Files
F3DEX3/rsp/tri/main.s

366 lines
19 KiB
ArmAsm

align_with_warning 8, "One instruction of padding before tris"
.macro tri_v1_move
vmov $v6[1], $v7[5] // Move next to cur vertex 1 addr. Must be after main tri code cause $v6 not saved.
.endmacro
G_TRI2_handler: // If we jumped here, want $ra next to be G_TRI1_handler
G_QUAD_handler:
li $ra, (G_TRI1_handler - (tris_end - G_TRI1_handler))
G_TRI1_handler: // Whether we get here from cmd handler or prev tri, $ra == G_TRI1_handler
// $v6: -- V1 -- -- -- -- -- -- This vertex address 1
// $v7: -- -- V2 V3 -- N1 N2 N3 This and next vertex addresses
mfc2 $2, $v7[4]
mfc2 origV1Addr, $v6[2] // Can't move this up, $v6 is not ready yet when coming from return_and_end_mat
vmudh $v6, vOne, $v6[1] // elem 2 of v6 = vertex 1 addr
addi $ra, $ra, (tris_end - G_TRI1_handler) // So next go to tris_end
tri_from_snake:
vmudh $v4, vOne, $v7[2] // elem 2 of v4 = vertex 2 addr
.if !ENABLE_PROFILING
addi perfCounterB, perfCounterB, 0x4000 // Increment number of tris requested
.endif
vmudh $v8, vOne, $v7[3] // elem 2 of v8 = vertex 3 addr
mfc2 $3, $v7[6]
vmov $v7[3], $v7[7] // Move next to cur vertex 3 addr.
tri_from_clip:
vnxor tHAtF, vZero, $v31[7] // v5 = 0x8000; init frac value for attrs for rounding
llv $v6[0], VTX_SCR_VEC(origV1Addr) // Load pixel coords of vertex 1 into v6 (elems 0, 1 = x, y)
vnxor tMAtF, vZero, $v31[7] // v7 = 0x8000; init frac value for attrs for rounding
llv $v4[0], VTX_SCR_VEC($2) // Load pixel coords of vertex 2 into v4
vnxor tLAtF, vZero, $v31[7] // v9 = 0x8000; init frac value for attrs for rounding
llv $v8[0], VTX_SCR_VEC($3) // Load pixel coords of vertex 3 into v8
vmov $v7[2], $v7[6] // Move next to cur vertex 2 addr.
lhu $6, VTX_CLIP(origV1Addr)
vmudh $v2, vOne, $v6[1] // v2 all elems = y-coord of vertex 1
lhu $7, VTX_CLIP($2)
vsub $v10, $v6, $v4 // v10 = vertex 1 - vertex 2 (x, y, addr)
lhu $8, VTX_CLIP($3)
vsub $v12, $v6, $v8 // v12 = vertex 1 - vertex 3 (x, y, addr)
andi $11, $6, CLIP_SCRN_NPXY | CLIP_CAMPLANE // All three verts on wrong side of same plane
vsub $v11, $v4, $v6 // v11 = vertex 2 - vertex 1 (x, y, addr)
and $11, $11, $7
vlt $v13, $v2, $v4[1] // v13 = min(v1.y, v2.y), VCO = v1.y < v2.y
and $11, $11, $8
vmrg tHPos, $v6, $v4 // v14 = v1.y < v2.y ? v1 : v2 (lower vertex of v1, v2)
bnez $11, return_and_end_mat // Then the whole tri is offscreen, cull
// 16 cycles (for tri2 first tri; tri1/only subtract 1 from counts)
vmudh $v29, $v10, $v12[1] // x = (v1 - v2).x * (v1 - v3).y ...
vmadh $v26, $v12, $v11[1] // ... + (v1 - v3).x * (v2 - v1).y = cross product = dir tri is facing
lhu $24, activeClipPlanes
vge $v2, $v2, $v4[1] // v2 = max(vert1.y, vert2.y), VCO = vert1.y > vert2.y
sll $20, vGeomMid, 29 // Original bit 10 (now bit 2) in the sign bit, for facing cull
// tLPos <- $v10
vmrg tLPos, $v6, $v4 // v10 = vert1.y > vert2.y ? vert1 : vert2 (higher vertex of vert1, vert2)
or $10, $6, $7
vge $v6, $v13, $v8[1] // v6 = max(max(vert1.y, vert2.y), vert3.y), VCO = max(vert1.y, vert2.y) > vert3.y
or $10, $10, $8 // $10 = all clip bits which are true for any verts
vmrg $v4, tHPos, $v8 // v4 = max(vert1.y, vert2.y) > vert3.y : higher(vert1, vert2) ? vert3 (highest vertex of vert1, vert2, vert3)
mfc2 $9, $v26[0] // elem 0 = x = cross product => lower 16 bits, sign extended
vmrg tHPos, $v8, tHPos // v14 = max(vert1.y, vert2.y) > vert3.y : vert3 ? higher(vert1, vert2)
and $10, $10, $24 // If clipping is enabled, check clip flags
vlt $v29, $v6, $v2 // VCO = max(vert1.y, vert2.y, vert3.y) < max(vert1.y, vert2.y)
bnez $10, clip_triangle // Facing info and occlusion may be garbage if need to clip
// 24 cycles
srl $11, $9, 31 // = 0 if x prod positive (back facing), 1 if x prod negative (front facing)
vmudh $v3, vOne, $v31[5] // 0x4000; some rounding factor
sllv $11, $20, $11 // Sign bit = bit 10 of geom mode if back facing, bit 9 if front facing
// tMPos <- $v2
vmrg tMPos, $v4, tLPos // v2 = max(vert1.y, vert2.y, vert3.y) < max(vert1.y, vert2.y) : highest(vert1, vert2, vert3) ? highest(vert1, vert2)
bltz $11, return_and_end_mat // Cull if bit is set (culled based on facing)
// 27 cycles
vmrg tLPos, tLPos, $v4 // v10 = max(vert1.y, vert2.y, vert3.y) < max(vert1.y, vert2.y) : highest(vert1, vert2) ? highest(vert1, vert2, vert3)
// tSubPxHF <- $v4
vmudn tSubPxHF, tHPos, $v31[5] // 0x4000
beqz $9, return_and_end_mat // If cross product is 0, tri is degenerate (zero area), cull.
// 29 cycles
.if !CFG_NO_OCCLUSION_PLANE
and $6, $6, $7
.endif
// tPosMmH <- $v6
vsub tPosMmH, tMPos, tHPos
.if !CFG_NO_OCCLUSION_PLANE
and $6, $6, $8
.endif
// tPosLmH <- $v8
vsub tPosLmH, tLPos, tHPos
.if !CFG_NO_OCCLUSION_PLANE
andi $6, $6, CLIP_OCCLUDED
.endif
// tPosHmM <- $v11
vsub tPosHmM, tHPos, tMPos
.if !CFG_NO_OCCLUSION_PLANE
bnez $6, tri_culled_by_occlusion_plane // Cull if all verts occluded
// 33 cycles
.endif
mfc2 $1, tHPos[4] // tHPos = lowest Y value = highest on screen (x, y, addr)
// 32 cycles if NOC (34 if occlusion plane)
vsub tPosCatI, tLPos, tMPos // 0 X L-M; 1 Y L-M; 2 X M-H; 3 X L-H; 4-7 garbage
mfc2 $2, tMPos[4] // tMPos = mid vertex (x, y, addr)
vmov tPosCatI[2], tPosMmH[0]
.if !ENABLE_PROFILING
andi $11, vGeomMid, G_SHADING_SMOOTH >> 8
.endif
vmudh $v29, tPosMmH, tPosLmH[0]
li $20, -8 // 0xFFF8; constant for some mask below
vmadh $v29, tPosLmH, tPosHmM[0]
mfc2 $3, tLPos[4] // tLPos = highest Y value = lowest on screen (x, y, addr)
vreadacc tXPI, ACC_UPPER // Triangle cross product
add $19, origV1Addr, flatV1Offset
vreadacc tXPF, ACC_MIDDLE
lpv tHAtI[0], VTX_COLOR_VEC($1) // Load vert color of vertex 1
vrcp $v20[0], tPosCatI[1]
lpv tMAtI[0], VTX_COLOR_VEC($2) // Load vert color of vertex 2
vmov tPosCatI[3], tPosLmH[0]
lpv tLAtI[0], VTX_COLOR_VEC($3) // Load vert color of vertex 3
vrcph $v22[0], tXPI[1]
.if !ENABLE_PROFILING
lpv $v25[0], VTX_COLOR_VEC($19) // Load RGB from orig vtx 1 for flat shading
.endif
vrcpl tXPRcpF[1], tXPF[1] // Reciprocal of cross product (becomes that * 4)
.if !ENABLE_PROFILING
beqz $11, tri_flat_shading // Branch if G_SHADING_SMOOTH is clear
.endif
vrcph tXPRcpI[1], $v31[2] // 0
tri_return_from_flat_shading: // Uses $v25
// 43 cycles
vrcp $v20[2], tPosMmH[1]
ssv tPosMmH[2], 0x0030(rdpCmdBufPtr) // MmHY -> first short (temp mem)
// t1WI <- $v13 // elems 0, 4, 6
vrcph $v22[2], tPosMmH[1]
llv t1WI[0], VTX_INV_W_VEC($1)
vrcp $v20[3], tPosLmH[1]
llv t1WI[8], VTX_INV_W_VEC($2)
vrcph $v22[3], tPosLmH[1]
llv t1WI[12], VTX_INV_W_VEC($3)
vmudl tHAtI, tHAtI, vTRC_0100 // vertex color 1 >>= 8
lb $11, (alphaCompareCullMode)($zero)
vmudl tMAtI, tMAtI, vTRC_0100 // vertex color 2 >>= 8
lw $6, VTX_INV_W_VEC($1) // $6, $7, $8 = 1/W for H, M, L
vmudl tLAtI, tLAtI, vTRC_0100 // vertex color 3 >>= 8
lw $7, VTX_INV_W_VEC($2)
vmudl $v29, $v20, vTRC_0020
lw $8, VTX_INV_W_VEC($3)
vmadm $v22, $v22, vTRC_0020
bnez $11, tri_alpha_compare_cull
vmadn $v20, $v31, $v31[2] // 0
// $v6 <- tPosMmH; $v6 clobbered in alpha compare cull
tri_return_from_alpha_compare_cull: // Uses $v25, $v26
// 53 cycles
// tPosCatF <- $v25
vmudm tPosCatF, tPosCatI, vTRC_1000
mtc2 $20, tMPos[14] // 0xFFF8; only elem 0, 1, 2 of this reg used now
vmadn tPosCatI, $v31, $v31[2] // 0
sub $11, $6, $7 // Four instr: $6 = max($6, $7)
vsubc tSubPxHF, vZero, tSubPxHF
sra $10, $11, 31
// tSubPxHI <- $v26
vsub tSubPxHI, vZero, vZero
and $11, $11, $10
vmudm $v29, tPosCatF, $v20
sub $6, $6, $11
vmadl $v29, tPosCatI, $v20
sub $11, $6, $8 // Four instr: $6 = max($6, $8)
vmadn $v20, tPosCatI, $v22
sra $10, $11, 31
vmadh tPosCatI, tPosCatF, $v22
and $11, $11, $10
vmudl $v29, tXPRcpF, tXPF
sub $6, $6, $11
vmadm $v29, tXPRcpI, tXPF
mfc2 $7, tXPI[1]
vmadn tXPF, tXPRcpF, tXPI
lbu $14, geometryModeLabel + 3 // Load lowest byte for G_SHADE, G_ZBUFFER. Also has G_ATTROFFSET_ST_ENABLE, but G_TRI_FILL will get OR'd into it and force that set.
vmadh tXPI, tXPRcpI, tXPI
lbu $9, textureSettings1 + 3 // Texture enabled = 0x2
vand $v22, $v20, tMPos[7] // 0xFFF8
lsv tMAtI[14], VTX_SCR_Z($2)
vcr tPosCatI, tPosCatI, vTRC_0100
lsv tLAtI[14], VTX_SCR_Z($3)
vmudh $v29, vOne, $v31[4] // 4
ori $11, $14, G_TRI_FILL // Combine geometry mode (only the low byte will matter) with the base triangle type to make the triangle command id
vmadn tXPF, tXPF, $v31[0] // -4
or $11, $11, $9 // Incorporate whether textures are enabled into the triangle command id
vmadh tXPI, tXPI, $v31[0] // -4
sw $6, 0x0010(rdpCmdBufPtr) // Store max of three verts' 1/W (upper) to temp mem
// tMx1W <- tPosCatF
vmudn $v29, $v3, tHPos[0]
llv tMx1W[0], 0x0010(rdpCmdBufPtr) // Load max of three verts' 1/W
vmadl $v29, $v22, tSubPxHF[1]
ssv tMPos[2], 0x0004(rdpCmdBufPtr) // Store YM edge coefficient
vmadm $v29, tPosCatI, tSubPxHF[1]
lsv tMAtF[14], VTX_SCR_Z_FRAC($2)
// $v2 <- tMPos
vmadn $v2, $v22, tSubPxHI[1]
ssv tLPos[2], 0x0002(rdpCmdBufPtr) // Store YL edge coefficient
vmadh $v3, tPosCatI, tSubPxHI[1]
lsv tLAtF[14], VTX_SCR_Z_FRAC($3)
vrcph $v29[0], tMx1W[0] // Reciprocal of max 1/W = min W
ssv tHPos[2], 0x0006(rdpCmdBufPtr) // Store YH edge coefficient
// tMnWF <- tLPos
vrcpl tMnWF[0], tMx1W[1]
lbu $10, textureSettings1 + 2 // Level and tile
// t1WF <- tHPos
vmudh t1WF, vOne, t1WI[1q]
sb $11, 0x0000(rdpCmdBufPtr) // Store the triangle command id
// tMnWI <- tMx1W
vrcph tMnWI[0], $v31[2] // 0
lw $19, otherMode1
// tSTWHMI <- $v22 // H = elems 0-2, M = elems 4-6; init W = 7FFF
vmudh tSTWHMI, vOne, $v31[7] // 0x7FFF
sb $zero, materialCullMode // Covers tri write (non early exit)
vmudm $v29, t1WI, tMnWF[0] // 1/W each vtx * min W = 1 for one of the verts, < 1 for others
llv tSTWHMI[0], VTX_TC_VEC($1)
vmadl $v29, t1WF, tMnWF[0]
ssv tPosLmH[0], 0x0032(rdpCmdBufPtr) // LmHX -> second short (temp mem)
vmadn t1WF, t1WF, tMnWI[0]
llv tSTWHMI[8], VTX_TC_VEC($2)
vmadh t1WI, t1WI, tMnWI[0]
ssv tPosHmM[0], 0x0034(rdpCmdBufPtr) // HmMX -> third short (temp mem)
// tSTWLI <- tMnWF // L = elems 4-6; init W = 7FFF
vmudh tSTWLI, vOne, $v31[7] // 0x7FFF
andi $19, $19, ZMODE_DEC // Mask to two Z mode bits
set_vcc_11110001 // select RGBA___Z or ____STW_
llv tSTWLI[8], VTX_TC_VEC($3)
vmudm $v29, tSTWHMI, t1WF[0h] // (S, T, 7FFF) * (1 or <1) for H and M
addi $19, $19, -ZMODE_DEC // Check if equal to decal mode
vmadh tSTWHMI, tSTWHMI, t1WI[0h]
ldv tPosLmH[8], 0x0030(rdpCmdBufPtr) // MmHY -> e4, LmHX -> e5, HmMX -> e6
// tSTWHMF <- tMnWI
vmadn tSTWHMF, $v31, $v31[2] // 0
andi $7, $7, 0x0080 // Extract the left major flag from $7
vmudm $v29, tSTWLI, t1WF[6] // (S, T, 7FFF) * (1 or <1) for L
or $7, $7, $10 // Combine the left major flag with the level and tile from the texture settings
vmadh tSTWLI, tSTWLI, t1WI[6]
sb $7, 0x0001(rdpCmdBufPtr) // Store the left major flag, level, and tile settings
// tSTWLF <- t1WI
vmadn tSTWLF, $v31, $v31[2] // 0
sdv tSTWHMI[0], 0x0020(rdpCmdBufPtr) // Move S, T, W Hi Int to temp mem
vmrg tMAtI, tMAtI, tSTWHMI // Merge S, T, W Mid into elems 4-6
sdv tSTWHMF[0], 0x0028(rdpCmdBufPtr) // Move S, T, W Hi Frac to temp mem
vmrg tMAtF, tMAtF, tSTWHMF // Merge S, T, W Mid into elems 4-6
ldv tHAtI[8], 0x0020(rdpCmdBufPtr) // Move S, T, W Hi Int from temp mem
vmrg tLAtI, tLAtI, tSTWLI // Merge S, T, W Low into elems 4-6
ldv tHAtF[8], 0x0028(rdpCmdBufPtr) // Move S, T, W Hi Frac from temp mem
vmrg tLAtF, tLAtF, tSTWLF // Merge S, T, W Low into elems 4-6
.if !ENABLE_PROFILING
addi perfCounterA, perfCounterA, 1 // Increment number of tris sent to RDP
.endif
// 96 cycles
vmudl $v29, tXPF, tXPRcpF
lsv tHAtF[14], VTX_SCR_Z_FRAC($1)
vmadm $v29, tXPI, tXPRcpF
lsv tHAtI[14], VTX_SCR_Z($1) // contains R, G, B, A, S, T, W, Z
vmadn tXPRcpF, tXPF, tXPRcpI
lh $1, VTX_SCR_VEC($2)
vmadh tXPRcpI, tXPI, tXPRcpI
addi $2, rdpCmdBufPtr, 0x20 // Increment the triangle pointer by 0x20 bytes (edge coefficients)
vmudh tPosLmH, tPosLmH, $v31[0h] // e1 LmHY * -4 = 4*HmLY; e456 MmHY,LmHX,HmMX *= 4
andi $3, $14, G_SHADE
// tAtLmHF <- tSTWLI
vsubc tAtLmHF, tLAtF, tHAtF
sll $1, $1, 14
// tAtLmHI <- tLAtF
vsub tAtLmHI, tLAtI, tHAtI
sb $zero, materialCullMode // This covers tri write out
// tAtMmHF <- tSTWLF
vsubc tAtMmHF, tMAtF, tHAtF
sw $1, 0x0008(rdpCmdBufPtr) // Store XL edge coefficient
// tAtMmHI <- tMAtF
vsub tAtMmHI, tMAtI, tHAtI
ssv $v3[6], 0x0010(rdpCmdBufPtr) // Store XH edge coefficient (integer part)
// DaDx = (v3 - v1) * factor + (v2 - v1) * factor
vmudn $v29, tAtLmHF, tPosLmH[4] // MmHY * 4
ssv $v2[6], 0x0012(rdpCmdBufPtr) // Store XH edge coefficient (fractional part)
vmadh $v29, tAtLmHI, tPosLmH[4] // MmHY * 4
ssv $v3[4], 0x0018(rdpCmdBufPtr) // Store XM edge coefficient (integer part)
vmadn $v29, tAtMmHF, tPosLmH[1] // LmHY * -4 = HmLY * 4
ssv $v2[4], 0x001A(rdpCmdBufPtr) // Store XM edge coefficient (fractional part)
vmadh $v29, tAtMmHI, tPosLmH[1] // LmHY * -4 = HmLY * 4
ssv tPosCatI[0], 0x000C(rdpCmdBufPtr) // Store DxLDy edge coefficient (integer part)
// tDaDxF <- $v2
vreadacc tDaDxF, ACC_MIDDLE
ssv $v20[0], 0x000E(rdpCmdBufPtr) // Store DxLDy edge coefficient (fractional part)
// tDaDxI <- $v3
vreadacc tDaDxI, ACC_UPPER
ssv tPosCatI[6], 0x0014(rdpCmdBufPtr) // Store DxHDy edge coefficient (integer part)
// DaDy = (v2 - v1) * factor + (v3 - v1) * factor
vmudn $v29, tAtMmHF, tPosLmH[5] // LmHX * 4
ssv $v20[6], 0x0016(rdpCmdBufPtr) // Store DxHDy edge coefficient (fractional part)
vmadh $v29, tAtMmHI, tPosLmH[5] // LmHX * 4
ssv tPosCatI[4], 0x001C(rdpCmdBufPtr) // Store DxMDy edge coefficient (integer part)
vmadn $v29, tAtLmHF, tPosLmH[6] // HmMX * 4
ssv $v20[4], 0x001E(rdpCmdBufPtr) // Store DxMDy edge coefficient (fractional part)
vmadh $v29, tAtLmHI, tPosLmH[6] // HmMX * 4
sll $11, $3, 4 // Shift (geometry mode & G_SHADE) by 4 to get 0x40 if G_SHADE is set
// tDaDyF <- $v6
vreadacc tDaDyF, ACC_MIDDLE
add $1, $2, $11 // Increment the triangle pointer by 0x40 bytes (shade coefficients) if G_SHADE is set
// tDaDyI <- tAtMmHI
vreadacc tDaDyI, ACC_UPPER
sll $11, $9, 5 // Shift texture enabled (which is 2 when on) by 5 to get 0x40 if textures are on
// DaDx, DaDy *= more factors
vmudl $v29, tDaDxF, tXPRcpF[1]
add rdpCmdBufPtr, $1, $11 // Increment the triangle pointer by 0x40 bytes (texture coefficients) if textures are on
vmadm $v29, tDaDxI, tXPRcpF[1]
andi $14, $14, G_ZBUFFER // Get the value of G_ZBUFFER from the current geometry mode
vmadn tDaDxF, tDaDxF, tXPRcpI[1]
sll $11, $14, 4 // Shift (geometry mode & G_ZBUFFER) by 4 to get 0x10 if G_ZBUFFER is set
vmadh tDaDxI, tDaDxI, tXPRcpI[1]
move $10, rdpCmdBufPtr // Write Z here
vmudl $v29, tDaDyF, tXPRcpF[1]
add rdpCmdBufPtr, rdpCmdBufPtr, $11 // Increment the triangle pointer by 0x10 bytes (depth coefficients) if G_ZBUFFER is set
vmadm $v29, tDaDyI, tXPRcpF[1]
sub dmemAddr, rdpCmdBufPtr, rdpCmdBufEndP1 // Check if we need to write out to RDP
vmadn tDaDyF, tDaDyF, tXPRcpI[1]
sdv tDaDxF[0], 0x0018($2) // Store DrDx, DgDx, DbDx, DaDx shade coefficients (fractional)
vmadh tDaDyI, tDaDyI, tXPRcpI[1]
sdv tDaDxI[0], 0x0008($2) // Store DrDx, DgDx, DbDx, DaDx shade coefficients (integer)
// DaDe = DaDx * factor
// 125 cycles
vmadl $v29, tDaDxF, $v20[3]
sdv tDaDxF[8], 0x0018($1) // Store DsDx, DtDx, DwDx texture coefficients (fractional)
vmadm $v29, tDaDxI, $v20[3]
sdv tDaDxI[8], 0x0008($1) // Store DsDx, DtDx, DwDx texture coefficients (integer)
// tDaDeF <- tPosLmH
vmadn tDaDeF, tDaDxF, tPosCatI[3]
sdv tDaDyF[0], 0x0038($2) // Store DrDy, DgDy, DbDy, DaDy shade coefficients (fractional)
// tDaDeI <- tAtLmHI
vmadh tDaDeI, tDaDxI, tPosCatI[3]
sdv tDaDyI[0], 0x0028($2) // Store DrDy, DgDy, DbDy, DaDy shade coefficients (integer)
// Base value += DaDe * factor
vmudn $v29, tHAtF, vOne[0]
sdv tDaDyF[8], 0x0038($1) // Store DsDy, DtDy, DwDy texture coefficients (fractional)
vmadh $v29, tHAtI, vOne[0]
sdv tDaDyI[8], 0x0028($1) // Store DsDy, DtDy, DwDy texture coefficients (integer)
vmadl $v29, tDaDeF, tSubPxHF[1]
sdv tDaDeF[0], 0x0030($2) // Store DrDe, DgDe, DbDe, DaDe shade coefficients (fractional)
vmadm $v29, tDaDeI, tSubPxHF[1]
sdv tDaDeI[0], 0x0020($2) // Store DrDe, DgDe, DbDe, DaDe shade coefficients (integer)
vmadn tHAtF, tDaDeF, tSubPxHI[1]
sdv tDaDeF[8], 0x0030($1) // Store DsDe, DtDe, DwDe texture coefficients (fractional)
vmadh tHAtI, tDaDeI, tSubPxHI[1]
sdv tDaDeI[8], 0x0020($1) // Store DsDe, DtDe, DwDe texture coefficients (integer)
// All values start in element 7. "a", attribute, is Z. Need
// tHAtI, tHAtF, tDaDxI, tDaDxF, tDaDeI, tDaDeF, tDaDyI, tDaDyF
// VCC is still 11110001
// 135 cycles
vmrg tDaDyI, tDaDyF, tDaDyI[7] // Elems 6-7: DzDyI:F
beqz $19, tri_decal_fix_z
vmrg tDaDxI, tDaDxF, tDaDxI[7] // Elems 6-7: DzDxI:F
tri_return_from_decal_fix_z:
vmrg tDaDeI, tDaDeF, tDaDeI[7] // Elems 6-7: DzDeI:F
sdv tHAtF[0], 0x0010($2) // Store RGBA shade color (fractional)
// $v10 <- tAtLmHF
vmrg $v10, tHAtF, tHAtI[7] // Elems 6-7: ZI:F
sdv tHAtI[0], 0x0000($2) // Store RGBA shade color (integer)
tri_v1_move // From return_and_end_mat, we didn't go there
sdv tHAtF[8], 0x0010($1) // Store S, T, W texture coefficients (fractional)
sdv tHAtI[8], 0x0000($1) // Store S, T, W texture coefficients (integer)
slv tDaDyI[12], 0x0C($10) // DzDyI:F
slv tDaDxI[12], 0x04($10) // DzDxI:F
slv tDaDeI[12], 0x08($10) // DzDeI:F
bltz dmemAddr, return_and_end_mat // Return if rdpCmdBufPtr < end+1 i.e. ptr <= end
slv $v10[12], 0x00($10) // ZI:F
// 146 cycles
.include "rsp/sys/flush_rdp_buffer.s"