On Mon, Jun 02, 2025 at 03:22:13PM +0800, Kuyo Chang wrote:
> So, the potential race scenario is:
>
> CPU0 CPU1
> // doing migrate_swap(cpu0/cpu1)
> stop_two_cpus()
> ...
> // doing _cpu_down()
> sched_cpu_deactivate()
> set_cpu_active(cpu, false);
> balance_push_set(cpu, true);
> cpu_stop_queue_two_works
> __cpu_stop_queue_work(stopper1,...);
> __cpu_stop_queue_work(stopper2,..);
> stop_cpus_in_progress -> true
> preempt_enable();
> ...
> 1st balance_push
> stop_one_cpu_nowait
> cpu_stop_queue_work
> __cpu_stop_queue_work
> list_add_tail -> 1st add push_work
> wake_up_q(&wakeq); -> "wakeq is empty.
> This implies that the stopper is at wakeq@migrate_swap."
> preempt_disable
> wake_up_q(&wakeq);
> wake_up_process // wakeup migrate/0
> try_to_wake_up
> ttwu_queue
> ttwu_queue_cond ->meet below case
> if (cpu == smp_processor_id())
> return false;
> ttwu_do_activate
> //migrate/0 wakeup done
> wake_up_process // wakeup migrate/1
> try_to_wake_up
> ttwu_queue
> ttwu_queue_cond
> ttwu_queue_wakelist
> __ttwu_queue_wakelist
> __smp_call_single_queue
> preempt_enable();
>
> 2nd balance_push
> stop_one_cpu_nowait
> cpu_stop_queue_work
> __cpu_stop_queue_work
> list_add_tail -> 2nd add push_work, so the double list add is detected
> ...
> ...
> cpu1 get ipi, do sched_ttwu_pending, wakeup migrate/1
>
So this balance_push() is part of schedule(), and schedule() is supposed
to switch to stopper task, but because of this race condition, stopper
task is stuck in WAKING state and not actually visible to be picked.
Therefore CPU1 can do another schedule() and end up doing another
balance_push() even though the last one hasn't been done yet.
This is a confluence of fail, where both wake_q and ttwu_wakelist can
cause crucial wakeups to be delayed, resulting in the malfunction of
balance_push.
Since there is only a single stopper thread to be woken, the wake_q
doesn't really add anything here, and can be removed in favour of
direct wakeups of the stopper thread.
Then add a clause to ttwu_queue_cond() to ensure the stopper threads
are never queued / delayed.
Of all 3 moving parts, the last addition was the balance_push()
machinery, so pick that as the point the bug was introduced.
Fixes: 2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Reported-by: Kuyo Chang <kuyo.chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kuyo Chang <kuyo.chang@mediatek.com>
Link: https://lkml.kernel.org/r/20250605100009.GO39944@noisy.programming.kicks-ass.net
The multi_cpu_stop() contains a loop that can initially be executed with
interrupts enabled (in the MULTI_STOP_NONE and MULTI_STOP_PREPARE states).
Interrupts are guaranteed to be once the MULTI_STOP_DISABLE_IRQ state
is reached. Unfortunately, the rcu_momentary_eqs() function that is
currently invoked on each pass through this loop requires that interrupts
be disabled.
This commit therefore moves this call to rcu_momentary_eqs() to the body
of the "else if (curstate > MULTI_STOP_PREPARE)" portion of the loop, thus
guaranteeing that interrupts will be disabled on each call, as required.
Kudos to 朱恺乾 (Kaiqian) for noting that this had not made it to mainline.
[ paulmck: Update from rcu_momentary_dyntick_idle() to rcu_momentary_eqs(). ]
Link: https://lore.kernel.org/all/1712649736-27058-1-git-send-email-quic_mojha@quicinc.com/
Signed-off-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to
RCU_WATCHING, replace "dyntick_idle" into "eqs" to drop the dyntick
reference.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
Pull scheduler updates from Ingo Molnar:
- Updates to scheduler metrics:
- PELT fixes & enhancements
- PSI fixes & enhancements
- Refactor cpu_util_without()
- Updates to instrumentation/debugging:
- Remove sched_trace_*() helper functions - can be done via debug
info
- Fix double update_rq_clock() warnings
- Introduce & use "preemption model accessors" to simplify some of the
Kconfig complexity.
- Make softirq handling RT-safe.
- Misc smaller fixes & cleanups.
* tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
topology: Remove unused cpu_cluster_mask()
sched: Reverse sched_class layout
sched/deadline: Remove superfluous rq clock update in push_dl_task()
sched/core: Avoid obvious double update_rq_clock warning
smp: Make softirq handling RT safe in flush_smp_call_function_queue()
smp: Rename flush_smp_call_function_from_idle()
sched: Fix missing prototype warnings
sched/fair: Remove cfs_rq_tg_path()
sched/fair: Remove sched_trace_*() helper functions
sched/fair: Refactor cpu_util_without()
sched/fair: Revise comment about lb decision matrix
sched/psi: report zeroes for CPU full at the system level
sched/fair: Delete useless condition in tg_unthrottle_up()
sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq
sched/fair: Move calculate of avg_load to a better location
mailmap: Update my email address to @redhat.com
MAINTAINERS: Add myself as scheduler topology reviewer
psi: Fix trigger being fired unexpectedly at initial
ftrace: Use preemption model accessors for trace header printout
kcsan: Use preemption model accessors
Pull RCU and LKMM changes from Paul E. McKenney:
- Documentation updates.
- Miscellaneous fixes.
- Dynamic tick (nohz) updates, perhaps most notably changes to
force the tick on when needed due to lengthy in-kernel execution
on CPUs on which RCU is waiting.
- Replace rcu_swap_protected() with rcu_prepace_pointer().
- Torture-test updates.
- Linux-kernel memory consistency model updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both multi_cpu_stop() and set_state() access multi_stop_data::state
racily using plain accesses. These are subject to compiler
transformations which could break the intended behaviour of the code,
and this situation is detected by KCSAN on both arm64 and x86 (splats
below).
Improve matters by using READ_ONCE() and WRITE_ONCE() to ensure that the
compiler cannot elide, replay, or tear loads and stores.
In multi_cpu_stop() the two loads of multi_stop_data::state are expected to
be a consistent value, so snapshot the value into a temporary variable to
ensure this.
The state transitions are serialized by atomic manipulation of
multi_stop_data::num_threads, and other fields in multi_stop_data are not
modified while subject to concurrent reads.
KCSAN splat on arm64:
| BUG: KCSAN: data-race in multi_cpu_stop+0xa8/0x198 and set_state+0x80/0xb0
|
| write to 0xffff00001003bd00 of 4 bytes by task 24 on cpu 3:
| set_state+0x80/0xb0
| multi_cpu_stop+0x16c/0x198
| cpu_stopper_thread+0x170/0x298
| smpboot_thread_fn+0x40c/0x560
| kthread+0x1a8/0x1b0
| ret_from_fork+0x10/0x18
|
| read to 0xffff00001003bd00 of 4 bytes by task 14 on cpu 1:
| multi_cpu_stop+0xa8/0x198
| cpu_stopper_thread+0x170/0x298
| smpboot_thread_fn+0x40c/0x560
| kthread+0x1a8/0x1b0
| ret_from_fork+0x10/0x18
|
| Reported by Kernel Concurrency Sanitizer on:
| CPU: 1 PID: 14 Comm: migration/1 Not tainted 5.3.0-00007-g67ab35a199f4-dirty #3
| Hardware name: linux,dummy-virt (DT)
KCSAN splat on x86:
| write to 0xffffb0bac0013e18 of 4 bytes by task 19 on cpu 2:
| set_state kernel/stop_machine.c:170 [inline]
| ack_state kernel/stop_machine.c:177 [inline]
| multi_cpu_stop+0x1a4/0x220 kernel/stop_machine.c:227
| cpu_stopper_thread+0x19e/0x280 kernel/stop_machine.c:516
| smpboot_thread_fn+0x1a8/0x300 kernel/smpboot.c:165
| kthread+0x1b5/0x200 kernel/kthread.c:255
| ret_from_fork+0x35/0x40 arch/x86/entry/entry_64.S:352
|
| read to 0xffffb0bac0013e18 of 4 bytes by task 44 on cpu 7:
| multi_cpu_stop+0xb4/0x220 kernel/stop_machine.c:213
| cpu_stopper_thread+0x19e/0x280 kernel/stop_machine.c:516
| smpboot_thread_fn+0x1a8/0x300 kernel/smpboot.c:165
| kthread+0x1b5/0x200 kernel/kthread.c:255
| ret_from_fork+0x35/0x40 arch/x86/entry/entry_64.S:352
|
| Reported by Kernel Concurrency Sanitizer on:
| CPU: 7 PID: 44 Comm: migration/7 Not tainted 5.3.0+ #1
| Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20191007104536.27276-1-mark.rutland@arm.com
When multi_cpu_stop() loops waiting for other tasks, it can trigger an RCU
CPU stall warning. This can be misleading because what is instead needed
is information on whatever task is blocking multi_cpu_stop(). This commit
therefore inserts an RCU quiescent state into the multi_cpu_stop()
function's waitloop.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
stop_machine is the only user left of cpu_relax_yield. Given that it
now has special semantics which are tied to stop_machine introduce a
weak stop_machine_yield function which architectures can override, and
get rid of the generic cpu_relax_yield implementation.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
The stop_machine loop to advance the state machine and to wait for all
affected CPUs to check-in calls cpu_relax_yield in a tight loop until
the last missing CPUs acknowledged the state transition.
On a virtual system where not all logical CPUs are backed by real CPUs
all the time it can take a while for all CPUs to check-in. With the
current definition of cpu_relax_yield a diagnose 0x44 is done which
tells the hypervisor to schedule *some* other CPU. That can be any
CPU and not necessarily one of the CPUs that need to run in order to
advance the state machine. This can lead to a pretty bad diagnose 0x44
storm until the last missing CPU finally checked-in.
Replace the undirected cpu_relax_yield based on diagnose 0x44 with a
directed yield. Each CPU in the wait loop will pick up the next CPU
in the cpumask of stop_machine. The diagnose 0x9c is used to tell the
hypervisor to run this next CPU instead of the current one. If there
is only a limited number of real CPUs backing the virtual CPUs we
end up with the real CPUs passed around in a round-robin fashion.
[heiko.carstens@de.ibm.com]:
Use cpumask_next_wrap as suggested by Peter Zijlstra.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Pull scheduler updates from Thomas Gleixner:
- Cleanup and improvement of NUMA balancing
- Refactoring and improvements to the PELT (Per Entity Load Tracking)
code
- Watchdog simplification and related cleanups
- The usual pile of small incremental fixes and improvements
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
watchdog: Reduce message verbosity
stop_machine: Reflow cpu_stop_queue_two_works()
sched/numa: Move task_numa_placement() closer to numa_migrate_preferred()
sched/numa: Use group_weights to identify if migration degrades locality
sched/numa: Update the scan period without holding the numa_group lock
sched/numa: Remove numa_has_capacity()
sched/numa: Modify migrate_swap() to accept additional parameters
sched/numa: Remove unused task_capacity from 'struct numa_stats'
sched/numa: Skip nodes that are at 'hoplimit'
sched/debug: Reverse the order of printing faults
sched/numa: Use task faults only if numa_group is not yet set up
sched/numa: Set preferred_node based on best_cpu
sched/numa: Simplify load_too_imbalanced()
sched/numa: Evaluate move once per node
sched/numa: Remove redundant field
sched/debug: Show the sum wait time of a task group
sched/fair: Remove #ifdefs from scale_rt_capacity()
sched/core: Remove get_cpu() from sched_fork()
sched/cpufreq: Clarify sugov_get_util()
sched/sysctl: Remove unused sched_time_avg_ms sysctl
...
When cpu_stop_queue_work() releases the lock for the stopper
thread that was queued into its wake queue, preemption is
enabled, which leads to the following deadlock:
CPU0 CPU1
sched_setaffinity(0, ...)
__set_cpus_allowed_ptr()
stop_one_cpu(0, ...) stop_two_cpus(0, 1, ...)
cpu_stop_queue_work(0, ...) cpu_stop_queue_two_works(0, ..., 1, ...)
-grabs lock for migration/0-
-spins with preemption disabled,
waiting for migration/0's lock to be
released-
-adds work items for migration/0
and queues migration/0 to its
wake_q-
-releases lock for migration/0
and preemption is enabled-
-current thread is preempted,
and __set_cpus_allowed_ptr
has changed the thread's
cpu allowed mask to CPU1 only-
-acquires migration/0 and migration/1's
locks-
-adds work for migration/0 but does not
add migration/0 to wake_q, since it is
already in a wake_q-
-adds work for migration/1 and adds
migration/1 to its wake_q-
-releases migration/0 and migration/1's
locks, wakes migration/1, and enables
preemption-
-since migration/1 is requested to run,
migration/1 begins to run and waits on
migration/0, but migration/0 will never
be able to run, since the thread that
can wake it is affine to CPU1-
Disable preemption in cpu_stop_queue_work() before queueing works for
stopper threads, and queueing the stopper thread in the wake queue, to
ensure that the operation of queueing the works and waking the stopper
threads is atomic.
Fixes: 0b26351b91 ("stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock")
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: matt@codeblueprint.co.uk
Cc: bigeasy@linutronix.de
Cc: gregkh@linuxfoundation.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1533329766-4856-1-git-send-email-isaacm@codeaurora.org
Co-Developed-by: Isaac J. Manjarres <isaacm@codeaurora.org>
This commit:
9fb8d5dc4b ("stop_machine, Disable preemption when waking two stopper threads")
does not fully address the race condition that can occur
as follows:
On one CPU, call it CPU 3, thread 1 invokes
cpu_stop_queue_two_works(2, 3,...), and the execution is such
that thread 1 queues the works for migration/2 and migration/3,
and is preempted after releasing the locks for migration/2 and
migration/3, but before waking the threads.
Then, On CPU 2, a kworker, call it thread 2, is running,
and it invokes cpu_stop_queue_two_works(1, 2,...), such that
thread 2 queues the works for migration/1 and migration/2.
Meanwhile, on CPU 3, thread 1 resumes execution, and wakes
migration/2 and migration/3. This means that when CPU 2
releases the locks for migration/1 and migration/2, but before
it wakes those threads, it can be preempted by migration/2.
If thread 2 is preempted by migration/2, then migration/2 will
execute the first work item successfully, since migration/3
was woken up by CPU 3, but when it goes to execute the second
work item, it disables preemption, calls multi_cpu_stop(),
and thus, CPU 2 will wait forever for migration/1, which should
have been woken up by thread 2. However migration/1 cannot be
woken up by thread 2, since it is a kworker, so it is affine to
CPU 2, but CPU 2 is running migration/2 with preemption
disabled, so thread 2 will never run.
Disable preemption after queueing works for stopper threads
to ensure that the operation of queueing the works and waking
the stopper threads is atomic.
Co-Developed-by: Prasad Sodagudi <psodagud@codeaurora.org>
Co-Developed-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bigeasy@linutronix.de
Cc: gregkh@linuxfoundation.org
Cc: matt@codeblueprint.co.uk
Fixes: 9fb8d5dc4b ("stop_machine, Disable preemption when waking two stopper threads")
Link: http://lkml.kernel.org/r/1531856129-9871-1-git-send-email-isaacm@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>