Files
PythonLib/wav_to_txt.py
2023-12-21 14:22:29 -05:00

78 lines
2.7 KiB
Python

# pip install SpeechRecognition pydub
import speech_recognition as sr
import os
import argparse
from pydub import AudioSegment
from pydub.silence import split_on_silence
def main() -> None:
parser = argparse.ArgumentParser(description="A utility to extract transcribe audio files to Japanese. To use this: python wav_to_txt.py file.wav")
parser.add_argument(
"file",
help="Path to audio file that needs be to transcribed to Japanese",
type=str,
)
args = parser.parse_args()
path = args.file
print("\nFull Text:\n", get_large_audio_transcription_on_silence(path))
# create a speech recognition object
r = sr.Recognizer()
# a function to recognize speech in the audio file
# so that we don't repeat ourselves in in other functions
def transcribe_audio(path):
# use the audio file as the audio source
with sr.AudioFile(path) as source:
audio_listened = r.record(source)
# try converting it to text
text = r.recognize_google(audio_listened, language='ja-JP')
return text
# a function that splits the audio file into chunks on silence
# and applies speech recognition
def get_large_audio_transcription_on_silence(path):
"""Splitting the large audio file into chunks
and apply speech recognition on each of these chunks"""
# open the audio file using pydub
sound = AudioSegment.from_file(path)
# split audio sound where silence is 500 miliseconds or more and get chunks
chunks = split_on_silence(sound,
# experiment with this value for your target audio file
min_silence_len = 500,
# adjust this per requirement
silence_thresh = sound.dBFS-14,
# keep the silence for 1 second, adjustable as well
keep_silence=500,
)
folder_name = "audio-chunks"
# create a directory to store the audio chunks
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
f = open("whole_text.txt", "a", encoding="utf8")
whole_text = ""
# process each chunk
for i, audio_chunk in enumerate(chunks, start=1):
# export audio chunk and save it in
# the `folder_name` directory.
chunk_filename = os.path.join(folder_name, f"chunk{i}.wav")
audio_chunk.export(chunk_filename, format="wav")
# recognize the chunk
try:
text = transcribe_audio(chunk_filename)
except sr.UnknownValueError as e:
print("Error:", str(e))
else:
text = f"{text.capitalize()}"
print(chunk_filename, ":", text)
f.write(text + "\n")
whole_text+=text + "\n"
# return the text for all chunks detected
f.close()
return whole_text
if __name__ == '__main__':
main()