
Node InitializeBucket (uint b)
{
Node current;
uint parent = GetParent (b);
Node bucket;
if ((bucket = GetBucket (parent)) == null)
bucket = InitializeBucket (parent);
Node dummy = new Node ().Init (ComputeDummyKey (b));
if (!ListInsert (dummy, bucket, out current, null))
return current;
return SetBucket (b, dummy);
}
// Turn v's MSB off
static uint GetParent (uint v)
{
uint t, tt;
// Find MSB position in v
var pos = (tt = v >> 16) > 0 ?
(t = tt >> 8) > 0 ? 24 + logTable[t] : 16 + logTable[tt] :
(t = v >> 8) > 0 ? 8 + logTable[t] : logTable[v];
return (uint)(v & ~(1 << pos));
}
// Reverse integer bits and make sure LSB is set
static ulong ComputeRegularKey (uint key)
{
return ComputeDummyKey (key) | 1;
}
// Reverse integer bits
static ulong ComputeDummyKey (uint key)
{
return ((ulong)(((uint)reverseTable[key & 0xff] << 24) |
((uint)reverseTable[(key >> 8) & 0xff] << 16) |
((uint)reverseTable[(key >> 16) & 0xff] << 8) |
((uint)reverseTable[(key >> 24) & 0xff]))) << 1;
}
// Bucket storage is abstracted in a simple two-layer tree to avoid too much memory resize
Node GetBucket (uint index)
{
if (index >= buckets.Length)
return null;
return buckets[index];
}
Node SetBucket (uint index, Node node)
{
try {
slim.EnterReadLock ();
CheckSegment (index, true);
Interlocked.CompareExchange (ref buckets[index], node, null);
return buckets[index];
} finally {
slim.ExitReadLock ();
}
}
// When we run out of space for bucket storage, we use a lock-based array resize
void CheckSegment (uint segment, bool readLockTaken)
{
if (segment < buckets.Length)
return;
if (readLockTaken)
slim.ExitReadLock ();
try {
slim.EnterWriteLock ();
while (segment >= buckets.Length)
Array.Resize (ref buckets, buckets.Length * 2);
} finally {
slim.ExitWriteLock ();
}
if (readLockTaken)
slim.EnterReadLock ();
}
Node ListSearch (ulong key, TKey subKey, ref Node left, Node h)
{
Node leftNodeNext = null, rightNode = null;
do {
Node t = h;
Node tNext = t.Next;
do {
if (!tNext.Marked) {
left = t;
leftNodeNext = tNext;
}
t = tNext.Marked ? tNext.Next : tNext;
if (t == tail)
break;
tNext = t.Next;
} while (tNext.Marked || t.Key < key || (tNext.Key == key && !comparer.Equals (subKey, t.SubKey)));
rightNode = t;
if (leftNodeNext == rightNode) {
if (rightNode != tail && rightNode.Next.Marked)
continue;
else
return rightNode;
}
if (Interlocked.CompareExchange (ref left.Next, rightNode, leftNodeNext) == leftNodeNext) {
if (rightNode != tail && rightNode.Next.Marked)
continue;
else
return rightNode;
}
} while (true);
}
bool ListDelete (Node startPoint, ulong key, TKey subKey, out T data)
{
Node rightNode = null, rightNodeNext = null, leftNode = null;
data = default (T);
Node markedNode = null;
do {
rightNode = ListSearch (key, subKey, ref leftNode, startPoint);
if (rightNode == tail || rightNode.Key != key || !comparer.Equals (subKey, rightNode.SubKey))
return false;
data = rightNode.Data;
rightNodeNext = rightNode.Next;
if (!rightNodeNext.Marked) {
if (markedNode == null)
markedNode = new Node ();
markedNode.Init (rightNodeNext);
if (Interlocked.CompareExchange (ref rightNode.Next, markedNode, rightNodeNext) == rightNodeNext)
break;
}
} while (true);
if (Interlocked.CompareExchange (ref leftNode.Next, rightNodeNext, rightNode) != rightNode)
ListSearch (rightNode.Key, subKey, ref leftNode, startPoint);
return true;
}
bool ListInsert (Node newNode, Node startPoint, out Node current, Func<T> dataCreator)
{
ulong key = newNode.Key;
Node rightNode = null, leftNode = null;
do {
rightNode = current = ListSearch (key, newNode.SubKey, ref leftNode, startPoint);
if (rightNode != tail && rightNode.Key == key && comparer.Equals (newNode.SubKey, rightNode.SubKey))
return false;
newNode.Next = rightNode;
if (dataCreator != null)
newNode.Data = dataCreator ();
if (Interlocked.CompareExchange (ref leftNode.Next, newNode, rightNode) == rightNode)
return true;
} while (true);
}
bool ListFind (ulong key, TKey subKey, Node startPoint, out Node data)
{
Node rightNode = null, leftNode = null;
data = null;
rightNode = ListSearch (key, subKey, ref leftNode, startPoint);
data = rightNode;
return rightNode != tail && rightNode.Key == key && comparer.Equals (subKey, rightNode.SubKey);
}
static readonly byte[] reverseTable = {
0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
};
static readonly byte[] logTable = {
0xFF, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};
struct SimpleRwLock
{
const int RwWait = 1;
const int RwWrite = 2;
const int RwRead = 4;
int rwlock;
public void EnterReadLock ()
{
SpinWait sw = new SpinWait ();
do {
while ((rwlock & (RwWrite | RwWait)) > 0)
sw.SpinOnce ();
if ((Interlocked.Add (ref rwlock, RwRead) & (RwWait | RwWait)) == 0)
return;
Interlocked.Add (ref rwlock, -RwRead);
} while (true);
}
public void ExitReadLock ()
{
Interlocked.Add (ref rwlock, -RwRead);
}
public void EnterWriteLock ()
{
SpinWait sw = new SpinWait ();
do {
int state = rwlock;
if (state < RwWrite) {
if (Interlocked.CompareExchange (ref rwlock, RwWrite, state) == state)
return;
state = rwlock;
}
// We register our interest in taking the Write lock (if upgradeable it's already done)
while ((state & RwWait) == 0 && Interlocked.CompareExchange (ref rwlock, state | RwWait, state) != state)
state = rwlock;
// Before falling to sleep
while (rwlock > RwWait)
sw.SpinOnce ();
} while (true);
}
public void ExitWriteLock ()
{
Interlocked.Add (ref rwlock, -RwWrite);
}
}
}
}