Files
PythonLib/webapp_wav2txt.py
2025-05-05 21:02:42 -04:00

64 lines
1.8 KiB
Python

'''
Before you run this, make sure these are installed:
pip install torch
pip install torchaudio
pip install gradio
pip install transformers
You also need the following in your PATH environment variable: https://www.ffmpeg.org/download.html
ffmpeg
ffprobe
Finally, when you first run this, it'll download the openai/whisper-medium model, which is about 3GB.
'''
import torch
import torchaudio
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import gradio as gr
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
WHISPER_SAMPLE_RATE = 16000
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
model = WhisperForConditionalGeneration.from_pretrained(
"openai/whisper-medium"
).to(DEVICE)
def preprocess_audio(audio_path: str) -> torch.Tensor:
audio, sample_rate = torchaudio.load(audio_path)
# Resample if necessary
if sample_rate != WHISPER_SAMPLE_RATE:
resampler = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=WHISPER_SAMPLE_RATE
)
audio = resampler(audio)
# Convert to mono
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0)
return audio.squeeze()
def transcribe(audio_path: str) -> str:
audio_input = preprocess_audio(audio_path)
input_features = processor(
audio_input,
sampling_rate=WHISPER_SAMPLE_RATE,
return_tensors="pt",
language="japanese",
).input_features.to(DEVICE)
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"),
outputs="text",
title="OpenAI Whisper - Speech Recognition",
)
iface.launch()